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A perturbative expansion for QED and QCD bound states is formulated in A0 = 0 gauge. The
constituents of each Fock state are bound by their instantaneous interaction. In QCD an O

(
α0

s
)

confining potential arises from a homogeneous solution of Gauss’ constraint. The potential is
uniquely determined by the QCD action, up to a universal scale. The Cornell potential is repro-
duced for quarkonia, and corresponding ones found for higher Fock states, baryons and glueballs.
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1. Aspects of bound state dynamics

Hadrons are bound states of QCD, with the binding energy scale set by ΛQCD ∼ 200 MeV. It
is commonly thought that αs(Q2 ∼ Λ2

QCD) & 1, as would be the case if the perturbative running
continued to low values of Q. However, the Q2 dependence of αs(Q2) is established only for
Q & mτ , with αs(m2

τ)' 0.33. αs may be independent of Q2 in soft dynamics, i.e., the coupling may
freeze at a value which allows an expansion in powers of αs(0). This would explain why hadron
quantum numbers reflect their quark constituents, while glueballs and hybrids have yet to be found.

Bound state dynamics differs qualitatively for strong and weak coupling. This is seen in QED2,
Quantum Electrodynamics in D = 1+1 dimensions [1]. The e− and e+ form tightly bound bosons
when their charge to mass ratio e/m� 1. The nearly pointlike neutral bosons interact weakly with
each other and are the relevant degrees of freedom (d.o.f.) of the QED2 dynamics at strong cou-
pling. For weak coupling (e/m� 1) the QED2 bound states are given by the Schrödinger equation,
reflecting the fermion d.o.f.’s as for physical atoms. The strong coupling (α � 1) spectrum of
QED4 is not known, but it appears unlikely that it would resemble atoms.

In physical QED the Positronium wave functions are non-polynomial in α ' 1/137, leading
to non-perturbative features such as exponentially suppressed tunneling. The Positronium binding
energies can nevertheless be perturbatively expanded in powers of α and logα , giving excellent
agreement with data [2]. The small value of α allows quantitative predictions even for strong
external fields, as in the case of Schwinger pair production [3].

Hadrons may be classified in terms of their quark constituents. The spectra and couplings of
heavy quarkonia are well described by the Schrödinger equation with the Cornell potential [4, 5],

V (r) =V ′r− 4
3

αs

r
with V ′ ' 0.18 GeV2, αs ' 0.39 (1.1)

This potential was determined from fits to quarkonium data and later confirmed by lattice QCD [6].
The success of the Cornell approach indicates that the confinement scale V ′ arises already at the
classical (no-loop) level, with a gluon coupling αs that is close to the perturbative αs(mτ) ' 0.33.
Here we discuss a perturbative bound state expansion for hadrons, guided by a corresponding, first
principles approach to QED atoms1.

2. Positronium from the QED action

The Schrödinger equation is commonly derived by summing Feynman (ladder) diagrams, ei-
ther explicitly or in terms of the Bethe-Salpeter equation [8]. The Feynman rules assume free (in
and out) states at asymptotic times, which excludes color confinement. We therefore consider a
Hamiltonian approach. This can explain the origin of the linear term in the Cornell potential (1.1)
for QCD. An analogous confining potential is not possible for QED.

We choose temporal (A0 = 0) gauge [9, 10, 11, 12], in which the absence of a conjugate
field to A0 is not an issue. The electric fields E i = F i0 = ∂0Ai are conjugate to the photon fields
Ai (i = 1,2,3). The vanishing of Gauss’ operator, defined by

G(t,xxx)≡ δSQED

δA0(t,xxx)
= ∂iE i(t,xxx)− eψ

†
ψ(t,xxx) (2.1)

1A more detailed presentation may be found in [7].
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is not an equation of motion in temporal gauge. G(t,xxx) generates local gauge transformations which
are time-independent and thus maintain A0 = 0. The gauge is fully fixed by imposing Gauss’ law
as a constraint on physical states,

G(t,xxx) |phys〉= 0 (2.2)

This determines the action of the longitudinal electric field ∂iE i ≡ ∂iE i
L for each state.

The e+e− Fock component of Positronium may be expressed as (henceforth t = 0 is implicit),∣∣e+e−
〉
= ∑

α,β

∫
dxxx1dxxx2 ψ̄α(xxx1)Φαβ (xxx1− xxx2)ψβ (xxx2) |0〉 (2.3)

where ψ(xxx) is the electron field and the c-numbered wave function Φ(xxx1− xxx2) is a 4× 4 matrix
in the Dirac indices α,β . The state (2.3) has zero momentum since it is invariant under space
translations. Only the electron and positron creation operators contribute (b† in ψ̄ and d† in ψ).

