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We study the radiative transitions between vector and pseudoscalar quarkonia in the light-front
Hamiltonian approach, and investigate the effects of using different current component and differ-
ent reference frames. In practical calculations with truncated Fock spaces, transition form factors
may acquire current component dependence and frame dependence, and such dependences could
serve as a measure for the Lorentz symmetry violation. We suggest using the transverse current
with m j = 0 state of the vector meson, since this procedure employs the dominant spin compo-
nents of the light-front wavefunctions and is more robust in practical calculations. We calculate
the transition form factor between vector and pseudoscalar quarkonia and investigate the frame
dependence with light-front wavefunctions calculated from the valence Fock sector. We suggest
using frames with minimal longitudinal momentum transfer for calculations in the valence Fock
sector, namely the Drell-Yan frame for the space-like region and a specific longitudinal frame for
the timelike region; at q2 = 0 these two frames give the same result.
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1. Transition form factor

The transition between a pseudoscalar and a vector meson via emission of a photon, V →Pγ ,
also known as the magnetic dipole (M1) transition, offers insights into the internal structure of the
meson bound states. The underlying dynamics is encoded within the transition form factor V (q2),
which arises from the Lorentz structure decomposition of the hadron matrix element as [1, 2]

Iµ
m j
≡ 〈P(P)|Jµ(0) |V (P′,m j)〉=

2V (q2)

mP +mV
ε

µαβσ PαP′
β

eσ (P′,m j) , (1.1)

where qµ = P′µ −Pµ . mP and mV are the masses of the pseudoscalar and the vector, respectively.
eσ is the polarization vector of the vector meson, and m j = 0,±1 is the magnetic projection.

On the light front, V (q2) can be extracted from any of the four current components, µ =

+,−,x,y, and with different magnetic projections of the vector meson. We summarize these for-
mulas in Table. 1. Note that we use JR/L ≡ Jx± iJy as the transverse currents. We introduce two
variables, z≡ (P′+−P+)/P′+ and~∆⊥ ≡~q⊥− z~P′⊥ such that q2 = zm2

V −m2
Pz/(1− z)−~∆2

⊥/(1−
z) [2, 3]. For each possible value of q2, the different choices on the value of the pair (z,~∆⊥)
correspond to different frames. In particular, z = 0 corresponds to the Drell-Yan frame and we
define ~∆⊥ = 0 as the longitudinal frame. The latter has two branches, z = [m2

V −m2
P + q2 ±√

(m2
V −m2

P +q2)2−4m2
V q2]/(2m2

V ), namely longitudinal-I/II.

2. In the valence Fock sector

Though in principle, the transition form factor V (q2) is Lorentz invariant, practical calculations
with truncated Fock space could break the Lorentz symmetry, and spurious dependences on the
current component and reference frame could emerge. In the valence Fock sector, we take the
impulse approximation and calculate the hadron matrix element for the quark as Eq. (2.1). We

Table 1: The formulas of extracting the transition form factor V (q2) from different current components and
different m j states of the vector meson, derived from Eq. (1.1).

2V (q2)

mP +mV
m j = 0 m j = 1 m j =−1

J+ -
i
√

2I+1
P′+∆R

−i
√

2I+−1

P′+∆L

JR −iIR
0

mV ∆R
i
√

2IR
1

P′R∆R

i
√

2(1− z)IR
−1

(m2
P − (1− z)2m2

V −PR∆L)

JL iIL
0

mV ∆L
−i
√

2(1− z)IL
1

(m2
P − (1− z)2m2

V −PL∆R)

−i
√

2IL
−1

P′L∆L

J−
−iP+I−0

mV (∆RPL−∆LPR)

−i
√

2P+P′+I−1
P′+P′R(m2

P −PL∆R)−P+PRm2
V

i
√

2P+P′+I−−1

P′+P′L(m2
P −PR∆L)−P+PLm2

V
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therefore compute V̂ (q2) which is related to V (q2) as V (q2) = 2eQ f V̂ (q2). Q f is the dimensionless
fractional charge of the quark.

Iµ
q,m j
≡〈P(P)|Jµ

q (0) |V (P′,m j)〉= ∑
s,s̄

∫ 1

z

dx′

2x′(1− x′)

∫ d2k′⊥
(2π)3

1
x

×∑
s′

ψ
(m j)

s′ s̄/V (~k′⊥,x
′)ψ∗ss̄/P(~k⊥,x)ūs(xP+,~k⊥+ x~P⊥)γµus′(x′P′

+
,~k′⊥+ x′~P′⊥) .

