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Epstein-Glaser’s ideas for the formulation of a distributional well-defined perturbative causal field
theory are developed in light-front dynamics over the invariant null-plane coordinates introduced
by Rohrlich. Explicitly, the causality theorems which warrant the method are adapted to that
dynamics, and the causal distribution splitting formulae are re-derived in accordance with it, ex-
hibiting important differences with respect to its instant dynamics version. Application of these
splitting formulae to the (anti)commutation relations of the fermion and radiation fields natu-
rally leads to the well known instantaneous terms of their Feynman propagators, while the scalar
field’s one retains its form from instant dynamics. Additionally, the developed method is ap-
plied to Scalar QED (SQED) at second order, taking for the first order distribution the product of
the radiation field with only the linear in the coupling constant part of the current. We analyse
Moeller scattering, for which the equivalence with instant dynamics is established, and Compton
scattering, for which the vertex coming from the second order term in the current is automatically
generated in the normalization procedure once the residual gauge invariance which remains from
the imposition of the null-plane gauge condition is exploited.
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1. Introduction

The S-operator, as a map between asymptotically free incoming particles and outgoing ones,
must be constructed with the well defined free fields, as realized by Stückelberg and Rivier [1],
who were the first to consider a causality axiom, then simplified by Bogoliubov and Shirkov [2] by
the introduction of a switching function regulating the intensity of the interaction. In 1973, Epstein
and Glaser [3] constructed a finite perturbative theory in which UV divergences do not appear; they
used translation invariance and a causality condition, then the S-operator is constructed inductively,
order by order. Currently, this theory is called: Causal Perturbation Theory (CPT) [4]. Moreover,
although since Dirac’s paper [5] the development of light-front field theories has proven to be useful
in many models, the singular character of instantaneous terms has been an intricate problem. In
view of the successful CPT applications, this approach could resolve this problem. Nonetheless,
the passage from the instant dynamics version of CPT to the light-front dynamics one is not trivial:
CPT has to be reconstructed, because the causality condition, which is at the base of the theory,
must be reformulated. Show how to do it and the application of the resulting theory to scattering
processes on SQED is the purpose of this paper (for a detailed exposition see [6]).

2. Null Plane Causal Perturbation Theory

The S(g) operator connects asymptotically free initial and final states for an interaction whose
intensity is regulated by the switching function g ∈S (R4). We formally express it as the series:

S(g) := 1+
+∞

∑
n=1

1
n!

∫
d4x1 · · ·d4xnTn(x1; · · · ;xn)g(x1) · · ·g(xn) . (2.1)

Here the product g(x1) · · ·g(xn) is symmetric, so do the Tn distributions. Defining the set X :={
x j ∈M : j = 1, · · · ,n

}
, we denote: Tn = Tn(X),g(X) ≡ g(x1) · · ·g(xn), dX ≡ d4x1 · · ·d4xn, so:

S(g) = 1+
+∞

∑
n=1

1
n!
∫

dXTn(X)g(X). The inverse operator is: S(g)−1 = 1+
+∞

∑
n=1

1
n!
∫

dXT̃n(X)g(X).

For X ,Y ⊂ M define:1 X < Y :⇔ ∀x ∈ X ,y ∈ Y : x(+) < y(+) and X ∼ Y :⇔ ∀x ∈ X ,y ∈
Y : (x− y)2 < 0. Causality is implemented as follows: (1) For g1,g2 ∈ S (R4) with supp(g1) <

supp(g2): S(g1 + g2) = S(g2)S(g1); (2) for g1,g2 ∈ S (R4) with supp(g1) ∼ supp(g2), the same
decomposition is valid, but S(g1) and S(g2) commute. Now, suppose that we know all Tm, T̃m for
m = 1, · · · ,n−1 and we want to find the next order Tn distribution. Define the distributions:

A′n(X) := ∑
P2

T̃n1(X1)Tn−n1(X2∪{xn}) , R′n(X) := ∑
P2

Tn−n1(X2∪{xn})T̃n1(X1) , (2.2)

with P2 a partition of X \ {xn} in the disjoint subsets X1,X2 such that X1 6= /0. Also, we define the
advanced and retarded distributions of order n by:

