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We discuss the analytic continuation of the gluon propagator from the Euclidean region to the
complex squared-momentum plane towards the Minkowski region from a viewpoint of gluon con-
finement. For this purpose, we investigate the massive Yang-Mills model with one-loop quantum
corrections, which is to be identified with a low-energy effective theory of the Yang-Mills theory
in the sense that the confining decoupling solution for the Euclidean gluon and ghost propagators
of the Yang-Mills theory in the Landau gauge obtained by numerical simulations on the lattice are
reproduced with good accuracy from the massive Yang-Mills model by taking into account one-
loop quantum corrections. We show that the gluon propagator in the massive Yang-Mills model
has a pair of complex conjugate poles or “tachyonic” poles of multiplicity two, in accordance
with the fact that the gluon field has a negative spectral function, while the ghost propagator has
at most one “unphysical” pole. These results are consistent with general relationships between the
number of complex poles of a propagator and the sign of the spectral function originating from
the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of
the propagator. Consequently, we give an analytical proof for violation of the reflection positivity
as a necessary condition for gluon confinement for any choice of the parameters in the massive
Yang-Mills model, including the physical point. Moreover, the complex structure of the propaga-
tor enables us to explain why the gluon propagator in the Euclidean region is well described by
the Gribov-Stingl form.
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1. .Introduction.
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Figure 1: The gluon propagator D and ghost propagator ∆gh as functions of the Euclidean momentum kE .

In this talk we consider the D-dimensional Yang-Mills theory in the manifestly Lorentz covari-
ant gauge of the Lorenz type from the viewpoint of confinement. The Euclidean gluon propagator
and ghost propagator in the Landau gauge ∂µAµ = 0 are written as

Dµν

AB (kE) = δ
AB
(

δ
µν − kµ

E kν
E

k2
E

)
D(k2

E), ∆
gh
AB(kE) = δ

AB
∆gh(k2

E). (1.1)

We focus on the small momentum region. In the end of the last century, the scaling solution which
is consistent with the Gribov/Zwanziger prediction [realized only for D = 2] was found:

D(k2
E)∼ (k2

E)
α−1 ↓ 0, ∆gh(k2

E)∼
Zgh

(k2
E)

1−β
↑ ∞ (1 < α =−2β < 2) as k2

E ↓ 0. (1.2)

After around 2006, the decoupling solution which exhibits massive gluon and massless ghost was
recognized to be a true confining solution for D = 4,3 (See Figure 1)

D(k2
E) :=

F(k2
E)

k2
E
→ const., ∆gh(k2

E) :=
G(k2

E)

k2
E
∼

Zgh

k2
E
↑ ∞ as k2

E ↓ 0. (1.3)

In order to understand these solutions in the Yang-Mills theory, we consider the massive Yang-
Mills model of Curci-Ferrari type described by the ordinary massless Yang-Mills (YM) Lagrangian
in the manifestly Lorentz covariant gauge of the Lorenz type with the gauge-fixing (GF) term and
the associated Faddeev-Popov (FP) ghost term plus a naive gluon mass term,

LmYM = LYM +LGF +LFP +Lm,

LYM =−1
4
F µνAF A

µν , LGF = N A
∂

µA A
µ +

α

2
N AN A→−1

2
α
−1(∂ µA A

µ )2

LFP = iC̄ A
∂

µDµ [A ]ABC B = iC̄ A
∂

µ(∂µC A +g fABCA B
µ C C), Lm =

1
2

M2A µAA A
µ . (1.4)