Imposing the constraint (2.2) on the component |xxx1,xxx2〉= ψ̄α(xxx1)ψβ (xxx2) |0〉 gives,

∂iE i
L(xxx) |xxx1,xxx2〉= eψ

†
ψ(xxx) |xxx1,xxx2〉= e

[
δ (xxx− xxx1)−δ (xxx− xxx2)

]
|xxx1,xxx2〉 (2.4)

E i
L(xxx) |xxx1,xxx2〉=−

e
4π

∂
x
i

( 1
|xxx− xxx1|

− 1
|xxx− xxx2|

)
|xxx1,xxx2〉 (2.5)

The QED Hamiltonian in temporal gauge is

H =
∫

dxxx
[1

2(E
i
LE i

L +E i
T E i

T )+
1
4 F i jF i j +ψ

†(−iααα ·∇∇∇− eααα ·AAA+mγ
0)ψ
]

(2.6)

The longitudinal electric field EEEL (2.5) contributes the potential energy of the e+e− Fock state,∫
dxxx 1

2 EEE2
L(xxx) |xxx1,xxx2〉=−

α

|xxx1− xxx2|
|xxx1,xxx2〉 (2.7)

The bound state condition H |e+e−〉= (2m+Eb) |e+e−〉 for the non-relativistic state (2.3) imposes
the Schrödinger equation on the wave function Φ. Fock states such as |e+e−γ〉, |e+e−e+e−〉 , . . .
contribute at higher orders in α , and their instantaneous potentials can be determined similarly
as for |e+e−〉. This perturbative Fock state expansion method in principle allows Positronium
calculations of arbitrary accuracy. Explicit demonstrations are of course needed.

3. Hadrons in QCD

The qq̄ Fock component of a meson state may be expressed similarly as for Positronium,

|qq̄〉= 1√
NC

∑
α,β

∑
A,B

∫
dxxx1dxxx2 ψ̄

A
α(xxx1)δ

AB
Φαβ (xxx1− xxx2)ψ

B
β
(xxx2) |0〉 ≡

∫
dxxx1dxxx2 Φ(xxx1− xxx2) |xxx1,xxx2〉

(3.1)

The state is invariant under global gauge transformations since the wave function ∝ δ AB is a color
singlet combination of the quark colors A,B. In the temporal (A0

a = 0) gauge of QCD [9, 10, 11, 12]
the Gauss constraint (2.2) is

∂iE i
L,a(xxx) |phys〉= g

[
− fabcAi

bE i
c +ψ

†T a
ψ(xxx)

]
|phys〉 (3.2)
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For the qq̄ Fock component in (3.1) we have at O (g),

∂iE i
L,a(xxx) |xxx1,xxx2〉= gψ̄A(xxx1)T a

ABψB(xxx2)
[
δ (xxx− xxx1)−δ (xxx− xxx2)

]
|0〉 (3.3)

In QED the component |xxx1,xxx2〉 of Positronium gives rise to the dipole electric field (2.5). The
color singlet meson state (3.1) cannot, however, generate an instantaneous color octet electric field
EEEL,a(xxx). The expectation value of ∂iE i

L,a(xxx) in the color C component of |xxx1,xxx2〉 is

〈0|ψC†
β
(xxx2)γ

0
ψ

C
α (xxx1)|∂iE i

L,a(xxx)|ψ̄C
α (xxx1)ψ

C
β
(xxx2) |0〉 ∝ g

[
δ (xxx− xxx1)−δ (xxx− xxx2)

]
T a

CC (3.4)

The color C quark at xxx1 feels the EEEL field generated by its color C antiquark partner at xxx2, and
vice versa. But an external observer does not experience a color field at any xxx since the sum over
the quark colors C vanishes, TrT a = 0. Hence we may consider solutions which (for each color
component C) are non-vanishing at spatial infinity, without getting action-at-a-distance effects. We
include a homogeneous (∂iE i

L,a(xxx) = 0) term in the solution of (3.2),

E i
L,a(xxx) |phys〉=−∂

x
i

∫
dyyy
[
κ xxx · yyy+ g

4π|xxx− yyy|

]
Ea(yyy) |phys〉 (3.5)

Ea(yyy) =− fabcAi
bE i

c(yyy)+ψ
†T a

ψ(yyy)

with a normalization κ that is independent of xxx and yyy. Since ∂ x
i (κ xxx · yyy) = κ yi the field energy

density of this (sourceless) term is independent of xxx, ensuring translation invariance. Together with
rotational invariance this restricts the homogeneous solution to that given in (3.5).