An(X) := ∑
P(0)

2

T̃n1(X1)Tn−n1(X2∪{xn}) , Rn(X) := ∑
P(0)

2

Tn−n1(X2∪{xn})T̃n1(X1) . (2.3)

1We use Rohrlich’s invariant null-plane coordinates [7]: Light-front dynamics is introduced by the definition of the
null-plane tetrad basis: e(±) =

(
ẽ(0)± ẽ(3)

)
/
√

2,e(1) = ẽ(1),e(2) = ẽ(2). Then every vector A has invariant components:

A(a) := A · e(a), with which it can be expressed as: A = A(a)e(a). The scalar product of the vectors A and B is: A ·B =

A(+)B(−)+A(−)B(+)−A(⊥)B(⊥). Finally, we choose x(+) as the invariant NP-time.

1



P
o
S
(
L
C
2
0
1
9
)
0
2
1

Epstein-Glaser’s Causal Light-Front Field Theory O.A. Acevedo

Here, P(0)
2 means that now it is allowed that X1 = /0. Then Tn can be found as: Tn(X) = Rn(X)−

R′n(X). Define the causal distribution: Dn(X) := Rn(X)−An(X) = R′n(X)−A′n(X). Also, de-
note: Ṽ+(x) :=

{
y ∈M : (y− x)2 ≥ 0;y(+) ≥ x(+)

}
, Ṽ−(x) :=

{
y ∈M : (y− x)2 ≥ 0;y(+) ≤ x(+)

}
,

and the sets of n points in Ṽ±(x): Γ±n (x). Theorem 1: For n ≥ 3: supp(Dn(x1; · · · ;xn)) ⊆
Γ+

n (xn)∪Γ−n (xn). � For n= 2, the causal support of D2(X) must be proved explicitly. This theorem
tells us that Dn(X) can be split into Rn and An with supp(Rn) ⊆ Γ+

n (xn) and supp(An) ⊆ Γ−n (xn).
Also, Theorem 2: The constructed distribution Tn(X) satisfies the causality conditions. � Now,
the causal distribution has the form: Dn(X) = ∑k dk

n(X) :Ck(ψ
A) : , with dk

n(X) a numerical distri-
bution determining supp(Dn) and :Ck(ψ

A) : a normal product of the free field operators ψA. De-
fine the distribution d ∈S (R4n−4) as: d(X) := dk

n(x1− xn; · · · ;xn−1− xn;0),supp(d)⊆ Γ
+
n−1(0)∪

Γ
−
n−1(0). For the splitting of d as: d = r− a, with supp(r) ⊆ Γ

+
n−1(0) and supp(a) ⊆ Γ

−
n−1(0),

we must take into account its behaviour in the neighbourhood of the intersection of the sur-
face X (+) = 0 and supp(d), i.e., the X (−)-axis. Definition 1: Let d ∈ S ′(Rm). If the limit
lims→0+ sω−s3m/4d

(
sX (+);sX (⊥);X (−)) = d−(X) exists in S ′(Rm) and is non-zero, then d− is the

quasi-asymptote of d at the X (−)-axis, which then has singular order ω−. � For the splitting, con-
sider a continuous non-decreasing monotonous function χ(t) such that: χ(t) = 0 for t < 0, χ(t)< 1
for 0 < t < 1, χ(t) = 1 for t ≥ 1. Then, define the retarded and advanced distributions by:

r(X) = lim
s→0

χ

(
X (+)/s

)
d(X) , a(X) =− lim

s→0
χ

(
−X (+)/s

)
d(X) . (2.4)

This definition is satisfactory only if these limits do exist. Cauchy’s convergence condition implies
its existence if ω− < 0, but it could not exist for ω− ≥ 0. Accordingly, for ω− < 0 the splitting
is trivial: r(X) = lims→0 χ

(
X (+)/s

)
d(X) ≡ Θ

(
X (+)

)
d(X). For ω− ≥ 0, we must project the test

function onto the space of functions for which the limit exists; this is done with an operator W . Then
the retarded distribution is defined as: (r;ϕ) :=

(
lims→0 χ

(
X (+)/s

)
d(X);(Wϕ)(X)

)
≡ (d;ΘWϕ).

