
P
o
S
(
L
C
2
0
1
9
)
0
3
6

The QCD energy-momentum tensor for massive
states of arbitrary spin

Sabrina Cotogno∗

CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128
Palaiseau, France
E-mail: sabrina.cotogno@polytechnique.edu

Cédric Lorcé
CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128
Palaiseau, France
E-mail: cedric.lorce@polytechnique.edu

Peter Lowdon
CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128
Palaiseau, France
E-mail: peter.lowdon@polytechnique.edu

We present the parametrisation of the energy-momentum tensor (EMT) for massive hadrons of
any spin, writing explicitly the expansion in terms of gravitational form factors (GFFs). Such a
complete and general parametrisation allows one to derive universal properties that are valid for
all hadrons independently of their spin.

Light Cone 2019 - QCD on the light cone: from hadrons to heavy ions - LC2019
16-20 September 2019
Ecole Polytechnique, Palaiseau, France

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:sabrina.cotogno@polytechnique.edu
mailto:cedric.lorce@polytechnique.edu
mailto:peter.lowdon@polytechnique.edu


P
o
S
(
L
C
2
0
1
9
)
0
3
6

The QCD energy-momentum tensor for any spin Sabrina Cotogno

1. Introduction

The energy-momentum tensor (EMT) is a fundamental object of study in quantum field the-
ories such as QCD, see e.g. [1, 2] and references therein. The hadronic matrix element of the
(local) EMT operator is parametrised in terms of gravitational form factors (GFFs), in analogy to
the hadronic matrix elements of the electromagnetic current operator which are parametrised in
terms of electromagnetic form factors. The GFFs encode properties that are of great interest for
hadrons, such as their mass and angular momentum and their spatial distributions [3, 1, 4, 5]. The
study of GFFs can shed light on novel properties of hadrons, such as the way that stress and shear
forces are distributed within them [6, 3, 2, 7].

For a long time in the past, the main focus of hadronic physics has been devoted to spin- 1
2

particles, due to the proton’s abundance as a stable particle and its central role in the building of
visible matter. However, there is an increasing interest in the study of higher-spin hadrons, as
unique tools to study the dynamics of internal constituents beyond the degrees of freedom typical
of a single spin-1/2 nucleon (proton and neutron) [8, 9, 10, 11, 12, 13].

Even though measurements of the GFFs for higher-spin particles are hardly feasible experi-
mentally, looking at higher-spin problems is desirable from a broader theoretical point of view. A
natural question is whether it is possible to characterize the role of the spin of the state in shaping
the structure of the EMT and, consequently, the number of GFFs. Similarly, one might wonder
what is the best systematic approach to find the complete EMT parametrisation such that the form
factors counting depends only on the total spin j [8, 14]. In this paper, inspired and based on
refs. [15, 12, 16, 14], we present the complete parametrisations for the EMT for massive states of
arbitrary spin. We single out all the possible “core” structures, or “seeds”, i.e. Lorentz structures
that contribute to the expansion of the matrix element, and associate to them a “tower” of elements,
whose number depends on the spin of the particle. Finally, we point out that one can use a more
general approach, recently derived and presented in ref. [14], based on a covariant version of the
spin multipole expansion. This is useful to derive some universal properties and relations, that turn
out to be valid for all on-shell particles, independently of their spin, structure, and mass [12, 16].

2. Parametrisations of the EMT

We introduce the average four-momentum P = (p′+ p)/2 and the four-momentum transfer
∆ = p′− p with ∆2 = t, satisfying the onshell conditions P2 + ∆2/4 = M2 and P · ∆ = 0. The
polarisation of physical states is described by a generalised polarisation tensor (GPT) η(p,λ ) as
in [17, 12, 16]. GPTs are defined such that the covariant density matrix in a given representation
of the Lorentz group

ρ
A
B(p,λ ,λ ′) = η

A(p,λ )ηB(p,λ ′) (2.1)

has normalisation Tr[ρ(p,λ ,λ ′)] = δλλ ′ .
Let us consider a particle of mass M and spin j. When j = n is integer, we choose to work with

the (n
2 ,

n
2) representation, where the GPT η(p,λ )∼ εα1···αn(p,λ ) is totally symmetric, traceless and

satisfies the subsidiary condition
pα

εαα2···αn(p,λ ) = 0. (2.2)

1



P
o
S
(
L
C
2
0
1
9
)
0
3
6

The QCD energy-momentum tensor for any spin Sabrina Cotogno

When j = n+ 1
2 is half-integer, we choose to work with the (n+1

2 , n
2)⊕ (n

2 ,
n+1

2 ) representation,
where the GPT η(p,λ ) ∼ uα1···αn(p,λ ) is totally symmetric, traceless and satisfies the subsidiary
conditions1

pαuαα2···αn(p,λ ) = 0,

(p/ −M)uα1···αn(p,λ ) = 0,

γ
αuαα2···αn(p,λ ) = 0.

