Second order QCD corrections to the $g + g \rightarrow H + H$
four-point amplitude

Pulak Banerjee*
The Institute of Mathematical Sciences, HBNI, Taramani, Chennai-600113, India
E-mail: pulak.banerjee@psi.ch

Sophia Borowka
Theoretical Physics Department, CERN, CH-1211 Geneva, Switzerland
E-mail: sophia.borowka@cern.ch

Prasanna K. Dhani
The Institute of Mathematical Sciences, HBNI, Taramani, Chennai-600113, India
E-mail: prasannakd@imsc.res.in

Thomas Gehrmann
Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
E-mail: thomas.gehrmann@uzh.ch

V. Ravindran
The Institute of Mathematical Sciences, HBNI, Taramani, Chennai-600113, India
E-mail: ravindra@imsc.res.in

In this contribution we compute the two loop massless QCD corrections to the four-point amplitude $g + g \rightarrow H + H$. We work in the effective theory where the Higgs boson interact with gluons in the infinite top quark mass limit. Our calculation is an important ingredient to the third-order QCD corrections to Higgs boson pair production.

14th International Symposium on Radiative Corrections (RADCOR2019)
9-13 September 2019
Palais des Papes, Avignon, France

*Speaker.
1. Introduction

The trilinear self coupling of the Higgs boson is a crucial parameter to describe the shape of the Higgs potential. By precisely measuring the mass of this particle, the trilinear self coupling can be accurately predicted. This coupling can be probed through the production of a pair of Higgs boson [2, 3, 4, 5]; the latter being produced dominantly at hadron colliders through the gluon fusion mechanism [6, 7]. The Standard Model (SM) production cross section of two Higgs bosons in the final state is of the order of a few tens of femtobarns at the Large Hadron Collider. This small cross section and a large irreducible background [8, 9, 10, 11, 12, 13] make it difficult and challenging to detect the final state experimentally. To determine the trilinear coupling accurately, the uncertainties in the cross sections, for two Higgs bosons in the final state, need to be under control. With the increasing accuracy of experiments, it is important to go beyond NNLO to make precise predictions for observables. Substantial progress has been made on the theoretical side in computing the higher order QCD corrections to the production of di-higgs. Since higher order corrections with exact top-quark mass dependence are difficult to compute, it is possible to restore to an effective field theoretic approach, where in the heavy-top-quark mass limit, the top quark degrees of freedom are integrated out. In this approximation, the next-to-lead order (NLO) QCD corrections has been performed in the article [2]. Subsequently the NLO calculation have been improved by considering top quark mass effects [14, 15, 16, 17, 18, 19]. Further, the full NLO calculation with exact top quark mass dependence was computed in [20, 21, 22]. At next-to-next-to-leading order (NNLO), results in the heavy top limit for soft-virtual contributions can be found in [23]; the effect of top quarks were studied in [24]; fully differential results at NNLO level can be found in [25, 26, 27]. For threshold resummation see [27, 28]. In this proceedings we compute [1] the two loop QCD corrections, in the effective theory, to a class of diagrams that is needed to compute the full three loop inclusive cross section and differential distributions for di-higgs production. In section 2 we describe the theoretical aspects and the class of diagrams that we compute. Section 3 and 4 describe the details of the computation. Numerical evaluations of the amplitude are discussed in section 5. Finally we conclude in section 6.

2. Contributions to \(N^3 \)LO

2.1 Effective Lagrangian density

In the effective theory framework, where the top quark degrees of freedom are integrated out, the effective Lagrangian density that encodes the coupling of gluons to one and two Higgs boson is given by

\[
\mathcal{L}_{\text{eff}} = -\frac{1}{4} \left(C_H(a_s) \frac{\phi}{v} - C_{HH}(a_s) \frac{\phi^2}{v^2} \right) G_{\mu\nu} G^{\mu\nu},
\]

