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Although it makes no doubt that Quantum Chromodynamics (QCD) is a strongly interacting
theory in the infrared, the corresponding qualification of its companion Yang-Mills (YM) theory is
more open to debate. In recent years, lattice simulations in the Landau gauge have demonstrated
that the renormalized YM coupling g remains bounded, and even decreases towards zero in the
infrared [1], in the so-called Taylor scheme. When translated in terms of the relevant perturbative
expansion parameter λ ≡Ng2/(16π2), the bound becomes λ . 0.12 for N = 3 colors. This has led
to the idea that some sort of perturbation theory should be applicable to YM theory in the infrared
[2], at least for the determination of certain quantities.

It is of course not an easy question how to set up such a perturbative expansion (were it to
make sense in the first place). The traditional Faddeev-Popov (FP) gauge-fixing method is clearly
of no use for this venture because it neglects the Gribov copies that are present in the Landau gauge
and whose effect is a priori not negligible in the infrared. Attempts to go beyond FP include the
celebrated Gribov-Zwanziger (GZ) paradigm [3] that deals with a subclass of the Gribov copies.
Another possible strategy, more phenomenological in spirit, is to model the missing terms beyond
the FP action using some of the salient features of Landau gauge-fixed YM theory that are now
well established thanks to lattice simulations.

One such feature is the decoupling type behavior of the two-point correlation functions in the
infrared [4]: while the ghost propagator behaves essentially like its free counterpart, the gluon
propagator saturates to a finite non-zero value. Based on these features, a natural model for the
Landau gauge-fixed action beyond FP is the so-called Curci-Ferrari (CF) action

SCF =
∫

x

{
1
4

Fa
µνFa

µν + iha
∂µAa

µ + c̄a
∂µDµca +

1
2

m2Aa
µAa

µ

}
, (1)

that adds a gluon mass term to the FP action. Needless to mention that this is of course just a model
and other operators could be needed in order to make the gauge-fixing complete. One convenient
feature of (1) is, however, that it is stable under the renormalization flow. Therefore, there is only
one new parameter to be fixed, m, and, in the absence of any ab-initio determination (that a bona-
fide gauge-fixing would provide), it is possible to fix it by comparison to the above mentioned
lattice results. One finds a typical value for m or the order of 500 MeV for N = 3 colors. The
Curci-Ferrari model has been quite successful in reproducing vacuum properties of Yang-Mills
correlation functions, already at one-loop order [2, 5]. Recent two-loop calculations [6] show that
this is not accidental and the perturbative expansion seems well under control in the model while
capturing essential features of YM theory in the Landau gauge.

Irrespectively of how interesting these observations might be, it remains to be seen how useful
there are for QCD. In this case, in addition to the coupling in the pure gauge sector, one can extract
a coupling g̃ from the matter sector. It turns out that this coupling is 2 to 3 times larger than the
pure gauge coupling g [7], which implies an expansion parameter λ̃ ≡ Ng̃2/(16π2), typically 5 to
10 times larger than λ (that is λ̃ & 1). Of course, this is precisely the reason why QCD is strongly
interacting and perturbation theory is of no use in the infrared in this case. Interestingly enough,
however, the separation of couplings λ � 1 . λ̃ allows to envisage a systematic computational
scheme where one expands in powers of λ without expanding in λ̃ . In [8], we have taken advantage
of this observation and combined it with the 1/N expansion in order to construct a systematic
expansion for Landau gauge QCD that is controlled by two small parameters (1/N and λ ) and that
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is tractable at least in its leading orders. Within this approach, and already at leading order, we
have been able to capture the physics of chiral symmetry breaking one of the key characteristics
of the QCD vacuum. We refer to the contribution of Julien Serreau in these proceedings for more
details.

Next to these considerations in the vacuum, the other pressing question is whether our ap-
proach allows to capture the phase structure of QCD (or YM theory) as a function of various con-
trol parameters such as the temperature, chemical potential, magnetic fields, . . . Below, we review
the progress that has been made in this direction within the CF model.