In momentum space the splitting formulae are (we show only the case n = 2), for ω− < 0:

r̂(p) =
i

2π
sgn
(

p(+)

) +∞∫
−∞

d̂
(
t p(+); ppp

)
1− t + sgn

(
p(+)

)
i0+

dt , (2.5)

and for ω− ≥ 0 we have the central solution:

r̂0(p) =
i

2π

∫ dq
q+ i0+

{
d̂
(

p(+)−q; ppp
)
−
bω−c

∑
b=0

(
p(+,⊥)

)b

b!
Db
(+,⊥)d̂

(
−q;0(⊥); p(−)

)}
. (2.6)

Finally, if (r;a) and (r̃; ã) are two solutions of the splitting problem, d = r− a = r̃− ã, then
r− r̃ = a− ã. It is only possible if r and r̃ differ, at most, by normalization terms: r(X)− r̃(X) =
bωr
−c

∑
a=0

Ca
(
X (−))Da

(+,⊥)δ
(
X (+,⊥)), with Ca

(
X (−)) some distributions which must be fixed by physi-

cal conditions besides causality. In momentum space those terms are:
bωr
−c

∑
a=0

Ĉa
(
P(−)

)
Pa
(+,⊥).

3. Field Propagators

Scalar field: Fourier transform of the commutation function for the scalar field is D̂(p) =
i

2π
sgn
(

p(−)
)

δ (p2−m2), which is of singular order ω− = −2 < 0. We find its retarded part by

2
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using Eq. (2.5) and get: D̂ret(p) =−(2π)−2 1
p2−m2+sgn(p(−))i0+

. Feynman propagator is:

D̂F(p) := D̂ret(p)− D̂(−)(p) =−(2π)−2 1
p2−m2 + i0+

.

Fermion field: The anticommutation function of the fermion field in momentum space is:
Ŝ(p) = i

2π
(/p+m)sgn

(
p(−)

)
δ (p2−m2), and has singular order ω− =−1 < 0. Its retarded part is

found to be: Ŝret(p) =−(2π)−2
(

/p+m
p2−m2+sgn(p(−))i0+

− γ(+)

2p(−)

)
. Feynman propagator is then:

ŜF(p) := Ŝ(−)(p)− Ŝret(p) = (2π)−2

(
/p+m

p2−m2 + i0+
− γ(+)

2p(−)

)
.

Radiation field in the NP-gauge: The commutation function for this field is: D̂(a)(b)(k) =
i

2π
sgn
(
k(−)

)
δ (k2)

(
η(a)(b)−

k(a)η(b)+η(a)k(b)
k(−)

)
. Some terms of this distribution have singular order

ω− =−2, and others have ω− =−1. In any case, the singular order is negative. The retarded part

is: D̂ret
(a)(b)(k) =−

(2π)−2

k2+sgn(k(−))i0+

{
η(a)(b)−

k(a)η(b)+η(a)k(b)
k(−)

+ k2

k2
(−)

η(a)η(b)

}
. Therefore:

D̂F
(a)(b)(k) := D̂ret

(a)(b)(k)−D̂(−)
(a)(b)(k)=−

(2π)−2

k2 + i0+

{
η(a)(b)−

k(a)η(b)+η(a)k(b)
k(−)

+
k2

k2
(−)

η(a)η(b)

}
.

4. Scalar QED

We start with the one-point distribution: T1(x) = −i : j(a)(x) : A(a)(x); with the current:

: j(a)(x) : = ie :ϕ†(x)
←→
∂ (a)ϕ(x) : . Being that way, T1(x) is a truly first order in e distribution.