where \(G_{\mu\nu} \) denotes the gluon field strength tensor, \(\phi \), the Higgs boson and \(v = 246 \) GeV is the vacuum expectation value of the Higgs field. In this work we compute the relevant amplitudes for the production of two Higgs boson in the final state, described by the Lagrangian density. The constants \(C_H \) and \(C_{HH} \) denote the Wilson coefficients [29, 30, 31, 32, 33, 34]; they are determined...
by matching the effective theory to the full theory. Expanding in powers of the renormalized strong coupling constant $a_s = g_s^2(\mu_R^2)/(16\pi^2) = \alpha_s(\mu_R^2)/(4\pi)$ with μ_R the renormalisation scale,

$$C_H(a_s) = -\frac{4a_s}{3}\left[1 + a_s(11) + a_s^2\left(\frac{2777}{18} + 19L\right) + n_f\left\{-\frac{67}{6} + \frac{16}{3}L\right\}\right]$$

$$+ a_s^3\left(-\frac{2892659}{648} + \frac{3466}{9}L + 209L^2 + \frac{897943}{144}\xi_3 + n_f\left\{\frac{40291}{324}\right\}\right) + \frac{1760}{27}L + 46L^2 - \frac{110779}{216}\xi_3 + n_f\left\{-\frac{6865}{486} + \frac{77}{27}L - \frac{32}{9}L^2\right\}\right],$$

$$C_{HH}(a_s) = -\frac{4a_s}{3}\left[1 + a_s(11) + a_s^2\left(\frac{3197}{18} + 19L + n_f\left\{-\frac{1}{2} + \frac{16}{3}L\right\}\right)\right].$$

In above, $L = \log\left(\frac{M_t^2}{m_h^2}\right)$, n_f is the number of light flavors, m_t is the top quark mass at scale μ_R and $N = 3$ is fixed for QCD.

2.2 Tensors and projectors

Gauge invariance allows to decompose the amplitude for the process

$$g(p_1) + g(p_2) \rightarrow H(p_3) + H(p_4),$$

in terms of two second rank Lorentz tensors $\mathcal{T}_{i}^{\mu\nu}$ with $i = 1, 2$ as follows [6]:

$$\mathcal{M}_{ab}^{\mu\nu} = \delta_{ab}\left(\mathcal{T}_{1}^{\mu\nu} - \mathcal{T}_{2}^{\mu\nu} \mathcal{M}_1 + \mathcal{T}_{2}^{\mu\nu} \mathcal{M}_2\right).$$

In eqn. (2.4), the incoming gluons carry momenta p_1 and p_2 while p_3 and p_4 are the momenta for the outgoing Higgs bosons. The Mandelstam variables for the above process are given by

$$s = (p_1 + p_2)^2, \quad t = (p_1 - p_3)^2, \quad u = (p_2 - p_3)^2,$$

with $s + t + u = 2m_h^2$ where m_h is the mass of the Higgs boson. The amplitude can also be expressed in terms of the dimensionless variables x, y and z through

$$s = m_h^2\left(1 + x\right)^2, \quad t = -m_h^2y, \quad u = -m_h^2z.$$

The amplitude in eqn. (2.5) is diagonal in the color space, denoted by indices (a, b) of the incoming gluons. The Lorentz tensors are given by

$$\mathcal{T}_{1}^{\mu\nu} = g^{\mu\nu} - \frac{1}{p_1 \cdot p_2}\left(p_1^{\mu} p_2^{\nu}\right),$$

$$\mathcal{T}_{2}^{\mu\nu} = g^{\mu\nu} + \frac{1}{p_1 \cdot p_2 p_1^{\mu}}\left(m_h^2 p_2^{\mu} p_1^{\nu} - 2p_1 \cdot p_3 p_2^{\mu} p_3^{\nu} - 2p_2 \cdot p_3 p_3^{\mu} p_1^{\nu} + 2p_1 \cdot p_2 p_3^{\mu} p_3^{\nu}\right),$$

with $p_1^{\mu} = (t u - m_h^2)/s$. Using appropriate projectors in d dimensions

$$p_1^{\mu} = \frac{1}{d - 2}\mathcal{P}_1^{\mu} - \frac{1}{d - 3}\mathcal{P}_2^{\mu},$$

$$p_2^{\mu} = -\frac{1}{d - 4}\mathcal{P}_1^{\mu} + \frac{1}{d - 3}\mathcal{P}_2^{\mu},$$

(2.10)
we can obtain the scalar functions \mathcal{M}_i from $\mathcal{M}_{ab}^{\mu\nu}$ as follows:

$$\mathcal{M}_i = \frac{1}{N^2 - 1} \epsilon_i^{\mu\nu} \mathcal{M}_{\mu\nu}^{ab} \delta_{ab}, \quad i = 1, 2.$$

(2.11)

In the next section we elaborate on the classes of diagrams that are relevant for our current work.

