

3D imaging of the pion off-shell electromagnetic form factors *

Ho-Meoyng Choi[†]

Department of Physics Education, Kyungpook National University, Daegu 41566, Korea E-mail: homyoung@knu.ac.edu

T. Frederico

Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, SP, Brazil E-mail: tobias@ita.br

Chueng-Ryong Ji

Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA

E-mail: crji@ncsu.edu

J. P. B. C. de Melo

Laboratório de Física Teórica e Computacional, Universidade Cruzeiro do Sul/Universidade Cidade de São Paulo, 01506-000, São Paulo SP, Brazil E-mail: joao.mello@cruzeirodosul.edu.br

We study the pion electromagnetic half-off-shell form factors F_1 and F_2 using an exactly solvable manifestly covariant model of a (3 + 1) dimensional fermion field theory. The model provides a three-dimensional imaging of F_1 and F_2 as a function of (Q^2, t) , which are constrained by the Ward-Takahashi identity. The normalization of the charge form factor F_1 is fixed by $F_1(Q^2 =$ $0, t = m_{\pi}^2) = 1$ while the other form factor F_2 vanishes, i.e. $F_2(Q^2, t = m_{\pi}^2) = 0$ for any value of Q^2 due to the time-reversal invariance of the strong interaction. The new form factor defined by $g(Q^2, t) = F_2(Q^2, t)/(t - m_{\pi}^2)$ is however measurable in the on-mass-shell limit. We note that $g(Q^2 = 0, t = m_{\pi}^2)$ is related with the pion charge radius.

Light Cone 2019 - QCD on the light cone: from hadrons to heavy ions - LC2019 16-20 September 2019 Ecole Polytechnique, Palaiseau, France

[†]Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

^{*}This work was supported in part by the US Department of Energy under Grant No. DE-FG02-03ER41260 (CJ), by the National Research Foundation of Korea (NRF) under Grant No. NRF-2017R1D1A1B03033129 (HMC), by the project INCT-FNA Proc. No. 464898/2014-5, by CAPES - Finance Code 001, by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grants 308025/2015-6 (JPBCM), 308486/2015-3 (TF), PVE 401322/2014-9 (CJ), by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under the thematic projects 2013/26258-4 and 2017/05660-0, and by regular project 2019/02923-5 (JPBCM).

1. Introduction

The pion is the simplest hadronic system, the valence structure of which is a bound state of a quark and an antiquark. Its structure is known to be parametrized by a single on-mass-shell electromagnetic (EM) form factor, $F_{\pi}(Q^2)$, which depends on the 4-momentum squared $q^2(=-Q^2)$ of the virtual photon. While $F_{\pi}(Q^2)$ for the low spacelike momentum transfers Q^2 has been measured directly by elastic scattering of high-energy mesons off atomic electrons, the extraction of $F_{\pi}(Q^2)$ to higher Q^2 regions through elastic scattering is very difficult experimentally. Thus, $F_{\pi}(Q^2)$ for the higher Q^2 values has been extracted from the pion electroproduction reaction by exploiting the nucleon's pion cloud as a target, i.e., $F_{\pi}(Q^2)$ has been extracted from the measurements of the cross sections for the reaction ${}^{1}\text{H}(e, e'\pi^{+})n$ up to values of $Q^{2} = 3.91 \text{ GeV}^{2}$ [1, 2, 3]. However, the main problem in using the electroproduction process as a tool for accessing a "pion target" is that the pions in a nucleon's cloud are not real but virtual particles. Accordingly, one cannot access the form factor at the exact pion pole in the actual experiment as the extrapolation to $t \to m_{\pi}^2$ involves the disallowed kinematic region of the electroproduction (t < 0). This may raise some questions about the validity of the extrapolation from the off-shell results to the on-shell limit. Furthermore, the EM structure of the off-shell hadron is more complicated than the on-shell hadron and involves more form factors [4]. For instance, the off-shell EM structure of the pseudoscalar meson [4] requires two form factors, which are related by the Ward-Takahashi identity(WTI).

In this work, we discuss the electromagnetic off-shell effects for the pion using an exactly solvable manifestly covariant model of (3 + 1) dimensional fermion field theory and compare the two off-shell form factors $F_1(Q^2,t)$ and $F_2(Q^2,t)$ with the data extracted from the pion electroproduction reaction [1]. More detailed analysis can be found in Ref. [5].