Here g,M and α(→ 0) are the parameters of the massive Yan-Mills model. In this talk we regard the
massive Yang-Mills model as a low-energy effective theory for describing the D = 4 decoupling
solution of the Yang-Mills theory to examine gluon and quark confinement. In the Euclidean
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region, the massive Yang-Mills model with (at least one-loop) quantum corrections being in-
cluded well reproduces propagators and vertices of the decoupling solution in the covariant Landau
gauge in the confining phase of the Yang-Mills theory, as initiated by Tissier and Wschebor [1] and
demonstrated in the last ten years. This can be done in the so-called infrared safe renormal-
ization scheme by taking the renormalization conditions resulting from the non-renormalization
theorem. Both gluon propagator and ghost propagator in the decoupling solution of the Yang-Mills
theory in the Landau gauge are well reproduced by the massive Yang-Mills model at the specific
values of parameters g and M, which we call the physical point for the Yang-Mills theory [2]:

g = 4.1±0.1,
M
µ

= 0.454±0.004. (1.5)

See Fig. 1. For the decoupling solution, the running coupling constant is always finite and asymp-
totic free in the infrared as well as the ultraviolet. The origin of such a gluon mass term can be
discussed separately.

2. Reflection positivity violation in the Euclidean region

Reflection positivity is one of the the Osterwalder-Schrader (OS) axioms, general properties
to be satisfied for the Euclidean quantum field theory formulated in the Euclidean space:
(OS.3) Reflection positivity : Any complex-valued test function f0 ∈ C1, f1 ∈S+(RD), · · · , fN ∈
S+(RDN), the Euclidean Green functions Sn+m satisfy

N

∑
n,m=0

Sn+m(x1, · · · ,xn,xn+1, · · · ,xn+m) fn(θxn,θxn−1, · · · ,θx1)
∗ fm(xn+1, · · · ,xn+m)≥ 0,

where S+(RD) denotes a complex-valued test (Schwartz) function with support in {(xxx,xD);xD >

0} and θ is a reflection with respect to a hyperplane x0 = 0: for a function fn ∈S (RDn),

θx = θ(x0,xxx) = (−x0,xxx), (θ fn)(x1, · · · ,xn) = fn(θx1, · · · ,θxn). (2.1)

This is a Euclidean version of the positivity axiom in the Wightman axioms for the relativistic
quantum field theory formulated in the Minkowski spacetime.

(W.3) Positivity: For all f0 ∈ C1, f1 ∈S (RD), · · · , fN ∈S (RDN), (N = 0,1,2, · · ·)
N

∑
n,m=0

Wn+m(x1, · · · ,xn,xn+1, · · · ,xn+m) fn(xn,xn−1, · · · ,x1)
∗ fm(xn+1, · · · ,xn+m)≥ 0.

The violation of reflection positivity in the Euclidean region is regarded as a necessary condition
for gluon confinement. To demonstrate the violation of reflection positivity, one counterexample
suffices. We focus on a special case (N = 2) of a single propagator S2 = D . Then the reflection
positivity reads∫

dDx
∫

dDy f ∗(xxx,−xD)D(xxx− yyy,xD− yD) f (yyy,yD)≥ 0, f ∈S+(RD), (2.2)

which is rewritten as∫
∞

0
dt
∫

∞

0
dt ′
∫

dD−1 ppp f ∗(ppp, t) f (ppp, t ′)∆(ppp,−(t + t ′))≥ 0, (2.3)
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where we defined the Schwinger function ∆(ppp,xD− yD) by

D(x− y) :=
∫

dD−1 ppp eippp·(xxx−yyy)
∆(ppp,xD− yD). (2.4)

For the inequality (2.3) to hold for any f ∈S+(RD), the Schwinger function ∆ must satisfy

∆(ppp,−(t + t ′)) = ∆(ppp, t + t ′)≥ 0. (2.5)

We consider a specific Schwinger function defined by the Fourier transform of the propagator:

∆(t) := ∆(ppp, t)|ppp=0 :=
∫

dD−1xe−ippp·xxxD(xxx, t)|ppp=0 =
∫ +∞

−∞

d pD
E

2π
eipD

E tD̃(ppp = 000, pD
E ). (2.6)

For the free massive theory (g = 0), we find ∆(t) is positive for any t:

D̃(p) =
1

p2 +m2 (m > 0) =⇒ ∆(t) =
∫ +∞

−∞

d pD

2π
eipDt 1

p2
D +m2 =

1
2m

e−m|t| > 0. (2.7)

There is no reflection-positivity violation for the free massive propagator, as expected. For uncon-
fined particles, the reflection positivity should hold.