2.3 Classes of diagrams

![Figure 1: Class-A amplitudes (first and second diagram from left) and class-B amplitude (on the right).](image)

Upon expanding the amplitudes \mathcal{M}_i in powers of the strong coupling constant, a_s, we encounter two topologically distinct class of subprocesses. In other words, the scalar amplitudes \mathcal{M}_i in eqn. (2.5) can be written as sum of amplitudes resulting from two distinct classes A and B

$$\mathcal{M}_i = \mathcal{M}_i^A + \mathcal{M}_i^B, \quad i = 1, 2.$$

(2.12)

where for each i, the terms on the right hand side of the above equation can be expanded in a perturbative series of a_s. The classes are as follows (see [1] for more details):

- **Class-A**, the first two diagrams from left in fig. 1, contains two Higgs bosons which couple to each other and to gluons. The diagrams which contain a Higgs propagator are linearly proportional to the triple Higgs coupling λ.

- **Class-B**, right most diagram in fig. 1, consists of Higgs bosons coupling to two gluons through the effective vertices proportional to C_H, but they do not couple to each other.

The amplitudes \mathcal{M}_i^A are proportional to the Higgs boson form factor, they can be expressed as

$$\mathcal{M}_i^A = \delta_1 \frac{s}{2} \left(C_{HH}(a_s) - C_H(a_s) \frac{6 \lambda v^2}{s - m_h^2} \right) \sum_{j=0}^{\infty} a_s^j \mathcal{F}^{(j)}(d),$$

(2.13)

Owing to the choice of tensorial basis, the amplitude \mathcal{M}_2^A is zero to all orders in perturbation theory. The form factors $\mathcal{F}^{(j)}(d)$ for $j = 1, 2, 3$ are known in the literature [35, 36]. The class-B amplitudes result from the first term in \mathcal{L}_{eff}, have two powers of C_H at its leading order and start at $\mathcal{O}(a_s^2)$. Their results are available only up to $\mathcal{O}(a_s^3)$ [2]. In this article, we will complete the $\mathcal{O}(a_s^4)$ contributions to the $g + g \rightarrow H + H$ amplitude, by computing the class-B diagrams to this order, which amount to their two-loop corrections. These amplitudes are both ultraviolet (UV) and infrared (IR) divergent; we regularise them in dimensional regularisation by going to $d = 4 - 2\varepsilon$ dimension. We elaborate in the next two sections.
3. Ultraviolet renormalization

The unrenormalized amplitudes from class-B can be expanded in powers of the bare coupling constant \hat{a}_i as

$$\hat{\mathcal{M}}_i^B = \hat{\mathcal{M}}_i^{B,(0)} + \left(\hat{a}_i \mu^{2\epsilon} S_\epsilon\right) \hat{\mathcal{M}}_i^{B,(1)} + \left(\hat{a}_i \mu^{2\epsilon} S_\epsilon\right)^2 \hat{\mathcal{M}}_i^{B,(2)} + \mathcal{O}(\hat{a}_i^3). \quad (3.1)$$

The bare strong coupling constant in the regularized theory is related to its renormalized counterpart, a_s, by

$$\hat{a}_i \mu^{2\epsilon} S_\epsilon = a_s \mu^{2\epsilon} Z(\mu_R^2) = a_s \mu^{2\epsilon} \left[1 - a_s \left(\frac{\beta_0}{\epsilon}\right) + a_s^2 \left(\frac{\beta_1^2}{\epsilon^2} - \frac{\beta_1}{\epsilon}\right) + \mathcal{O}(a_s^3)\right]. \quad (3.2)$$

β_i are the QCD beta functions, $S_\epsilon = \exp[(\ln 4\pi - \gamma)\epsilon]$ with $\gamma \approx 0.5772...$ the Euler-Mascheroni constant.