(2.3)

The subsidiary conditions (2.2) and (2.3) simply ensure that the number of degrees of freedom is
2 j+1. For more material on the construction of the GPTs, identities and general relations we refer
to ref. [14], especially its appendices.

Thanks to the Lorentz invariance of the theory, a rank-2 tensor T µν , such as the EMT, can
be expressed as a sum of Lorentz tensors built out of the Minkowski metric gµν , the totally an-
tisymmetric Levi-Civita pseudo-tensor2 εµνρσ , and the four-vectors of the problem Pµ and ∆µ .
The structures can be separately conserved, i.e. they vanish when contracted with ∆µ , or not.
Each of these Lorentz structures is multiplied by a Lorentz scalar function of t = ∆2 and are
referred to as the GFFs. Various parametrisations have been proposed in the literature for spin-
0, 1

2 , 1 [18, 19, 20, 21, 22, 1, 9, 10, 11, 15, 13], and higher spins [8]. When j = n is integer, we find
that the EMT matrix element can be written in terms of the following basis [14]

T µν ,α ′1···α ′nα1···αn(P,∆) = 2PµPν
∑
(k,n)

F1,k(t)

+2
(
∆

µ
∆

ν −gµν
∆

2)
∑
(k,n)

F2,k(t)

+2gµνM2
∑
(k,n)

F3,k(t)

−P{µgν}[α ′n∆
αn] ∑

(k,n−1)
F4,k(t)

−
[
∆
{µgν}{α ′n∆

αn}−gµν
∆

α ′n∆
αn−gα ′n{µgν}αn∆

2
]

∑
(k,n−1)

F5,k(t)

+gα ′n{µgν}αnM2
∑

(k,n−1)
F6,k(t)

+∆
[α ′ngαn]{µgν}[α ′n−1∆

αn−1] ∑
(k,n−2)

F7,k(t)

−P[µgν ][α ′n∆
αn] ∑

(k,n−1)
F8,k(t)

−∆
[µgν ]{α ′n∆

αn} ∑
(k,n−1)

F9,k(t),

(2.4)

where a{µbν} = aµbν +aνbµ and a[µbν ] = aµbν −aνbµ . The symbol of sum ∑(k,n) is defined as:

∑
(k,n)
≡

n

∑
k=0

[
k

∏
i=1

(
−∆α ′i ∆αi

2M2

)
n

∏
i=k+1

gα ′i αi

]
. (2.5)

1Note that the first condition is superfluous since it can be derived from the other two.
2We use the convention ε0123 =+1.
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When j = n+ 1
2 is half-integer, we find a similar basis

T µν ,α ′1···α ′nα1···αn(P,∆) = 2PµPν
∑
(k,n)

F1,k(t)

+2
(
∆

µ
∆

ν −gµν
∆

2)
∑
(k,n)

F2,k(t)

+2gµνM2
∑
(k,n)

F3,k(t)

+P{µ i
2 σ

ν}ρ
∆ρ ∑

(k,n)
F4,k(t)

−
[
∆
{µgν}{α ′n∆

αn}−gµν
∆

α ′n∆
αn−gα ′n{µgν}αn∆

2
]

∑
(k,n−1)

F5,k(t)

+gα ′n{µgν}αnM2
∑

(k,n−1)
F6,k(t)

+∆
[α ′ngαn]{µgν}[α ′n−1∆

αn−1] ∑
(k,n−2)

F7,k(t)

+P[µ i
2 σ

ν ]ρ
∆ρ ∑

(k,n)
F8,k(t)

−∆
[µgν ]{α ′n∆

αn} ∑
(k,n−1)

F9,k(t).

(2.6)

The symmetric conserved part (associated to the GFFs Fi,k with i = 1,2,4,5,7) is parametrised
in terms of 2( j+ 1)+ 3b jc− θ(b jc > 1) GFFs, and the symmetric non-conserved part (i = 3,6)
is parametrised in terms of 2b jc+ 1 GFFs, where b jc is the floor of the spin, i.e. the largest
integer smaller or equal to j. The antisymmetric conserved part (i = 8) is parametrised in terms
of d je GFFs, where d je is the ceiling of the spin, i.e. the smallest integer greater or equal to j.
The antisymmetric non-conserved part (i = 9) is parametrised in terms of b jc GFFs. In total we
get 4 j + 5b jc+ 3− θ(b jc > 1) GFFs which agrees with former results for spin 0, 1

2 , and 1. We
arranged the bases so to maximise the number of conserved terms. This is especially important for
the EMT, where non-conserved terms can also be present and they characterise the separate quark
and gluon contributions [4, 7].