2. Off-shell Pion Electromagnetic Form Factors

The most general parametrization of the vertex function Γ^{μ} for the half-on-shell $(p'^2 = m_{\pi}^2)$ and half-off-shell $(p^2 = t < 0)$ electromagnetic form factors of the charged pion can be given in terms of the initial and final 4-momenta, p^{μ} and $p'^{\mu}(=p^{\mu}+q^{\mu})$, as

$$\Gamma_{\mu} = (p'+p)_{\mu} F_1(Q^2, t) + q_{\mu} F_2(Q^2, t).$$
(2.1)

where $F_2(Q^2,t) = (t - m_{\pi}^2)[F_1(0,t) - F_1(Q^2,t)]/Q^2$ is obtained from the WTI [5]. It is known that $F_2(Q^2,t)$ cannot be directly measured in the electroproduction process due to the transversality of the electron current. We note, however, that the new form factor $g(Q^2,t) \equiv F_2(Q^2,t)/(t - m_{\pi}^2)$ is nonzero in the limit of $t \to m_{\pi}^2$ although $F_2(Q^2,t)$ itself goes to zero as $t \to m_{\pi}^2$. The form factor $g(Q^2,m_{\pi}^2)$ is the new observable in the on-mass-shell limit besides the usual charge form factor $F_1(Q^2,m_{\pi}^2)$ and should be measurable in the experiment of pion electroproduction. The off-shell form factor $F_2(Q^2,t)$ can be rewritten as the following sum rule,

$$F_1(Q^2,t) - F_1(0,t) + Q^2 g(Q^2,t) = 0.$$
(2.2)

Especially, taking the derivative of this sum rule, we find [5] in the on-mass-shell limit $t = m_{\pi}^2$ and $Q^2 = 0$ that $g(Q^2 = 0, m_{\pi}^2) = \langle r_{\pi}^2 \rangle / 6$, where r_{π} is the pion charge radius.

We explicitly show all those properties of the off-shell pion form factors using the exactly solvable manifestly covariant model. The vertex function for the initial off-shell $(p^2 = t)$ and final on-shell $(p'^2 = m_{\pi}^2) q\bar{q}$ bound-state pion coupled to the virtual photon with the 4-momentum q in the fermion field theory can be calculated as

$$\Gamma^{\mu} = i N_c g_{\pi q \bar{q}}^2 \int \frac{d^4 k}{(2\pi)^4} \frac{\text{Tr}[\gamma_5(\not\!\!k + \not\!\!q + m_q)\gamma^{\mu}(\not\!\!k + m_q)\gamma_5(\not\!\!k - \not\!\!p + m_q)]}{[k^2 - m_q^2 + i\varepsilon][(k+q)^2 - m_q^2 + i\varepsilon][(p-k)^2 - m_q^2 + i\varepsilon]},$$
(2.3)

where N_c is the number of colors and $g_{\pi q \bar{q}}$ corresponds to the coupling constant of the $\pi q \bar{q}$ vertex.

Using the Feynman parametrization and the dimensional regularization in $d(=4-2\varepsilon)$ -dimensions, we then obtain the two form factors $F_1(Q^2,t)$ and $F_2(Q^2,t)$ as

$$F_{1}(Q^{2},t) = -\frac{N_{c}g_{\pi q\bar{q}}^{2}}{8\pi^{2}} \int_{0}^{1} dx \int_{0}^{x} dy \left[(1+3y) \left(\gamma - \frac{1}{\varepsilon} + \frac{1}{2} + \text{Log}C \right) + \frac{\alpha}{C} \right],$$

$$F_{2}(Q^{2},t) = -\frac{N_{c}g_{\pi q\bar{q}}^{2}}{8\pi^{2}} \int_{0}^{1} dx \int_{0}^{x} dy \left[3(1-2x+y)\text{Log}C + \frac{2\beta - \alpha}{C} \right],$$
(2.4)

where γ is the Euler-Mascheroni constant and $\alpha = (1+y)(E^2 - m_q^2) - q \cdot E + 2yp \cdot E - yq \cdot p$, $\beta = (1-x+y)(E^2 - m_q^2) + (1-2x+2y)p \cdot E + (x-y)q \cdot p$, and *C* and *E* are given in [5]. We should note that the form factor $F_2(Q^2,t)$ is free from the UV divergence since the integration of (1-2x+y) multiplied by the constant factor $(\gamma - 1/\varepsilon + 1/2)$ gives zero in Eq. (2.4).