In addition to coupling constant renormalisation, the amplitudes also require renormalisation of the effective operators appearing in eq. (2.1). We multiply the amplitudes with the overall renormalisation constant (Z_ϕ) [37, 38, 39]. In addition to the above we also need a new renormalisation constant $Z_{1,1}$, in a counter term proportional to $G_{\mu\nu} G^{\mu\nu} \phi \phi$ (class-A type) to renormalise the additional UV divergence resulting from amplitudes involving two $G_{\mu\nu} G^{\mu\nu} \phi$ type operators starting from 2-loop order in class-B amplitudes. The form of the renormalization constant was derived in details in [40]. Finally our UV renormalized amplitude is

$$\hat{\mathcal{M}}_i^B = Z^2_\phi \hat{\mathcal{M}}_i^B + Z^{L}_{1,1} \hat{\mathcal{M}}_i^{A,(0)} \bigg|_{\lambda = 0}, \quad (3.3)$$

where $Z^{L}_{1,1}$ is given by [40]

$$Z^{L}_{1,1} = a_s^2 \frac{\beta_1}{\epsilon} + \mathcal{O}(a_s^3). \quad (3.4)$$

In the next section we discuss about the IR divergences in the amplitude $\hat{\mathcal{M}}_i^B$.

4. Infrared factorization

The UV finite amplitudes still contain IR divergences, which show up as poles in the dimensional regularization parameter ϵ. Beyond the leading order, these amplitudes demonstrate a very rich universal structure in the IR region. It is to be noted that when combined with the real emission processes, these poles cancel. By exploiting the iterative structure of the IR singular parts in any UV renormalized amplitudes in QCD, Catani [41] predicted IR divergences for n-point two-loop amplitudes in terms of certain universal IR anomalous dimensions. These could be related [42] to the factorization and resummation properties of QCD amplitudes, and were subsequently generalized to higher loop order [43, 44]. Following [41], we obtain

$$\hat{\mathcal{M}}_i^{B,(0)} = \hat{\mathcal{M}}_i^{B,(0)}$$

$$\hat{\mathcal{M}}_i^{B,(1)} = 2I_1 \{\epsilon\}. \hat{\mathcal{M}}_i^{B,(0)} + \hat{\mathcal{M}}_i^{B,(1), fin}$$

$$\hat{\mathcal{M}}_i^{B,(2)} = 4I_2 \{\epsilon\}. \hat{\mathcal{M}}_i^{B,(0)} + 2I_1 \{\epsilon\}. \hat{\mathcal{M}}_i^{B,(1)} + \hat{\mathcal{M}}_i^{B,(2), fin} \quad (4.1)$$
where \(I_g^{(1)}(\varepsilon), I_g^{(2)}(\varepsilon) \) are the IR singularity operators given by

\[
I_g^{(1)}(\varepsilon) = -\frac{e^{\varepsilon}}{\Gamma(1-\varepsilon)} \left(\frac{C_A}{\varepsilon^2} + \frac{\beta_0}{2\varepsilon} \right) \left(-\frac{\mu_f^2}{s} \right)^\varepsilon,
\]

\[
I_g^{(2)}(\varepsilon) = -\frac{1}{2} I_g^{(1)}(\varepsilon) \left[I_g^{(1)}(\varepsilon) + \frac{\beta_0}{\varepsilon} \right] + \frac{e^{-\varepsilon}\Gamma(1-2\varepsilon)}{\Gamma(1-\varepsilon)} \left[\frac{\beta_0}{2\varepsilon} + K \right] I_g^{(1)}(2\varepsilon) + 2H_g^{(2)}(\varepsilon),
\]

with

\[
K = \left(\frac{67}{18} - \xi_2 \right) C_A - \frac{10}{9} T_F n_f,
\]

\[
H_g^{(2)}(\varepsilon) = -\left(-\frac{\mu_f^2}{s} \right)^{2\varepsilon} \frac{e^{\varepsilon}}{\Gamma(1-\varepsilon)} \left[C_A \left(-\frac{5}{24} + \frac{11}{48} \xi_2 - \frac{1}{4} \xi_3 \right) + C_A n_f \left(\frac{29}{54} + \frac{1}{24} \xi_2 \right) - \frac{1}{4} C_F n_f - \frac{5}{54} n_f^2 \right].
\]

where the SU(N) color factors \(C_A = N, C_F = \frac{N^2-1}{2N} \), and \(T_F = \frac{1}{2} \). Our amplitudes show the correct universal infrared behaviour, which is a stringent check on our results.