The reflection positivity is violated for the massive Yang-Mills model at the physical point
of parameters, as already shown by the numerical calculations. We proceed to prove that the
reflection positivity is violated for any choice of the parameters in the massive Yang-Mills model.
This suggests the reflection positivity violation for the decoupling solution of the Yang-Mills theory.
In order to consider the origin, we proceed the complex analysis of the Yang-Mills theory.

3. Complex analysis of the gluon propagator

In the Minkowski region with time-like momentum k2 > 0, a propagator D(k2) has the Källén–
Lehmann spectral representation under assumptions of the general principles: (i) the spectral
condition, (ii) the Poincaré invariance and (iii) the completeness of the state space

D(k2) =
∫

∞

0
dσ

2 ρ(σ2)

σ2− k2 , k2 ≥ 0, (3.1)

with the weight function ρ(σ2) called the spectral function

θ(k0)ρ(k2) := (2π)d
∑
n
|〈0|φ(0)|Pn〉|2δ

D(Pn− k). (3.2)

The spectral function ρ has contributions from a stable single-particle state with physical mass
mP (pole mass) and intermediate many-particle states |p1, ..., pn〉 with a continuous spectrum,

ρ(k2) =Zδ (k2−m2
P)+ ρ̃(k2), k2 ≥ 0,

ρ̃(k2) =(2π)d
∞

∑
n=2
|〈0|φ(0)|p1, ..., pn〉|2δ

D(p1 + ...+ pn− k). (3.3)

Then it is written as the sum of contributions from the real pole k2 =m2
P and the others k2 ∈ [σ2

min,∞)

D(k2) =
Z

m2
P− k2 +

∫
∞

σ2
min

dσ
2 ρ̃(σ2)

σ2− k2 , k2 ≥ 0. (3.4)
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Figure 2: The gluon propagator D(k2) as a complex function of the complex squared momentum k2 ∈ C,
(left) the real part ReD(k2), (right) the imaginary part ImD(k2), at the physical point of the parameters.
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Figure 3: The gluon propagator D(k2) as a function of k2 restricted on the real axis k2 ∈ R, (left) the real
part ReD(k2), (right) the scaled imaginary part ImD(k2 + iε)/π which is equal to the spectral function
ρ(k2), at the physical point of the parameters .

In the absence of complex poles, the spectral representation can be extended to the complex mo-
mentum k2 ∈ C. A propagator D(k2) as a complex function of z = k2 ∈ C has

D(k2) =
∫

∞

0
dσ

2 ρ(σ2)

σ2− k2 , k2 ∈ C− [σ2
min,∞), ρ(σ2) :=

1
π

ImD(σ2 + iε). (3.5)

In the presence of complex poles, the propagator has the generalized spectral representation

D(k2) = Dp(k2)+Dc(k2), k2 ∈ C− ([σ2
min,∞)∪{z`}`),

Dp(k2) :=
Z

(v+ iw)− k2 +
Z∗

(v− iw)− k2 , Z :=
∮

γ

dk2

2πi
D(k2),

Dc(k2) :=
∫

∞

0
dσ

2 ρ(σ2)

σ2− k2 , ρ(σ2) :=
1
π

ImD(σ2 + iε). (3.6)

The gluon propagator D(k2) in the massive Yang-Mills model has a pair of complex conjugate
poles on the complex momentum on the complex momentum k2 plane. See Fig. 2. The spectral
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Figure 4: (left) the gluon propagator in the Euclidean region D(k2
E) = Dp(−k2

E) + Dc(−k2
E) where

Dc(−k2
E)< 0 and (right) the gluon Schwinger function ∆(t) = ∆p(t)+∆c(t) for k2 =−k2

E < 0.

function ρ(k2) of the massive Yang-Mills model is always negative. See Fig. 3. The negativity
of the spectral function and the existence of complex conjugate poles are interrelated [3] : The
negative spectral function yields one pair of complex conjugate poles (or Euclidean real poles
of multiplicity 2). This is consistent with negativity of ρ(k2) at large k2 shown by Oehme and
Zimmermann [4].