As the loop correction to the charge form factor $F_1(Q^2, t = m_{\pi}^2)$ must vanish at $Q^2 = 0$, the charge at $Q^2 = 0$ is given by a subtraction to the contribution by the loop integral. We thus redefine the renormalized charge form factor as

$$F_1^{\text{ren}}(Q^2, t) = 1 + [F_1(Q^2, t) - F_1(0, m_\pi^2)], \qquad (2.5)$$

where the loop correction in the square bracket vanishes at $Q^2 = 0$ and $t = m_{\pi}^2$ and the normalization of the electric charge is fixed by $F_1^{\text{ren.}}(0,t=m_{\pi}^2)=1$. The coupling $g_{\pi q\bar{q}}$ is related to the pseudoscalar coupling of the pion *vis-á-vis* partially conserved axial current. From the comparison of the pion decay constant f_{π} using the same model, we obtain $g_{\pi q\bar{q}} = (2m_q/f_{\pi})$ by taking $F_1^{\text{ren}}(0,m_{\pi}^2) = 1$. In our numerical calculation, however, we take $g_{\pi q\bar{q}}$ as another free parameter in addition to m_q for the best fit of the model calculation compared to the experimental data. From now on, we shall denote $F_1^{\text{ren.}}(Q^2,t)$ as $F_1(Q^2,t)$ for convenience.

3. Results

In our numerical calculation, we tried to find the best fits of the form factor $F_1(Q^2, t)$ compared to the experimental data $F_1^{\text{Exp.}}(Q^2, t)$ for both the off-shell pion $(t \neq m_{\pi}^2)$ and the on-shell pion $(t = m_{\pi}^2)$ by adjusting our model parameters $(m_q, g_{\pi q \bar{q}})$. We found the optimum ranges of quark masses, $0.12 \leq m_q \leq 0.16$ GeV, and the best-fit for the coupling constants, $g_{\pi q \bar{q}} = (1.32, 1.20, 1.11)$ in unit of $(2m_q/f_{\pi}^{\text{Exp.}})$ for $m_q = (0.12, 0.14, 0.16)$ GeV, respectively. That is, our phenomenological best fit coupling constants $g_{\pi q \bar{q}}$ are not much different from the values of $2m_q/f_{\pi}^{\text{Exp.}}$.

The overall landscape of the half-on-shell form factors, $F_1(Q^2,t)$ and $F_2(Q^2,t)$, obtained from $m_q = 0.16$ GeV and $g_{\pi q\bar{q}} = 1.11(2m_q/f_{\pi}^{\text{Exp.}})$ for spacelike regions are shown in Fig. 1 [5]. The

figure represents the 3D plots of $F_1(Q^2,t)$ (top left), $-F_2(Q^2,t)$ (top right), $g(Q^2,t)$ (bottom left) and the sum rule (bottom right) given by Eq. (2.2) for the momentum transfer region $0 \le Q^2 \le 3$ GeV² and $m_{\pi}^2 \ge t \ge -0.4$ GeV². While the form factor $F_2(Q^2,t)$ goes to zero as $t \to m_{\pi}^2$, the form factor $g(Q^2,t)$ is nonzero even in the on-mass-shell limit. Furthermore, $F_1(0,t)$ shows some dependency on t, which is necessary to know in the case of extracting $F_2(Q^2,t)$ from the pion electroproduction data.

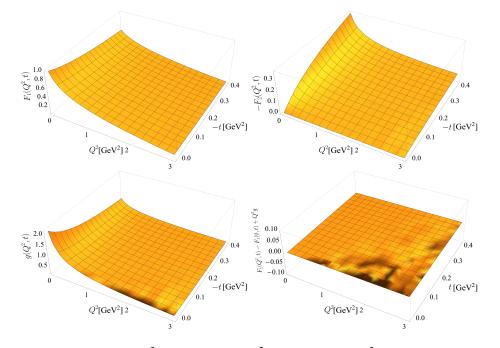


Figure 1: The 3D plots of $F_1(Q^2, t)$ (top left), $F_2(Q^2, t)$ (top right), $g(Q^2, t)$ (bottom left) and the sum rule (bottom right) given by Eq. (2.2) for the spacelike momentum transfer region $0 \le Q^2 \le 3 \text{ GeV}^2$ and $m_{\pi}^2 \ge t \ge -0.4 \text{ GeV}^2$.