1. Results in the YM case

It is not completely straightforward to extend the Curci-Ferrari model to finite temperature.
The reason has little to do with the Curci-Ferrari model itself and has more to do with the fact that
the Landau gauge might not be a good gauge at finite temperature.1 One heuristic way to convince
oneself of this fact is to consider the order parameter for the confinement/deconfinement transition
in YM theory, the so-called Polyakov loop (T denotes the time-ordering along the Euclidean time
interval [0,β = 1/T ])

`≡ 1
N

〈
T exp

{
ig
∫

β

0
dτ Aa

0(τ,~x)t
a
}〉

(1.1)

and to envisage evaluating it in a mean field fashion as ` ≈ exp
{

igβ 〈Aa
0〉ta
}

. Since the Landau
gauge has no preferred color direction, 〈Aa

0〉 = 0 and the mean field Polyakov loop saturates to 1,
which means that it cannot be used as an order parameter, at least not at this level of approximation.

The way out is to slightly generalize the Landau gauge in the presence of an external back-
ground configuration Āa

µ [9]. The Landau gauge condition 0 = ∂µAa
µ is replaced by the so-called

Landau-deWitt condition 0 = D̄µ(Aa
µ − Āa

µ) where D̄µ denotes the covariant derivative in the pres-
ence of the background. The background could be chosen arbitrarily a priori. In practice, however,
it is chosen to be self-consistent, that is such that 〈Aa

µ〉= Āa
µ . These particular backgrounds can be

obtained from the minimization of the so-called background field effective action [9, 10]. More im-
portantly, they can be shown to be alternative order parameters for the confinement/deconfinement
transition [10, 11, 12]. This is easily seen at mean field level where the relation to the Polyakov
loop is simply ` ≈ exp

{
igβ Āa

0ta
}

, so that the vanishing of ` corresponds to Āa
0ta taken specific

values in the algebra of the gauge group.
Just like the Landau gauge, the Landau-deWitt gauge is hampered by the presence of Gribov

copies and the FP action needs to be replaced by something else. The natural extension of the
model (1) in the presence of a background is

SbgCF =
∫

x

{
1
4

Fa
µνFa

µν + ihaDµ(Aa
µ − Āa

µ)+ c̄aD̄µDµca +
1
2

m2(Aa
µ − Āa

µ)(A
a
µ − Āa

µ)

}
. (1.2)

The reason for introducing a mass for Aa
µ − Āa

µ rather than Aa
µ is to preserve the background gauge

symmetry, one of the cornerstones of the background field formalism.

1Of course, at an exact level, all gauges should be equivalent. In practice, however, one is always bound to approx-
imations, and in this case, certain gauges might be more efficient than others in capturing certain features.
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In Table 1, we summarize some of the results for the confinement/deconfinement transition,
as obtained from the background extended Curci-Ferrari model (1.2) and compared to other ap-
proaches. We find a second order transition in the case of the SU(2) gauge group, and a first order
transition in the case of SU(3), in agreement with numerical simulations on the lattice. Our predic-
tions for the deconfinement temperature at one-loop order are quite reasonable given the simplicity
of the approach. Moreover, the inclusion of higher order corrections considerably improves the
comparison to other approaches, illustrating once more the apparent convergence of perturbation
theory within the CF model.

Tc (MeV) lattice fRG [13] variational [14] CF1 CF2

SU(2) 295 230 239 238 284
SU(3) 270 275 245 185 254

Table 1: Confinement/deconfinement transition temperatures as obtained from the Curci-Ferrari model at
one-loop (CF1) and two-loop (CF2) order, compared to other approaches including lattice simulations.

2. Results for heavy-quark QCD

With not to much effort, it is possible to include quarks and a baryonic chemical potential µ:

δS =
∫

x

N f

∑
f=1

ψ̄ f (D/ +M f +µγ0)ψ f , (2.1)

first in the regime where they are all consider heavy (βM f � 1). There are many reason for consid-
ering such a formal regime. First, we are close enough to the YM case for the phase structure to be
dominated by the confinement/deconfinement transition, without the need to consider the physics
of chiral symmetry breaking. Second, there is a very rich phase structure: at vanishing chemical
potential, there exists a boundary line in the (Mu = Md ,Ms) plane that separates a crossover regime
from first order type transitions. The boundary line moves when varying the baryonic chemical po-
tential and even extends to imaginary chemical potential values where it connects with the physics
of the Roberge-Weiss transition (at β µ = iπ/3).