The Schwinger function is also separated into the two parts (See Fig.4.):

∆(t) =∆p(t)+∆c(t), ∆p,c(t) :=
∫ +∞

−∞

dkE

2π
eikE tDp,c(−k2

E). (3.7)

The cut part ∆c(t) is directly written as an integral of the spectral function as

∆c(t) =
∫ +∞

−∞

dkE

2π
eikE t

∫
∞

0
dσ

2 ρ(σ2)

σ2 + k2
E
=
∫

∞

0
dσ

2
ρ(σ2)

1

2
√

σ2
e−
√

σ2t . (3.8)

To one-loop order in the massive Yang-Mills model, the spectral function takes the negative value

ρ(σ2)< 0 for ∀ σ
2 > 0 ⇒ ∆c(t)< 0 for ∀t ≥ 0, (3.9)

The pole part Dp of the propagator in the presence of a pair of complex conjugate poles at k2 =

v± iw(v,w > 0) with the respective residues Z,Z∗ ∈ C reads in the Euclidean region

Dp(−k2
E) =

Z
k2

E +(v+ iw)
+

Z∗

k2
E +(v− iw)

= 2
Re[Z]k2

E +(vRe[Z]+w Im[Z])
k4

E +2vk2
E +(v2 +w2)

. (3.10)

This pole part of the propagator agrees with the Gribov-Stingl form [5]. This is in good agreement
with the lattice results. The pole part ∆p(t) of the Schwinger function is exactly obtained as [2]

∆p(t) =

√
Re(Z)2 + Im(Z)2

(v2 +w2)1/4 exp[−t(v2 +w2)1/4 cosϕ]cos[t(v2 +w2)1/4 sinϕ +ϕ−δ ]. (3.11)

Therefore, the pole part has negative value at a certain value of t,

∆p(t)< 0 for ∃ t ≥ 0. (3.12)
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Thus, ∆(t) = ∆c(t)+∆p(t) has necessarily negative value at a certain value of t,

∆(t) = ∆c(t)+∆p(t)< 0 for ∃ t ≥ 0. (3.13)

Thus we complete the proof that the reflection positivity is always violated in the massive Yang-
Mills model to one-loop order (irrespective of the choice of the parameters g and M).

4. Conclusion and discussion

In this talk we have investigated the mass-deformed Yang-Mills theory in the covariant gauge
obtained by just adding a gluon mass term to the Yang-Mills theory with the Lorenz gauge fixing
term and the associated ghost term. First, we have reconfirmed that the decoupling solution in the
Landau gauge Yang-Mills theory is well reproduced from the mass-deformed Yang-Mills theory by
taking into account loop corrections. Second, we have shown violation of the reflection positivity as
a necessary condition for gluon confinement for any value of the parameters in the mass-deformed
Yang-Mills theory to one-loop quantum corrections, which follows from the existence of a pair of
complex conjugate poles and the negativity of the spectral function for the gluon propagator.

Moreover, it is shown that the mass-deformed Yang-Mills theory is obtained as a gauge-fixed
version of the gauge-invariantly extended theory which is identified with the gauge-scalar model
with a single fixed-modulus scalar field in the fundamental representation of the gauge group. This
equivalence is a consequence of the gauge-independent Brout-Englert-Higgs mechanism proposed
recently by one of the authors [6]. Thus we can discuss the implications for the existence of positiv-
ity violation/restoration crossover in light of the Fradkin-Shenker continuity between Confinement-
like and Higgs-like regions in a single confinement phase in the gauge-scalar model on the lattice.
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