Moeller Scattering: Considering the scattering of two scalar particles, the causal distribution
for this process is: DM

2 (x1;x2) = −iDµν(y) : jµ(x1) jν(x2) : with y = x1− x2. The corresponding
retarded distribution is: RM

2 (x1;x2) =−iDret
µν(y) : jµ(x1) jν(x2) : , so that:

T M
2 (x1;x2) = RM

2 (x1;x2)−R′M2 (x1;x2) =−iDF
µν(y) : jµ(x1) jν(x2) : . (4.1)

Accordingly: SM
2 = − i

2(2π)−2 ∫ d4kd4x1d4x2e−iky
(
D̂F

µν(k)+Ĉ
(
k(−)

))
: jµ(x1) jν(x2) : . If we

choose Ĉ
(
k(−)

)
= (2π)−2ηµην/k2

(−), this normalization term cancels the instantaneous part in
Feynman propagator (locality condition). Also, choosing the initial and final states b†(qqq1)b

†(ppp1)Ω

and b†(qqq2)b
†(ppp2)Ω, respectively, the terms in D̂F

µν(k) linear in the momentum do not contribute
because of the on-mass-shell condition. We conclude that the final result is the same as taking
−(2π)−2 gµν

k2+i0+ as the photon propagator, proving the equivalence with instant dynamics.

Compton Scattering: Now consider the scattering of a scalar particle with a photon. Perform-
ing the splitting of the causal distribution of second order and writing the allowed normalization

3
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terms, we find the two-points distribution as being:

TC
2 (x1;x2) = ie2 :A(a)(x1)A(b)(x2) :

{
−
(

:ϕ(x1)ϕ
†(x2) : + :ϕ

†(x1)ϕ(x2) :
)

∂(a)∂(b)D
F(y)

+
(

:∂(a)ϕ(x1)ϕ
†(x2) : + :∂(a)ϕ

†(x1)ϕ(x2) :
)

∂(b)D
F(y)−

(
:ϕ(x1)∂(b)ϕ

†(x2) :

+ :ϕ
†(x1)∂(b)ϕ(x2) :

)
∂(a)D

F(y)+
(

:∂(a)ϕ(x1)∂(b)ϕ
†(x2) : + :∂(a)ϕ

†(x1)∂(b)ϕ(x2) :
)

DF(y)
}

+ :A(α)(x1)A(β )(x2) : η(α)(β )

{
C
(

y(−)
)

:ϕ(x1)ϕ
†(x2) : +C′

(
y(−)

)
:ϕ

†(x1)ϕ(x2) :
}

δ

(
y(+,⊥)

)
.

Imposing charge conjugation invariance, i.e.
(
Uϕ ⊗UA

)
Tn(x1; · · · ;xn)

(
Uϕ ⊗UA

)†
=Tn(x1; · · · ;xn),

we obtain: C
(
y(−)

)
=C′

(
y(−)

)
. Also, imposing the invariance of SC

2 under the residual gauge free-
dom remaining from the choice of the NP gauge A(+) = 0, we arrive at: C

(
y(−)

)
= δ

(
y(−)

)
. The

contribution of this normalization terms is, in the adiabatic limit g→ 1:
1
2!

∫
d4x1d4x2TC

2 (x1;x2) = · · ·− ie2
∫

d4x1 :A(⊥)(x1)A(⊥)(x1) : :ϕ
†(x1)ϕ(x1) : . (4.2)

We see that the e2 term which arises from the minimal coupling prescription in the conventional
theory, appears as a normalization term required for invariance under residual gauge transforma-
tions in the second order perturbation term in the causal approach.

5. Conclusions

We have reformulated CPT in a way compatible with LF dynamics. Particularly, we have
shown that when the causality axiom is referred to the x(+) coordinate, causality theorems allow
the retarded and advanced distributions to be non-null on the entire x(−)-axis, so that the normal-
ization terms are defined on it. In the applications to SQED, these normalization distributions can
always be chosen in such a way that locality is preserved, cancelling the instantaneous terms of the
propagators which arise in the splitting procedure of the commutation distributions of the fields;
those normalization distributions are identified with the non-local terms in the Lagrangian density
in the usual approach.

O.A.A. and B.M.P. thank CNPq-Brazil for total and partial support, respectively.
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