5. Computation and results

The Feynman diagrams for class-B were generated using QGRAF. This output was then exported to FORM to perform all the algebraic manipulations, which includes Lorentz, Dirac and color algebra; the final output is expressed in terms of several Feynman integrals. These integrals are then reduced to few set of master integrals, using two independent packages LiteRed [45] and REDuze2 [46, 47]. Using the analytical form of the master integrals which were computed in the works [48, 49], we get the unrenormalized amplitudes \(\hat{M}_i^{B,(1)} \) and \(\hat{M}_i^{B,(2)} \). See [1] for more details. In section 3 and 4 we described in details the UV renormalization of the amplitudes and then checking their IR singularities. The finite remainders \(\hat{M}_i^{B,(j),\text{fin}}, i = 1, 2 \) (in eqn. (4.1)) contain multiple classical polylogarithms which are functions of the scaling variables \(x, y \) and their coefficients further depend on the Higgs mass \(m_h \). In the centre of mass frame, we plot the real and imaginary parts of the two-loop finite remainders after expressing the scaling variables as function of \(s, m_h^2 \) and \(\cos(\theta) \), where \(\theta \) is the angle between one of the Higgs bosons in the final state and one of the initial gluons. In addition, we set \(m_h = 125 \text{ GeV} \) with \(\mu_f^2 = m_h^2 / 2 \) and extract an additional factor of \(m_h^2 \) in the plots. Being a purely bosonic amplitude, \(\hat{M}_i^{B,(j),\text{fin}} \rvert_{\cos(\theta)\rightarrow-\cos(\theta)} = \hat{M}_i^{B,(j),\text{fin}} \). This symmetry serves as a strong check on our results. In the left panel of fig. 2, we display the real and imaginary parts of the amplitude \(\hat{M}_1^{B,(2),\text{fin}} \); for \(\hat{M}_2^{B,(2),\text{fin}} \), see the right panel. The insets show the behaviour of the amplitudes close to the boundary of physical region, \(x = 0 \). We observe stable behaviour of the finite parts of our two-loop amplitude.

6. Conclusion

We compute the two-loop massless QCD corrections to the \(g + g \rightarrow H + H \) amplitude, which is the last missing piece required for the full computation of N3LO corrections to Higgs boson pair production.
production in gluon fusion [58], in the infinite top quark mass limit. We saw that in the effective theory there are two classes of diagrams that give rise to two Higgs final state. The three loop QCD corrections are already known for class-A, the one loop amplitudes for class-B have been known for a while in the effective theory. Although an exact calculation is currently out of reach, reweighting procedures allows to reliably quantify these effects [59]. Our newly computed amplitudes will be useful for computing the hard matching coefficients in the resummation of corrections at low pair transverse momentum. To compute differential distributions of the Higgs boson pair production, proper techniques are needed to handle the IR singular real radiation; the first steps have been taken in [60, 61]. Our calculation opens up possibilities for more precise phenomenological predictions in Higgs boson pair production at the hadron colliders.

References

Second order QCD corrections for di-higgs production

Pulak Banerjee

Second order QCD corrections for di-higgs production

Pulak Banerjee

Second order QCD corrections for di-higgs production

Pulak Banerjee

[49] T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for $q\bar{q} \rightarrow VV$: the planar topologies, JHEP 08 (2013) 070, [1306.6344].

[57] B. Mistlberger, Higgs boson production at hadron colliders at N3LO in QCD, JHEP 05 (2018) 028, [1802.00833].

[58] Long-Bin Chen, Hai Tao Li, Hua-Sheng Shao and Jian Wang, Higgs boson pair production via gluon fusion at N3LO in QCD, [1909.06808].