3. Universal properties

Inspecting the expressions (2.4) and (2.6) for the lower spin cases, one can bring to light the
connection between the seeds in the chosen representation and the Lorentz generators Sµν of the
same representation, properly arranged. As extensively elaborated in [14], writing the EMT matrix
element as an expansion of Lorentz generators, cast in spin multipoles, is indeed a more general
and natural way of looking at the symmetry properties of these local operators.

This Section is based on a selection of results from refs. [15, 12, 16, 14]. We focus on a few
terms of this multipole expansion, namely those on which the Poincaré generators put constraints.
They correspond to terms that contain at most one power of ∆ and one Lorentz generator Sµν . The
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(truncated) EMT expansion can then be written, for any spin value, as follows3 [23, 12, 14]:

T µν(P,∆) = P{µPν}F1(t)+ iP{µSν}ρ
∆ρF2(t)+ · · · . (3.1)

The GFFs F1(t) and F2(t) are usually called A(t) and A(t)+B(t) respectively in the literature.
As shown in [12, 16], the zero momentum transfer value of these objects is solely constrained by
Poincaré symmetry and it assumes a constant value, independently of spin:

F1(0) = F2(0) = 1. (3.2)

The (local) EMT matrix element, parametrised in terms of GFFs, is connected to a non-local
operator written in terms of generalised parton distributions (GPDs) [21, 24, 25]. Denoting with
Oµ the GPD operator for both quarks and gluons, as in [12], the relation between Oµ and the EMT
involves its second Mellin moment, namely :∫ 1

−1
dxxOµ =

T µν
q nν

2(P ·n)2 , (3.3)

where the non-locality is indicated by the light-like vector n. Note that Oµ is the operator which
appears in the amplitude of the deeply virtual Compton scattering (DVCS). Restricting ourselves to
the twist-2 part of eq. (3.3) (obtained from the contraction with the vector n) and neglecting terms
with a higher power of ∆, the GPD correlator reads:

Oµnµ = H1(x,ξ , t)+
iSαρnα∆ρ

P ·n
H2(x,ξ , t)+ · · · , (3.4)

where ξ =−(∆ ·n)/(2P ·n) is the light-front longitudinal momentum transfer. It is therefore pos-
sible to generalise Ji’s sum rule [21] such that it holds independently of the spin of the states, and
is universal for all hadrons of arbitrary spin. From Eq. (3.2) it follows that:

Jz = ∑
a=q,g

∫ 1

−1
dxxHa

2 (x,0,0) = F2(0) = 1, (3.5)

which states that for any hadron with polarisation vector pointing along, say, the z-direction, the
total angular momentum in the rest frame (summed over quarks and gluons) is constant and spin-
universal.

4. Conclusions

In this work we have parametrised the EMT in terms of gravitational form factors. Our ap-
proach, which we refer to as the tensor product approach, consists in building all possible struc-
tures that appear in the GFFs expansion. We have found that the counting of GFFs depends on
the spin value j in a non trivial way. The symmetry properties of the EMT can be exploited to
derive universal relations on the GFFs which are independent of the spin. This paper is based on
refs. [15, 12, 16, 14], to which we refer for further developments on the topic.

3We suppress the GPT indices for simplicity.
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[7] C. Lorcé, H. Moutarde and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur.
Phys. J. C79 (2019) 89 [1810.09837].

[8] A. A. Cheshkov and M. Shirov, Yu, Invariant parametrization of local operators, Soviet Physics JETP
17 (1963) .

[9] B. R. Holstein, Metric modifications for a massive spin 1 particle, Phys. Rev. D74 (2006) 084030
[gr-qc/0607051].

[10] Z. Abidin and C. E. Carlson, Gravitational form factors of vector mesons in an AdS/QCD model,
Phys. Rev. D77 (2008) 095007 [0801.3839].

[11] S. K. Taneja, K. Kathuria, S. Liuti and G. R. Goldstein, Angular momentum sum rule for spin one
hadronic systems, Phys. Rev. D86 (2012) 036008 [1101.0581].

[12] S. Cotogno, C. Lorcé and P. Lowdon, Poincaré constraints on the gravitational form factors for
massive states with arbitrary spin, Phys. Rev. D100 (2019) 045003 [1905.11969].

[13] M. V. Polyakov and B.-D. Sun, Gravitational form factors of a spin one particle, Phys. Rev. D100
(2019) 036003 [1903.02738].

