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1. Introduction

The trilinear self coupling of the Higgs boson is a crucial parameter to describe the shape of
the Higgs potential. By precisely measuring the mass of this particle, the trilinear self coupling
can be accurately predicted. This coupling can be probed through the production of a pair of Higgs
boson [2, 3, 4, 5]; the latter being produced dominantly at hadron colliders through the gluon fusion
mechanism [6, 7]. The Standard Model (SM) production cross section of two Higgs bosons in the
final state is of the order of a few tens of femtobarns at the Large Hadron Collider. This small cross
section and a large irreducible background [8, 9, 10, 11, 12, 13] make it difficult and challenging to
detect the final state experimentally. To determine the trilinear coupling accurately, the uncertain-
ties in the cross sections, for two Higgs bosons in the final state, need to be under control. With the
increasing accuracy of experiments, it is important to go beyond NNLO to make precise predic-
tions for observables. Substantial progress has been made on the theoretical side in computing the
higher order QCD corrections to the production of di-higgs. Since higher order corrections with ex-
act top-quark mass dependence are difficult to compute, it is possible to restore to an effective field
theoretic approach, where in the heavy-top-quark mass limit, the top quark degrees of freedom are
integrated out. In this approximation, the next-to- leading order (NLO) QCD corrections has been
performed in the article [2]. Subsequently the NLO calculation have been improved by considering
top quark mass effects [14, 15, 16, 17, 18, 19]. Further, the full NLO calculation with exact top
quark mass dependence was computed in [20, 21, 22]. At next-to-next-to-leading order (NNLO),
results in the heavy top limit for soft-virtual contributions can be found in [23]; the effect of top
quarks were studied in [24]; fully differential results at NNLO level can be found in [25, 26, 27].
For threshold resummation see [27, 28]. In this proceedings we compute [1] the two loop QCD
corrections, in the effective theory, to a class of diagrams that is needed to compute the full three
loop inclusive cross section and differential distributions for di-higgs production. In section 2 we
describe the theoretical aspects and the class of diagrams that we compute. Section 3 and 4 describe
the details of the computation. Numerical evaluations of the amplitude are discussed in section 5.
Finally we conclude in section 6.

2. Contributions to N3LO

2.1 Effective Lagrangian density

In the effective theory framework, where the top quark degrees of freedom are integrated out,
the effective Lagrangian density that encodes the coupling of gluons to one and two Higgs boson
is given by

Le f f =−
1
4

(
CH(as)

φ

v
−CHH(as)

φ 2

v2

)
GµνGµν , (2.1)

where Gµν denotes the gluon field strength tensor, φ , the Higgs boson and v = 246 GeV is the
vacuum expectation value of the Higgs field. In this work we compute the relevant amplitudes for
the production of two Higgs boson in the final state, described by the Lagrangian density. The
constants CH and CHH denote the Wilson coefficients [29, 30, 31, 32, 33, 34]; they are determined
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by matching the effective theory to the full theory. Expanding in powers of the renormalized strong
coupling constant as = g2

s (µ
2
R)/(16π2) = αs(µ

2
R)/(4π) with µR the renormalisation scale,

CH(as) = −4as

3

[
1+as

(
11
)
+a2

s

({
2777

18
+19L

}
+n f

{
− 67

6
+

16
3

L

})

+a3
s

(
− 2892659

648
+

3466
9

L+209L2 +
897943

144
ζ3 +n f

{
40291
324

+
1760
27

L+46L2− 110779
216

ζ3

}
+n2

f

{
− 6865

486
+

77
27

L− 32
9

L2

})]
, (2.2)

CHH(as) = −4as

3

[
1+as

(
11
)
+a2

s

(
3197
18

+19L+n f

{
− 1

2
+

16
3

L

})]
, (2.3)

In above, L = log
(

µ2
R

m2
t

)
, n f is the number of light flavors, mt is the MS top quark mass at scale µR

and N = 3 is fixed for QCD.

2.2 Tensors and projectors

Gauge invariance allows to decompose the amplitude for the process

g(p1)+g(p2)→ H(p3)+H(p4) , (2.4)

in terms of two second rank Lorentz tensors T µν

i with i = 1,2 as follows [6]:

M µν

ab = δab
(
T µν

1 M1 +T µν

2 M2
)
. (2.5)

In eqn. (2.4), the incoming gluons carry momenta p1 and p2 while p3 and p4 are the momenta for
the outgoing Higgs bosons. The Mandelstam variables for the above process are given by

s = (p1 + p2)
2, t = (p1− p3)

2, u = (p2− p3)
2 , (2.6)

with s+t+u = 2m2
h where mh is the mass of the Higgs boson. The amplitude can also be expressed

in terms of the dimensionless variables x, y and z through

s = m2
h
(1+ x)2

x
, t =−m2

hy, u =−m2
hz. (2.7)

The amplitude in eqn. (2.5) is diagonal in the color space, denoted by indices (a,b) of the incoming
gluons. The Lorentz tensors are given by

