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1. Introduction

Evolution equations are a tool for understanding and predicting QCD driven properties of mat-
ter. The evolution in energy (rapidity) for nucleons is given by the Balitsky-Kuraev-Fadin-Lipaton
(BFKL) equation [1, 2] that incorporates gluon branching processes. Non-linear gluon behavior
such as saturation is taken into account in the Balitsky-Kovchegov (BK) evolution equation [3, 4, 5].
Solutions of this equation for the impact-parameter dependent computation are spoiled by the pres-
ence of the so-called Coulomb tails. Coulomb tails are a consequence of the fact, that the BK
equation is derived in a purely perturbative way and in the impact-parameter dependent computa-
tion, a non-perturbative region is reached. This effect then violates the Martin-Froissart bound and
makes data description impossible [6].

In this work we demonstrate that the recently proposed collinearly improved kernel [7] for
this equation suppresses large daughter dipole contribution to the evolution which in turn sup-
presses these non-perturbative regions of Coulomb tails enabling description of data for various
processes [8, 9].

2. The Balitsky-Kovchegov equation

The BK equation reads

∂N(r,b;Y )
∂Y

=
∫

d~r1K(r,r1,r2)
(

N(r1,b1;Y )

+N(r2,b2;Y )−N(r,b;Y )−N(r1,b1,Y )N(r2,b2;Y )
)
,

(2.1)

where ~r2 =~r− ~r1 and |~ri| ≡ ri. The variables b1 and b2 denote the magnitudes of the impact
parameters of the daughter dipoles.

The collinearly improved kernel [7, 10, 11, 12] is written as

K(r,r1,r2) =
αs

2π

r2

r2
1r2

2

[
r2

min(r2
1,r

2
2)

]±αsA1 J1(2
√

αsρ
2)√

αsρ
. (2.2)

The value of A1 is 11/12 and the sign in the third factor is chosen positive when r2 <min(r2
1,r

2
2)

and negative otherwise. ρ ≡
√

Lr1rLr2r, J1 is the Bessel function and Lrir ≡ ln(r2
i /r2). The smallest

dipole prescription was chosen for the running coupling: αs = αs(rmin), where rmin = min(r1,r2,r)
as in [10].

The region, that contributes the most to the rise of Coulomb tails is the one where large daugh-
ter dipoles are emitted [6]. This region is suppressed in the collinearly improved kernel w.r.t. the
running coupling kernel [13] (as shown in Fig. 1). In order to compute the evolution, one has to
start with an initial condition. We have come up with a prescription

N(r,b,Y = 0) = 1− exp
(
−1

2
Q2

s

4
r2T (bq1 ,bq2)

)
, (2.3)
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Figure 1: Absolute value of the ratio Kci/Krc at a fixed dipole size r = 1GeV−1 and orientation with respect
to the daughter dipole θrr1 = π/2 as a function of the daughter dipole size. Figure taken from [8].

where bqi are the impact parameters of the individual quark and antiquark of the initial bare dipole
and

T (bq1 ,bq2) =

[
exp

(
−

b2
q1

2B

)
+ exp

(
−

b2
q2

2B

)]
. (2.4)

This prescription (with parameters from [8]) combines the approach of the GBW model [14]
for the dipole-size dependence and exponential fall-off for the impact parameter space [15, 16, 17,
18, 19]. In order to correctly account for the geometry of the target, we have taken into account the
contribution of the two constituent quarks in the initial bare color-dipole separately [8].

3. Results

In Fig. 2 we see the computed scattering amplitude as a function of rapidity, impact parameter
and transverse dipole size. Due to the nature of the used kernel, the presence of Coulomb tails in the
large-b regions is strongly suppressed [8]. We have taken this scattering amplitude and used it to
predict various observables that have been measured in the past to demonstrate that the predictions
of this equation are no longer spoiled by the non-perturbative regions and that it can be used for
generating predictions for future facilities (see Figs 3 and 4).

4. Summary

We have used the recently proposed collinearly improved kernel to solve the impact-parameter
dependent BK equation. Due to the fact, that the time-ordered gluon emissions that are embedded
in the collinear resummation [10] suppress the region of large daughter dipoles, we were able to
obtain a scattering amplitude that is no longer spoiled by the presence of Coulomb tails and can be
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Figure 2: The scattering amplitude as a solution to the BK equation with the collinearly improved kernel as
a function of r for b = 10−6 GeV−1 (upper left) and b = 4 GeV−1 (upper right), and as a function of b at r =
0.1 GeV−1 (lower left) and at r = 1 GeV−1 (lower right). Figure taken from [8].

used to compute various phenomena [8]. This is useful for phenomenological applications in QCD
namely for the future planned facilities such as LHeC and the EIC [23, 24].
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Figure 3: Comparison of the structure function data from HERA [20] (solid circles) to the prediction of
the impact-parameter dependent BK equation with the collinearly improved kernel (lines). Figure taken
from [8].
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Figure 4: Comparison of the predictions of the model (solid lines) with HERA data from H1 [21, 22] for
the |t| dependence of the exclusive photoproduction (left) and electroproduction (right) cross sections of the
J/ψ meson. Figure taken from [8].
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