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The Bethe-Salpeter equation for two massive scalar particles interacting by scalar massless ex-

change has solutions of two types, which differ from each other by their behavior in the non-

relativistic limit: the normal solutions which turn into the Coulomb ones and the "abnormal" so-

lutions. The latter ones have no non-relativistic counterparts and disappear in the non-relativistic

limit. We studied the composition of all these states. It turns out that the normal states, even for

large binding energy, are dominated by two massive particles. Whereas, the contribution of the

two-body sector into the abnormal states, even for small binding energy, is of the order of 1%

only; they are dominated by an indefinite number of the massless particles. The elastic electro-

magnetic form factors for both normal and abnormal states, as well as the transition ones between

them, are calculated.
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1. Introduction

In the Wick-Cutkosky model [1, 2] (two scalar constituent particles interacting by massless

scalar exchange) and for enough large coupling constant (α > π
4

), there exist two different types

of solutions of the Bethe-Salpeter (BS) equation [3]. In the non-relativistic limit (understood as

the speed of light c, taken as a parameter, tending to infinity: c → ∞), some solutions Φ(k, p) turn

into the well-known solutions in the Coulomb potential; other solutions, on the contrary, disappear.

The latter ones have purely relativistic origin and are called "abnormal". They can be odd or even

relative to k0 →−k0. However, as shown in [4], the odd solutions do not contribute in the S-matrix

and therefore, they are hardly physical ("observable"). The search for the abnormal symmetric

states generated by massive exchange is in progress.

The following questions immediately arise: Are the abnormal states a consequence of a math-

ematical flaw of the BS equation? If not, how are they constructed, i.e. which constituents do they

contain ? Why do they not have non-relativistic counterparts?

In this contribution, still in the Wick-Cutkosky model, i.e., for the massless exchange, we will

study the physical nature of the abnormal states and answer these questions.

2. Two-body contribution and EM form factors

The state vector |p〉 is schematically represented via the Fock decomposition as follows:

|p〉= ψ2|2〉+ψ3|3〉+ψ4|4〉+ . . . , (2.1)

where in the Wick-Cutkosky model the decomposition starts with the two-body state |2〉 containing

two constituent particles only (each with mass m). Each higher state still contains two constituent

particles, but with extra exchanged particles. The state vector |p〉 is normalized as

〈p|p〉 = N2 +N3 + . . .= 1, (2.2)

where N2, N3 etc. are contributions of the two-, three-, etc. Fock sectors. Using the BS solution,

we will be able to find ψ2 and, correspondingly, N2. To this aim, we will use the relation between

the BS amplitude and ψ2. It has the form (see, e.g., [5], Sec. 3.3):

ψ2(~k⊥,x) =
(1

2
ω · p+ω · k)(1

2
ω · p−ω · k)

π(ω · p)

∫ ∞

−∞
Φ(k+βω , p)dβ . (2.3)

We use here the explicitly covariant version of light-front dynamics [5], where the state vector is

defined on the hyperplane ω · x = 0, taking for ω = (ω0, ~ω) the four-vector with ω2 = 0, with an

arbitrary orientation of ~ω . The standard version corresponds to the particular case ω = (1,0,0,−1).

The BS amplitude Φ is normalized with the condition that the electromagnetic (em) form factor,

expressed through it at q = 0, is equal to 1. This normalization is just equivalent to the condition

(2.2).

This method was used in [6] to find the dependence of the two-body contribution N2 to the

normal ground state on the coupling constant α . It was found that for small α (small binding

energy B ≪ m, total mass M ≈ 2m) N2 is very close to 1. For large α (α → 2π , the critical value,
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providing the solution with M2 → 0 and the binding energy B → 2m) N2 tends to 9/14 ≈ 64%. Our

consideration here is completely analogous to what was done in [6]. The only difference is that

instead of the normal BS solution Φ(k, p), we take the abnormal one.

The BS solution is represented via the weight function g(z) in the form of Nakanishi integral

representation [7]

Φ(k; p) =
i√
Ntot

∫ 1

−1

g(z)dz
(

k2 + p · k z+ 1
4
M2 −m2 + iε

)3
. (2.4)

The normalization factor Ntot will be found below.

The function g(z) satisfies a differential equation [1, 2] and is labelled by two quantum num-

bers n,k. The states with k = 0 are the normal ones. In the non-relativistic limit the binding energies

reproduce the Coulomb spectrum Bn = 2m−M = α2m
4n2 . The states with k 6= 0 are the abnormal ones.

The value of k corresponds to the number of nodes of the function g(z). For even k the function

g(z) is symmetric relative to z →−z, for odd k it is antisymmetric. We will consider the solutions

with n = 1 and k = 0,2,4. Then the equation for g(z) obtains the form:

g′′(z)+
α

π

1

(1− z2)(1−η2 +η2z2)
g(z) = 0, (2.5)

where η = M
2m

= 1− B
2m

and the boundary conditions are g(±1) = 0. We solved this equation

numerically, generating the spectrum labelled by k.