T µν

1 = gµν − 1
p1 · p2

(
pν

1 pµ

2

)
(2.8)

T µν

2 = gµν +
1

p1 · p2 p2
T

(
m2

h pµ

2 pν
1 −2p1 · p3 pµ

2 pν
3 −2p2 · p3 pµ

3 pν
1 +2p1 · p2 pµ

3 pν
3

)
, (2.9)

with p2
T = (tu−m4

h)/s. Using appropriate projectors in d dimensions

Pµν

1 =
1
4

d−2
d−3

T µν

1 − 1
4

d−4
d−3

T µν

2 ,

Pµν

2 = −1
4

d−4
d−3

T µν

1 +
1
4

d−2
d−3

T µν

2 , (2.10)

2



P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
1
1

Second order QCD corrections for di-higgs production Pulak Banerjee

we can obtain the scalar functions Mi from M µν

ab as follows:

Mi =
1

N2−1
Pµν

i M ab
µνδab, i = 1,2 . (2.11)

In the next section we elaborate on the classes of diagrams that are relevant for our current work.

2.3 Classes of diagrams

g

g

H

H

g

g

H

H

g

g

H

H

Figure 1: Class-A amplitudes (first and second diagram from left) and class-B amplitude (on the right).

Upon expanding the amplitudes Mi in powers of the strong coupling constant, as, we en-
counter two topologically distinct class of subprocesses. In other words, the scalar amplitudes Mi

in eqn. (2.5) can be written as sum of amplitudes resulting from two distinct classes A and B

Mi = M A
i +M B

i , i = 1,2 . (2.12)

where for each i, the terms on the right hand side of the above equation can be expanded in a
perturbative series of as. The classes are as follows (see [1] for more details):

• Class-A, the first two diagrams from left in fig. 1, contains two Higgs bosons which couple
to each other and to gluons. The diagrams which contain a Higgs propagator are linearly
proportional to the triple Higgs coupling λ .

• Class-B, right most diagram in fig. 1, consists of Higgs bosons coupling to two gluons
through the effective vertices proportional to CH , but they do not couple to each other.

The amplitudes M A
i are proportional to the Higgs boson form factor, they can be expressed as

M A
i = δi1 i

s
2

(
CHH(as)−CH(as)

6λv2

s−m2
h

)
∞

∑
j=0

a j
sF

( j)(d) , (2.13)

Owing to the choice of tensorial basis, the amplitude M A
2 is zero to all orders in perturbation

theory. The form factors F ( j)(d) for j = 1,2,3 are known in the literature [35, 36]. The class-B
amplitudes result from the first term in Le f f , have two powers of CH at its leading order and start
at O(a2

s ). Their results are available only up to O(a3
s ) [2]. In this article, we will complete the

O(a4
s ) contributions to the g+ g→ H +H amplitude, by computing the class-B diagrams to this

order, which amount to their two-loop corrections. These amplitudes are both ultraviolet (UV) and
infrared (IR) divergent; we regularise them in dimensional regularisation by going to d = 4− 2ε

dimension. We elaborate in the next two sections.
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3. Ultraviolet renormalization

The unrenormalized amplitudes from class-B can be expanded in powers of the bare coupling
constant âs as

M̂ B
i = M̂

B,(0)
i +

(
âsµ

2εSε

)
M̂

B,(1)
i +

(
âsµ

2εSε

)2
M̂

B,(2)
i +O(â3

s ) . (3.1)

The bare strong coupling constant in the regularized theory is related to its renormalized counter-
part, as, by

âsµ
2εSε = asµ

2ε
R Z(µ2

R)

= asµ
2ε
R

[
1−as

(
β0

ε

)
+a2

s

(
β 2

0
ε2 −

β1

2ε

)
+O(a3

s )

]
. (3.2)

βi are the QCD beta functions, Sε = exp [(ln4π− γ)ε] with γ ≈ 0.5772... the Euler-Mascheroni
constant.

In addition to coupling constant renormalisation, the amplitudes also require renormalisation
of the effective operators appearing in the Lagrangian in eq. (2.1). We multiply the amplitudes
with the overall renormalisation constant (ZO ) [37, 38, 39]. In addition to the above we also need
a new renormalisation constant ZL

11, in a counter term proportional to GµνGµνφφ (class-A type)
to renormalise the additional UV divergence resulting from amplitudes involving two GµνGµνφ

type operators starting from 2-loop order in class-B amplitudes. The form of the renormalization
constant was derived in details in [40]. Finally our UV renormalized amplitude is

M B
i = Z2

OM̂ B
i +ZL

11M̂
A,(0)
i

∣∣∣
λ=0

, (3.3)

where ZL
11 is given by [40]

ZL
11 = a2

s
β1

ε
+O(a3

s ) . (3.4)

In the next section we discuss about the IR divergences in the amplitude M B
i .

