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We calculate the mass spectrum and the structure of the positronium system at a strong coupling
in a basis light-front approach. We start from the light-front QED Hamiltonian and retain one
dynamical photon in our basis. We perform the fermion mass renormalization associated with the
nonperturbative fermion self-energy correction. We present the resulting mass spectrum and wave
functions for the selected low-lying states. Next, we apply this approach to QCD and calculate
the heavy meson system with one dynamical gluon retained. We illustrate the obtained mass
spectrum and wave functions for the selected low-lying states.
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1. Introduction

Basis Light-front Quantization (BLFQ) has been developed as a nonperturbative approach to
relativistic bound states [1]. It is based on the Hamiltonian formalism and the light-front quantum
field theory. In BLFQ, the bound state problem is cast into an eigenvalue problem of the Hamilto-
nian:

P−|β 〉= P−
β
|β 〉, (1.1)

where the eigenvalues P−
β

correspond to the mass spectrum and the eigenvectors |β 〉 encode their
structural information. In this paper, we report our recent progress in applying BLFQ to the positro-
nium system in QED and the heavy meson systems in QCD.

2. Positronium

The positronium (“Ps”) is arguably the simplest bound state system in QED. In this work, we
solve the positronium system from first principles - the QED Lagrangian [2]. In order to make
the numerical calculation feasible, we perform basis truncation by retaining the two leading Fock
sectors, that is, |Ps〉 = a|e+e−〉+ b|e+e−γ〉. In addition, we truncate the basis in the transverse
(longitudinal) direction with the truncation parameter Nmax (K) [1]. Larger Nmax (K) translates
to more complete bases in the transverse (longitudinal) direction. We obtain our light-front QED
Hamiltonian from the QED Lagrangian via the Legendre transformation. In our truncated basis the
light-front QED Hamiltonian, using light-front gauge, takes the following form,

P−QED =
∫

d2x⊥dx−
1
2

Ψ̄γ
+ m2

e0 +
(
i∂⊥
)2

i∂+
Ψ+

1
2

A j
(

i∂⊥
)2

A j + e jµAµ +
e2

2
j+

1

(i∂+)2 j+, (2.1)

where ψ and Aµ are the fermion and gauge boson field operators, respectively, and jµ = Ψ̄γµΨ.
The first two terms are their corresponding kinetic terms and the remaining terms describe their
interaction. me0 is the bare fermion mass. For numerical convenience, we take an artificially
increased electromagnetic coupling constant α = 0.15.

In this calculation, we adopt the Fock-sector dependent renormalization [3, 4, 5], according to
which only the fermion mass in the |e+e−〉 sector needs to be renormalized, namely, the bare mass
me0 is different from the physical mass me. Different basis states take distinct values for the mass
counterterm depending on their respective quanta available for self-energy fluctuation. The mass
counterterms are determined from solving a series of single electron systems in the |e〉+ |eγ〉 Fock
sectors [6].

The value of the mass counterterm ∆m = me0 −me for a representative basis state in the
positronium problem as a function of the truncation parameters is shown in the left panel of
Fig. 1 and in the right panel, we present the binding energy spectrum of the positronium system,
EB ≡ MPs− 2me, for different spin projections MJ . The arrow indicates the value of the ground
state binding energy from nonrelativistic quantum mechanics [7], which is close to our result. We
note that the mass counterterm is typically on a larger scale than that of the binding energy. We
also note that the scale of the binding energy and structures of multiplets in the spectrum are in
reasonable agreement with the previous calculation based on an effective one-photon-exchange in-
teraction between the e+ and e− [8]. The approximate degeneracy among different MJ substates
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Figure 1: Left panel: representative value of the mass counterterm (in units of the physical electron mass
me) in the positronium problem as a function of basis truncation parameters Nmax = K−1; right panel: the
binding energy (EB) spectrum of the positronium system at Nmax = K− 1 = 16 and α = 0.15. E0 is the
ground state (11S0) binding energy from nonrelativistic quantum mechanics with perturbative corrections.

and the information from the mirror parity and charge parity [10] allow us to identify the low-lying
eigenstates. For the MJ = 0 states, from bottom to up, the lowest six states are 11S0, 13S1, 21S0,
23S1, 23P0, and 23P1. Fig. 2 illustrates the light-front wave function (LFWF) in the |e+e−〉 sector
for three low-lying states with MJ = 0. Their shape and nodal structures are qualitatively similar to
those based on the one-photon-exchange effective interaction [8].