Substituting Φ(k; p) from (2.4) into (2.3), we find ψ2(~k⊥,x) in terms of g(z):

ψ(~k⊥,x) =
1√
Ntot

x(1− x)g(1−2x)
[

~k2
⊥+m2 − x(1− x)M2

]2
. (2.6)

In this way, we find the two-body contribution into the full norm (equaled to 1):

N2 = 〈2|2〉 = 1

(2π)3

∫

ψ2
n (~k⊥,x)

d2k⊥dx

2x(1− x)
=

1

48π2Ntot

∫ 1

0

x(1− x)g2(1−2x)dx

[m2 − x(1− x)M2]3
. (2.7)

The elastic electromagnetic form factors can be also expressed via g(z) [6]:

F(Q) =
1

8π2Ntot

∫ 1

0
g(1−2x)dx

∫ 1

0
g(1−2x′)dx′

×
∫ 1

0
du u2(1−u)2 [xx′u(1−u)Q2 +(6ξ −5)m2 +2M2ξ (1−ξ )]

[xx′u(1−u)Q2 +m2 −ξ (1−ξ )M2]4
, (2.8)

where ξ = (1− x)u+(1− x′)(1−u) and Q2 = −q2 = −(p− p′)2 > 0. The constant Ntot is found

from the condition F(0) = 1. The transition form factor (between two different states) was calcu-

lated according to ref. [8].

3. Numerical results

We solved numerically Eq. (2.5) for g(z), taking m = 1, for a few values of α in the interval

α = 0.02÷ 5. As an example, in Fig. 1 the solutions g(z) for α = 5, n = 1 and k = 0,2,4 are

shown.
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Figure 1: The solutions g(z) (normalized by g(0) = 1) of Eq. (2.5) for α = 5, n = 1 and k = 0 (at the

top, normal, zero nodes), k = 2 (at the bottom left, abnormal, two nodes) and k = 4 (at the bottom right,

abnormal, four nodes).

No. α k = Nnodes B N2

1 0.02 0 0.000091 0.96

2 0.2 0 0.006271 0.85

3 2 0 0.236 0.70

4 2 2 0.975 ·10−5 7.7 ·10−3

5 5 0 0.999 0.65

6 5 2 3.512 ·10−3 9.35 ·10−2

7 5 4 1.55 ·10−5 6.14 ·10−3

Table 1: Two-body contributions N2 into the full normalization integral (equal to 1) for some coupling

constants and corresponding binding energies.

Using these solutions, we calculated by Eq. (2.7) the two-body contributions N2 to the total

norm for a few low-lying states with n = 1, both normal (k = 0) and symmetric abnormal (k = 2,4).

The results are given in Table 1. For the abnormal states they are shown in red.

For the normal states with α ≪ 1, the binding energy B is close to the Coulombean value 1
4
α2,

through at α = 0.2 the relativistic correction is large (≈ 40%). Besides, the values of N2 vary in

the "normal" interval between (for small α = 10−4) N2 = 0.99 (the limiting case N2(α → 0)→ 1)
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and (for large α = 5) N2 = 0.65 (the limiting case N2(α → 2π)→ 0.64).

Whereas, for the abnormal states (k =Nnodes = 2 and 4), even with very small binding energies,

the two-body contribution is of the order of a few per cent only. This means that the abnormal states

are mainly many-body ones (two constituents with mass m + a few or many exchanged massless

particles). This explains their disappearance in the non-relativistic limit.
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Figure 2: Top, bottom left and bottom right are the elastic form factors of the states No. 5 (normal), 6 and

7 (both abnormal) from the Table 1 (calculated correspondingly with the top, bottom left and bottom right

g(z)’s shown in Fig. 1).

Figure 2 shows that the elastic em form factors of abnormal state with two nodes (bottom left)

vs. Q2 decrease, at least, ∼ 1000 times faster than those of the normal states (top), as should be

for a many-body system. The same for the abnormal state with four nodes (bottom right) decreases

even more faster in shorter interval of Q2.

Figure 3 shows that the transition form factors between the normal and abnormal states (top left

and right) are one-two orders of magnitude smaller than those between the abnormal ones (bottom).

In this sense, the normal and abnormal states represent different "worlds", weakly "communicating"

with each other.

These observations shed light on the nature and properties of the abnormal states.

4. Conclusion

The normal and abnormal states of the Bethe-Salpeter equation drastically differ by their Fock-

space content. In the normal states the two-body (constituent) contribution dominates, whereas the
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Figure 3: Top left is the transition form factor between the (normal) state No. 5 from the Table 1 and the

abnormal one with two nodes No. 6; top right is the transition form factor between the state No. 5 and the

abnormal one with four nodes No. 7; bottom is the transition form factor between the two abnormal states

No. 6 and 7.

abnormal ones are dominated by the many-body contributions of the exchanged particles.
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