The QCD Hamiltonian in temporal gauge is

H =
∫

dxxx
[1

2 E i
L,aE i

L,a +
1
2 E i

T,aE i
T,a +

1
4 F i j

a F i j
a +ψ

†(−iααα ·∇∇∇+mγ
0−gααα ·AAAaT a)ψ

]
(3.6)

where Fa
i j = ∂iAa

j−∂ jAa
i −g fabcAb

i Ac
j . According to (3.5) the longitudinal electric field contributes

HV ≡ 1
2

∫
dxxxE i

a,LE i
a,L = 1

2

∫
dxxx
{

∂
x
i

∫
dyyy
[
κ xxx · yyy+ g

4π|xxx− yyy|

]
Ea(yyy)

}{
∂

x
i

∫
dzzz
[
κ xxx · zzz+ g

4π|xxx− zzz|

]
Ea(zzz)

}
=
∫

dyyydzzz
{

yyy · zzz
[

1
2 κ

2∫ dxxx+gκ

]
+ 1

2
αs

|yyy− zzz|

}
Ea(yyy)Ea(zzz)≡H

(0)
V +H

(1)
V (3.7)

where the terms of O
(
gκ,g2

)
were integrated by parts and H

(1)
V denotes the O (αs) gluon ex-

change contribution.
The components |xxx1,xxx2〉= ∑A ψ̄A

α(xxx1)ψ
A
β
(xxx2) |0〉 are eigenstates of HV ,

∑
a

Ea(yyy)Ea(zzz) |xxx1,xxx2〉=CF
[
δ (yyy− xxx1)−δ (yyy− xxx2)

][
δ (zzz− xxx1)−δ (zzz− xxx2)

]
|xxx1,xxx2〉 (3.8)

where CF = (N2−1)/2N = 4/3 for N = NC = 3. For H
(0)

V in (3.7) this gives,

H
(0)

V |xxx1,xxx2〉=CF
[1

2 κ
2∫ dxxx+gκ

]
(xxx1− xxx2)

2 |xxx1,xxx2〉 (3.9)
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The O
(
κ2
)

contribution arises from the spatially constant field energy density, so it is proportional
to the volume of space. It is irrelevant only if the energy density is identical for all bound state
components. This determines κ for the state |xxx1,xxx2〉 in terms of a universal constant Λ,

κ =
Λ2

gCF

1
|xxx1− xxx2|

(3.10)

The O (gκ) and O (αs) terms in (3.7) then give, respectively, the potentials

V (0)(|xxx1− xxx2|)≡ gCFκ (xxx1− xxx2)
2 = Λ

2|xxx1− xxx2| (3.11)

V (1)(|xxx1− xxx2|) =−CF
αs

|xxx1− xxx2|
(3.12)

Neglecting higher Fock states the stationarity condition H |qq̄〉 = M |qq̄〉 imposes a bound state
equation on the wave function in (3.1),[

iααα ·
→
∇∇∇+mγ

0]
Φ(xxx)+Φ(xxx)

[
iααα ·

←
∇∇∇−mγ

0]= [M−V (|xxx|)
]
Φ(xxx) (3.13)

where V = V (0)+V (1). In the non-relativistic limit this reduces to the Schrödinger equation and
thus to the quarkonium model based on the Cornell potential (1.1) [4, 5]. The present approach
is reminiscent of the Bag Model [13] in that the vacuum has a non-vanishing energy density. Yet
there is no bag boundary, and the quarks move in the vacuum field which gives rise to the linear
potential (3.11).

At O
(
α0

s
)

only the linear potential (3.11) and the qq̄ state (3.1) contribute, even for light
quarks. The relativistic solutions of the bound state equation (3.13) are given in [7]. Fock states
with transverse gluons such as |qq̄g〉 are generated by the Hamiltonian (3.6) at O (g).

The instantaneous potential for any Fock state may be found using (3.5). The field energy
density, i.e., the O

(
κ2
)

term in the Hamiltonian HV (3.7), must be the same for all states, making
the scale Λ universal. Three examples [7]:

|gg〉= Ai
a,T (xxx1)A j

a,T (xxx2) |0〉 : Vgg(xxx1,xxx2) =

√
N

CF
Λ

2 |xxx1− xxx2|−N
αs

|xxx1− xxx2|
(3.14)

|qqq〉= εABCψ
A†
α (xxx1)ψ

B†
β
(xxx2)ψ

C†
γ (xxx1) |0〉 : With dqqq(xxx1,xxx2,xxx3)≡

1√
2

√
(xxx1− xxx2)2 +(xxx2− xxx3)2 +(xxx3− xxx1)2 ,

Vqqq(xxx1,xxx2,xxx3) = Λ
2dqqq(xxx1,xxx2,xxx3)−

2
3

αs

( 1
|xxx1− xxx2|

+
1

|xxx2− xxx3|
+

1
|xxx3− xxx1|

)
(3.15)

|qgq〉= ψ̄A(xxx1)A j
b,T (xxxg)T b

ABψB(xxx2) |0〉 : With dqgq(xxx1,xxxg,xxx2)≡
√

1
4(N−2/N)(xxx1− xxx2)2 +N(xxxg− 1

2 xxx1− 1
2 xxx2)2 ,

Vqgq =
Λ2
√

CF
dqgq(xxx1,xxxg,xxx2)+

1
2 αs

[ 1
N

1
|xxx1− xxx2|

−N
( 1
|xxx1− xxxg|

+
1

|xxx2− xxxg|

)]
(3.16)

In each case a bound state equation may be derived by adding the kinetic terms in the Hamiltonian,
and the mixing with other Fock components taken into account at higher orders of αs.
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