The on-shell pion form factors $F_1(Q^2, m_\pi^2)$ (black lines) and $g(Q^2, m_\pi^2)$ (blue lines) from the covariant model for the spacelike region $Q^2 > 0$ are shown in Fig. 2 and compared with the extracted values of $F_1^{\text{Exp.}}(Q^2, t = m_\pi^2)$ (black data) and $g^{\text{Exp.}}(Q^2, t = m_\pi^2) = [1 - F_1^{\text{Exp.}}(Q^2, t = m_\pi^2)]/Q^2$ (blue data) [5]. The model parameters in Fig. 2 are $m_q = (0.12, 0.16)$ GeV using the variation of the couplings $g_{\pi q\bar{q}} = (1.32 \pm 0.04, 1.11 \pm 0.04)(2m_q/f_\pi^{\text{Exp.}})$, respectively. The solid and dashed lines represent the results obtained from $m_q = 0.12$ and 0.16 GeV using the upper and lower limits of the corresponding $g_{\pi q\bar{q}}$. Unlike the form factor $F_2(Q^2, t)$, the form factor $g(Q^2, t)$ does not vanish in the on-shell limit. We note that the current Particle Data Group [6] average $r_\pi^{\text{Exp}} = \sqrt{\langle r_\pi^2 \rangle} = (0.672 \pm 0.008)$ fm for the rms value of the pion charge radius corresponds to $g^{\text{Exp.}}(Q^2 = 0, m_\pi^2) = (1.953 \pm 0.023) \text{ GeV}^{-2}$.

4. Conclusions

We investigated the pion electromagnetic half-off-shell form factors $F_1(Q^2,t)$ and $F_2(Q^2,t)$ using the manifestly covariant fermion field theory model. We also note that the ratio of $F_2(Q^2,t)$

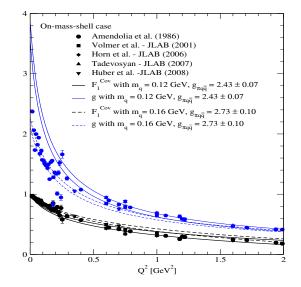


Figure 2: The on-shell pion form factors $F_1(Q^2, m_{\pi}^2)$ (black lines) and $g(Q^2, m_{\pi}^2)$ (blue lines) for the spacelike momentum transfer region $0 \le Q^2 \le 2$ GeV² compared with the experimental data [1, 2, 3, 7] for $F_1^{\text{Exp.}}$ (black data) and $g^{\text{Exp.}}$ (blue data).

to $t - m_{\pi}^2$ is nonzero in the limit of $t \to m_{\pi}^2$ while $F_2(Q^2, t)$ goes to zero as $t \to m_{\pi}^2$. This led us to define the new form factor $g(Q^2, t) = F_2(Q^2, t)/(t - m_{\pi}^2)$, which should be measurable even in the on-mass-shell limit on par with the usual charge form factor $F_1(Q^2, m_{\pi}^2)$. In particular, we obtain the sum rule which relates $g(Q^2, t)$ to $F_1(Q^2, t)$ and note that the value of $g(Q^2 = 0, t = m_{\pi}^2)$ corresponds to the charge radius of a pion. According to Eq. (2.2), however, one needs the information of $F_1(0, t)$ to determine $g(Q^2, t)$, while no data of $F_1(Q^2, t)$ exist at $Q^2 = 0$ for t < 0.

In this work, we used a simple covariant model to provide at least a clear example of demonstration for the simultaneous extraction of both $F_1(Q^2,t)$ and $g(Q^2,t)$ (or $F_2(Q^2,t)$). In our numerical calculations, we show the 3D plots of $F_{1(2)}(Q^2,t)$ and $g(Q^2,t)$ in terms of (Q^2,t) values as shown in Fig. 1. It encourages more in-depth theoretical and experimental efforts to reveal the 3D imaging of the off-shell pion form factors.

References

- [1] H. P. Blok et al., Phys. Rev. C 78, 045202 (2008); G. M. Huber et al., Phys. Rev. C 78, 045203 (2008).
- [2] T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006); Phys. Rev. C 78, 058201 (2008).
- [3] J. Volmer *et al.*, Phys. Rev. Lett. **86**, 1713 (2001); V. Tadevosyan *et al.*, Phys. Rev. C **75**, 055205 (2007).
- [4] T. E. Rudy, H. W. Fearing, and S. Scherer, Phys. Rev. C 50, 447 (1994).
- [5] H.-M. Choi, T. Frederico, C.-R. Ji, and J.P.B.C. de Melo, Phys. Rev. D 100, 116020 (2019).
- [6] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
- [7] S. R. Amendolia et al., Nucl. Phys. B 277, 168 (1986).