(2.1)

ψ
(m j)

ss̄/h (
~k⊥,x) is the light-front wavefunction (LFWF) written in relative coordinates x≡ p+/P+ and

~k⊥ ≡ ~p⊥− x~P⊥, where p is the single-particle 4-momentum of the quark. s represents the fermion
spin projection. The initial and final states are related as x′ = x+z(1−x) and~k′⊥ =~k⊥+(1−x)~∆⊥.

2.1 The preferred current

In the valence Fock sector, the transition form factor is calculated by applying Eq. (2.1) to
the formulas in Table 1. We find that only two sets of those options could unambiguously extract
the transition form factor: V̂ |JR/L,m j=0 and V̂ |J+,m j=±1 . For all other choices, fixing the values of
z and ∆⊥ could not uniquely determine the transition form factor, since there is always an extra
dependence on the transverse momentum of the meson, ~P⊥, or equivalently on ~P′⊥. This implies
that the resulting transition form factors are not invariant under the transverse boost.

For the two possible choices, V̂ |JR/L,m j=0 mainly employs the overlap of the dominant com-

ponents, ψ
(m j=0)
↑↓+↓↑/V ψ∗↑↓−↓↑/P , whereas even the major part of V̂ |J+,m j=±1 involves the subdominant

components, such as ψ
(m j=1)
↑↑/V ψ∗↑↑/P . This suggests that V̂ |JR/L,m j=0 is more reliable for practical cal-

culations where the dominant components of a system are better constrained than the subdominant
ones [1].

We adopt wavefunctions of heavy quarkonia and light mesons from the Basis Light-Front
Quantization (BLFQ) approach [4, 5, 6]. The effective Hamiltonian extends the holographic QCD [7]
by introducing the one-gluon exchange interaction with a running coupling. In Table 2, we list the
proportions of the dominant and subdominant spin components for the low lying vector and pseu-
doscalar states. The dominant terms are profound even in the light mesons.

Table 2: Proportions of the dominant and subdominant spin components for the low lying states of the
heavy quarkonia and light mesons [5, 6].

%
V [m j = 0,m j = 1] P

ϒ J/ψ ρ ηb ηc π

dominant 100, 98.5 99.9, 95.9 98.8, 84.2 96.6 88.0 62.9
subdominant 0, 1.5 0.1, 4.1 1.2, 15.8 3.4 12.0 37.1

We compare V̂ |JR/L,m j=0 and V̂ |J+,m j=±1 numerically in Fig. 1. The calculations are carried out
with z = 0, i.e. in the Drell-Yan frame. There are noticeable differences between the two for each
of the three transitions. The preferred current, V̂ |JR/L,m j=0, is closer to experiment values [8].

2.2 The preferred frame

In general, the transition amplitude on the light front is given by the sum of the diagonal
n→ n and the off-diagonal n+ 2→ n transitions (n is the number of partons in the meson bound
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Figure 1: Transition form factors calculated with JR,m j = 0 and J+,m j = 1 respectively. The LFWFs are
calculated from the BLFQ approach, bottomonia and charmonia [5] and light mesons [6].

state). For calculations in the valence Fock sector, only the 2→ 2 transition is considered whereas
the non-valence contributions are absent. As from the LFWF representation of the hadron matrix
elements in Eq. (2.1), the range of the longitudinal momentum fraction of the struck quark is
x′ ∈ [z,1] before the transition and x ∈ [0,1] after. The missing piece of x′ ∈ [0,z] corresponds to the
hadron matrix elements of n+2→ n involving higher Fock sectors. As a consequence, frames with
minimal z would increase the overlap region of the two wavefunctions in the valence contribution
and suppress the non-valence contributions, and are thus preferred. They are: the Drell-Yan frame
in the space-like region, and the longitudinal-II frame in the time-like region [2].

We calculate the transition form factor through a dense sampling on the (z,~∆⊥) space with
V̂ |JR,m j=0 in Figure 2. The shaded areas represent the frame dependence. The suggested frames
have a better agreement on V̂ (0) with the experiment values indicated as stars [8].

3. Summary and Outlook

We studied the M1 transition form factor on the light front with different current components
and different frames. For calculations in the valence Fock sector, we suggest using the transverse
current with m j = 0 state of the vector meson and frames with minimal longitudinal momentum
fraction. In future work, we would like to include higher Fock sectors in solving the meson bound
states and further investigate the rotational symmetry and its roles in radiative transitions.
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Figure 2: The transition form factor of the transition V →Pγ of charmonia (blue curves/shades) and
bottomonia (red curves/shades), calculated with LFWFs solved from the BLFQ approach [5]. Meson masses
are taken from experimental data [8] in defining the frames. The solid curves represent the Drell-Yan frame,
the dotted and dashed lines represent the longitudinal I and II frames. The shaded areas represent the results
from all other frames. The stars are values of V̂ (0) converted from available decay widths in PDG [8].
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