4. Infrared factorization

The UV finite amplitudes still contain IR divergences, which show up as poles in the dimen-
sional regularization parameter ε . Beyond the leading order, these amplitudes demonstrate a very
rich universal structure in the IR region. It is to be noted that when combined with the real emis-
sion processes, these poles cancel. By exploiting the iterative structure of the IR singular parts in
any UV renormalized amplitudes in QCD, Catani [41] predicted IR divergences for n-point two-
loop amplitudes in terms of certain universal IR anomalous dimensions. These could be related
[42] to the factorization and resummation properties of QCD amplitudes, and were subsequently
generalized to higher loop order [43, 44]. Following [41], we obtain

M
B,(0)
i = M

B,(0)
i

M
B,(1)
i = 2I(1)g (ε)M

B,(0)
i +M

B,(1), f in
i

M
B,(2)
i = 4I(2)g (ε)M

B,(0)
i +2I(1)g (ε)M

B,(1)
i +M

B,(2), f in
i (4.1)
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where I(1)g (ε), I(2)g (ε) are the IR singularity operators given by

I(1)g (ε) = − eεγ

Γ(1− ε)

(
CA

ε2 +
β0

2ε

)(
−µ2

R

s

)ε

,

I(2)g (ε) = −1
2

I(1)g (ε)

[
I(1)g (ε)+

β0

ε

]
+

e−εγΓ(1−2ε)

Γ(1− ε)

[
β0

2ε
+K

]
I(1)g (2ε)+2H(2)

g (ε), (4.2)

with

K =

(
67
18
−ζ2

)
CA−

10
9

TFn f ,

H(2)
g (ε) =−

(
−µ2

R

s

)2ε eεγ

Γ(1− ε)

× 1
2ε

{
C2

A

(
− 5

24
− 11

48
ζ2−

1
4

ζ3

)
+CAn f

(
29
54

+
1

24
ζ2

)
− 1

4
CFn f −

5
54

n2
f

}
. (4.3)

where the SU(N) color factors CA = N,CF = N2−1
2N ,and TF = 1

2 . Our amplitudes show the correct
universal infrared behaviour, which is a stringent check on our results.

5. Computation and results

The Feynman diagrams for class-B were generated using QGRAF. This output was then ex-
ported to FORM to perform all the algebraic manipulations, which includes Lorentz, Dirac and
color algebra; the final output is expressed in terms of several Feynman integrals. These integrals
are then reduced to few set of master integrals, using two independent packages LiteRed [45] and
REDUZE2 [46, 47] . Using the analytical form of the master integrals which were computed in
the works [48, 49], we get the unrenormalized amplitudes M̂

B,(1)
i and M̂

B,(2)
i . See [1] for more

details. In section 3 and 4 we described in details the UV renomalization of the amplitudes and
then checking their IR singularities. The finite remainders M

B,( j), f in
i , i = 1,2 (in eqn. (4.1) contain

multiple classical polylogarithms which are functions of the scaling variables x,y and their coef-
ficients further depend on the Higgs mass mh. In the centre of mass frame, we plot the real and
imaginary parts of the two-loop finite remainders after expressing the scaling variables as function
of s,m2

h and cos(θ), where θ is the angle between one of the Higgs bosons in the final state and one
of the initial gluons. In addition, we set mh = 125 GeV with µ2

R = m2
h/2 and extract an additional

factor of m2
h in the plots. Being a purely bosonic amplitude, M

B,( j), f in
i

∣∣
cos(θ)→−cos(θ) = M

B,( j), f in
i .

This symmetry serves as a strong check on our results. In the left panel of fig. 2, we display the
real and imaginary parts of the amplitude M

B,(2), f in
1 ; for M

B,(2), f in
2 , see the right panel. The insets

show the behaviour of the amplitudes close to the boundary of physical region, x = 0. We observe
stable behaviour of the finite parts of our two-loop amplitude.

6. Conclusion

We compute the two-loop massless QCD corrections to the g+g→ H +H amplitude, which
is the last missing piece required for the full computation of N3LO corrections to Higgs boson pair

5
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Figure 2: Behavior of M
B,(2), f in
1 (left) and M

B,(2), f in
2 (right) as a function of the scaling variable x for

different values of cos(θ). The insets show the region close to x = 0.

production in gluon fusion [58], in the infinite top quark mass limit. We saw that in the effective
theory there are two classes of diagrams that gives rise to two Higgs final state. The three loop QCD
corrections are already known for class-A, the one loop amplitudes for class-B have been known for
a while in the effective theory. Although an exact calculation is currently out of reach, reweighting
procedures allows to reliably quantify these effects [59]. Our newly computed amplitudes will be
useful for computing the hard matching coefficients in the resummation of corrections at low pair
transverse momentum. To compute differential distributions of the Higgs boson pair production,
proper techniques are needed to handle the IR singular real radiation; the first steps have been taken
in [60, 61]. Our calculation opens up possibilities for more precise phenomenological predictions
in Higgs boson pair production at the hadron colliders.
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