Figure 2: The (normalized) LFWFs for the dominant spin component in the |e+e−〉 sector of the positron-
ium system at Nmax = K−1 = 16 and α = 0.15. x is the longitudinal momentum fraction and k⊥ represents
the relative transverse momentum between e+ and e−.

3. Heavy meson

A similar calculation can be carried over to the heavy meson system in QCD. Like the positro-
nium system, we retain the lowest two Fock sectors, |qq̄〉 and |qq̄g〉, in our basis. Our Hamiltonian
contains two parts. From the QCD Lagrangian, we obtain the first part of the Hamiltonian [9],
P−QCD, which in our truncated Fock space takes a similar form to the QED Hamiltonian, P−QED, in
Eq. (2.1), with the fermion field Ψ identified as the quark field, the gauge boson field Aµ identified
as the gluon field Aa

µT a and the electric charge e replaced by the color charge g. In order to achieve
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a more accurate reproduction of the meson mass spectrum, we allow the quark mass appearing in
the quark-gluon vertex interaction, g jµAa

µT a, to be an independent phenomenological parameter,
m′q, from mq in the kinetic energy term. We also apply a nonzero gluon mass mg to ensure the
low-lying states are dominated by the |qq̄〉 sector.

In addition we include a phenomenological confining potential [10] in both the longitudinal
and transverse directions in the |qq̄〉 sector, which takes the following form,

P−C P+ = κ
4~ζ⊥−

κ4

(mq +mq̄)2 ∂x(x(1− x)∂x), (3.1)

where x is the longitudinal momentum fraction of the quark [8]. ~ζ⊥ ≡
√

x(1− x)~r⊥ is the holo-
graphic variable introduced by Brodsky and de Téramond [11], and ∂x f (x,~ζ⊥) = ∂ f (x,~ζ⊥)/∂x|~ζ .
κ is the strength of the confinement and mq(mq̄) is the mass of the quark (anti-quark). Thus, our
total Hamiltonian is P− = P−QCD +P−C .

With the charm quark mass mc = 1.565 GeV (kinetic), m′c = 6.259 GeV (interaction), the
gluon mass mg = 0.5 GeV, the confining strength κ = 1.117 GeV and the strong coupling con-
stant g = 1.51 for the charmonium, and similarly the bottom quark mass mb = 4.767 GeV (kinetic),
m′b = 12.191 GeV (interaction), mg = 0.5 GeV, κ = 1.894 GeV and g = 1.75 for the bottomonium,
our resulting mass spectra for the low-lying cc̄ and bb̄ states agree with the experimental values
reasonably well, as shown in the left and middle panel of Fig. 3, respectively. With the same pa-
rameter set used in the cc̄ and bb̄ systems we obtain the mass spectrum for the Bc system, as in the
right panel of Fig. 3. In Fig. 4 we present the ground state LFWFs of the cc̄, bb̄ and Bc system in
the |qq̄〉 sector.
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Figure 3: Comparison of our BLFQ spectra at Nmax = K− 1 = 10 for charmonium (left), bottomonium
(middle), and Bc meson (right) with the effective one-gluon-exchange (OGE) approach [10, 12] and the
experimental values (PDG) [13]. Lattice results are from Ref. [14, 15, 16]. The horizontal and vertical axes
are the JPC and invariant mass, respectively.

4. Conclusion

Through the applications to various bound state systems in QED and QCD we demonstrate that
BLFQ is a versatile and powerful nonperturbative approach to quantum field theory for strongly
interacting systems. We anticipate that in the future BLFQ will be a useful tool for understanding
the hadron mass spectrum and structure beyond the valence sector.
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Figure 4: The (normalized) LFWFs for the dominant spin component in the |qq̄〉 sector of ηc(1S) (left),
ηb(1S) (middle) and Bc(1S) (right) at Nmax = K− 1 = 10. x is the longitudinal momentum fraction of the
quark and k⊥ represents the relative transverse momentum between the quark and the anti-quark.
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