The tables in 2 summarize some of the results obtained in the heavy quark regime using the
CF model (1.2) combined with (2.1). Assuming N f = 1, 2 or 3 degenerate flavours of equal mass
M, we show the values of RN f ≡ βM on the boundary line at µ = 0 and β µ = iπ/3. We see once
again that the agreement with the lattice results is pretty good. It is worth noticing that our one-loop
predictions do not really depend on the precise value of m but only on the existence of a non-zero
m. We mention also that the comparison of our two-loop results with the lattice results is a bit tricky
since the mass quoted by the lattice is the bare mass, while in our case it is a one-loop renormalized
mass. However, it is possible to argue that, at two-loop order, the scheme dependences drop when
considering ratios of RN f at two-different values of N f . When these ratios are considered our results
show again an apparent convergence towards the lattice results.
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µ = 0 R1 R2 R3 R2/R1 R3/R2

Lattice [15] 7.23 7.92 8.33 1.10 1.05

Matrix [16] 8.04 8.85 9.33 1.10 1.05
CF1 [17] 6.74 7.59 8.07 1.12 1.06

CF2 [18] 7.53 8.40 8.90 1.11 1.06

β µ = iπ/3 R1 R2 R3 R2/R1 R3/R2

Lattice [15] 5.56 6.25 6.66 1.12 1.07

Matrix [19] 5.00 5.90 6.40 1.18 1.08
CF1 [17] 4.72 5.63 6.14 1.19 1.09

CF2 [18] 5.47 6.41 6.94 1.17 1.08

Table 2: RN f for N f = 1, 2, and 3 degenerate quark flavors, as computed in various approaches, for µ = 0
and β µ = iπ/3. CF1 and CF2 refer to the one- and two-loop results within the CF model.

3. Results for QCD with light quarks

As already mentioned in the introduction, in the case of light quarks, perturbation theory does
not make any sense. We can however exploit the perturbative nature of the pure gauge sector in
order to construct a systematic expansion, controlled by two small parameters, the inverse number
of colors, and the coupling in the pure gauge sector. At leading order, this expansion leads to
the well known rainbow equation for the quark propagator, with however specific choices for the
quark-gluon vertex and gluon propagator that remain at tree-level. One benefit of our approach is
that higher order corrections are small, and in fact can be included systematically, in particular in
the form of renormalization group effects.

We have implemented this program entirely in the vacuum. At finite temperature and density,
so far, we have solved the rainbow equation using some drastic approximations, that we believe
nonetheless to capture the main qualitative features [20]. In particular, in the chiral limit, we find
the phase diagram represented in Fig. 1. The red dot represents a tricritical point that becomes a
critical end point as non-vanishing quark masses are considered. We note that the absence of a first
order transition at µ = 0 seems incompatible with general arguments [21]. However, this is com-
patible with observations on the lattice [22] according to which, the region of first order transitions
at µ = 0 should be small. Since corrections to our leading order calculation are controlled by two
small parameters, we expect equally this region to be small (were it to exist).

In conclusion, all these results gives us good confidence that the Curci-Ferrari model is a good
starting point to investigate low energy features of QCD, either perturbatively or within a systematic
expansion controlled by two small parameters.
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Figure 1: Phase diagram in the chiral limit (all scales in GeV) as predicted from the CF model. Blue curve:
first order transitions flanked by spinodals (dashed curves); Red curve: second order transition (becomes a
crossover away from the chiral limit); Red dot: tricritical point (becomes a critical endpoint away from the
chiral limit). Orange curve: position of the tricritical point as a function of the mass parameter m (as com-
pared to the other features displayed here, this last feature is rather sensitive to the degree of approximation
with which we treat the equations).
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