[14] S. Cotogno, C. Lorcé, P. Lowdon and M. Morales, Covariant multipole expansion of local currents
for massive states of any spin, 1912.08749.

[15] W. Cosyn, S. Cotogno, A. Freese and C. Lorcé, The energy-momentum tensor of spin-1 hadrons:
formalism, Eur. Phys. J. C79 (2019) 476 [1903.00408].

[16] C. Lorcé and P. Lowdon, Universality of the Poincaré gravitational form factor constraints,
1908.02567.

[17] P. Lowdon, K. Y.-J. Chiu and S. J. Brodsky, Rigorous constraints on the matrix elements of the
energy-momentum tensor, Phys. Lett. B774 (2017) 1 [1707.06313].

5

https://doi.org/10.1016/j.physrep.2014.02.010
https://arxiv.org/abs/1309.4235
https://doi.org/10.1142/S0217751X18300259
https://arxiv.org/abs/1805.06596
https://doi.org/10.1016/S0370-2693(03)00036-4
https://doi.org/10.1016/S0370-2693(03)00036-4
https://arxiv.org/abs/hep-ph/0210165
https://doi.org/10.1140/epjc/s10052-018-5561-2
https://arxiv.org/abs/1706.05853
https://doi.org/10.1016/j.physletb.2017.11.018
https://arxiv.org/abs/1704.08557
https://arxiv.org/abs/hep-ph/0207153
https://doi.org/10.1140/epjc/s10052-019-6572-3
https://doi.org/10.1140/epjc/s10052-019-6572-3
https://arxiv.org/abs/1810.09837
https://doi.org/10.1103/PhysRevD.74.084030
https://arxiv.org/abs/gr-qc/0607051
https://doi.org/10.1103/PhysRevD.77.095007
https://arxiv.org/abs/0801.3839
https://doi.org/10.1103/PhysRevD.86.036008
https://arxiv.org/abs/1101.0581
https://doi.org/10.1103/PhysRevD.100.045003
https://arxiv.org/abs/1905.11969
https://doi.org/10.1103/PhysRevD.100.036003
https://doi.org/10.1103/PhysRevD.100.036003
https://arxiv.org/abs/1903.02738
https://arxiv.org/abs/1912.08749
https://doi.org/10.1140/epjc/s10052-019-6981-3
https://arxiv.org/abs/1903.00408
https://arxiv.org/abs/1908.02567
https://doi.org/10.1016/j.physletb.2017.09.050
https://arxiv.org/abs/1707.06313


P
o
S
(
L
C
2
0
1
9
)
0
3
6

The QCD energy-momentum tensor for any spin Sabrina Cotogno

[18] H. Pagels, Energy-Momentum Structure Form Factors of Particles, Phys. Rev. 144 (1966) 1250.

[19] J. F. Donoghue and H. Leutwyler, Energy and momentum in chiral theories, Z. Phys. C52 (1991) 343.

[20] I. Yu. Kobzarev and L. B. Okun, GRAVITATIONAL INTERACTION OF FERMIONS, Zh. Eksp. Teor.
Fiz. 43 (1962) 1904.

[21] X.-D. Ji, Gauge-Invariant Decomposition of Nucleon Spin, Phys. Rev. Lett. 78 (1997) 610
[hep-ph/9603249].

[22] B. L. G. Bakker, E. Leader and T. L. Trueman, A Critique of the angular momentum sum rules and a
new angular momentum sum rule, Phys. Rev. D70 (2004) 114001 [hep-ph/0406139].

[23] D. G. Boulware and S. Deser, Classical General Relativity Derived from Quantum Gravity, Annals
Phys. 89 (1975) 193.

[24] R. L. Jaffe and A. Manohar, The G(1) Problem: Fact and Fantasy on the Spin of the Proton, Nucl.
Phys. B337 (1990) 509.

[25] X.-D. Ji, Off forward parton distributions, J. Phys. G24 (1998) 1181 [hep-ph/9807358].

6

https://doi.org/10.1103/PhysRev.144.1250
https://doi.org/10.1007/BF01560453
https://doi.org/10.1103/PhysRevLett.78.610
https://arxiv.org/abs/hep-ph/9603249
https://doi.org/10.1103/PhysRevD.70.114001
https://arxiv.org/abs/hep-ph/0406139
https://doi.org/10.1016/0003-4916(75)90302-4
https://doi.org/10.1016/0003-4916(75)90302-4
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1016/0550-3213(90)90506-9
https://doi.org/10.1088/0954-3899/24/7/002
https://arxiv.org/abs/hep-ph/9807358

