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Heavy quark form factors at three loops

Johannes Blümlein
Deutsches Elektronen-Synchrotron, DESY 15738 Zeuthen, Germany
E-mail: johannes.bluemlein@desy.de

Peter Marquard∗†

Deutsches Elektronen-Synchrotron, DESY 15738 Zeuthen, Germany
E-mail: peter.marquard@desy.de

Narayan Rana
INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
E-mail: narayan.rana@mi.infn.it

Carsten Schneider
Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC),
Altenbergerstraße 69, A–4040, Linz, Austria
E-mail: cschneid@risc.jku.at

We present results for the heavy-fermionic corrections to the non-singlet heavy-quark form factors
at three-loop order recently obtained in [1].

14th International Symposium on Radiative Corrections (RADCOR2019)
9-13 September 2019
Palais des Papes, Avignon, France

∗Speaker.
†DESY 19-219, DO-TH 19/14, SAGEX-19-32

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:johannes.bluemlein@desy.de
mailto:peter.marquard@desy.de
mailto:narayan.rana@mi.infn.it
mailto:cschneid@risc.jku.at


P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
1
3

Heavy quark form factors at three loops Peter Marquard

1. Introduction

The knowledge of the massive three–loop form factor is an essential ingredient to the calcu-
lation for a series of massive processes at e+e− and hadron colliders, determined by vector, axi-
alvector, scalar and pseudoscalar currents. It has been calculated to two–loop order in Refs. [2–7].
At three–loop order the color planar contributions have been computed in Refs. [8–13] and its
asymptotic behaviour has been studied in [14, 15], including partial results at four–loop order.

In this proceedings, we review the computation of the non-singlet heavy-fermionic contribu-
tions of the massive three–loop form factor for vector, axialvector, scalar and pseudoscalar currents
recently obtained in [1].

The basic structure of the massive form factors has been described in Ref. [7] before. We
consider vector, axialvector, scalar and pseudoscalar currents coupling to a heavy quark pair of
mass m

uc(q1)Xcdvd(q2), (1.1)

with q = q1 +q2. The main variable considered is x given by

q2

m2 = z =−(1− x)2

x
. (1.2)

We work in D = 4− 2ε dimensions. In the axialvector and pseudoscalar case we can use an
anticommuting γ5 since we only consider the non-singlet contributions.

We consider the decay amplitude (Γµ ) of the Z-boson into a pair of heavy quarks. The general
structure of Γµ consists of six form factors, two of which are CP odd. As we consider only higher
order QCD effects and Standard Model (SM) neutral current interactions to lowest order, the CP
invariance holds. This implies that Γµ has four form factors FV,i(s),FA,i(s) i = 1,2 comprising the
following general form

Γ
µ

cd = Γ
µ

V,cd +Γ
µ

A,cd

=−iδcd

[
vQ

(
γ

µ FV,1 +
i

2m
σ

µνqν FV,2

)
+aQ

(
γ

µ
γ5 FA,1 +

1
2m

qµ
γ5 FA,2

)]
(1.3)

where σ µν = i
2 [γ

µ ,γν ], q = q1 + q2, and vQ and aQ are the SM vector and axial-vector coupling
constants as defined by

vQ =
e

sinθw cosθw

(T Q
3
2
− sin2

θwQQ

)
, aQ =− e

sinθw cosθw

T Q
3
2

. (1.4)

e is the charge of positron, θw is the weak mixing angle, T Q
3 is the third component of the weak

isospin, and QQ is the charge of the heavy quark.
Furthermore, we consider a general neutral particle h that couples to heavy quarks through the

following Yukawa interaction

Lint =−
m
v

[
sQQ̄Q+ ipQQ̄γ5Q

]
h, (1.5)
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where m denotes the heavy quark mass, v = (
√

2GF)
−1/2 is the SM Higgs vacuum expectation

value, with GF being the Fermi constant, sQ and pQ are the scalar/pseudoscalar coupling, respec-
tively, and Q and h are the heavy quark and scalar and pseudoscalar field, respectively. The decay
amplitude of h→ Q̄+Q, Xcd ≡ Γcd , consists of two form factors with the following general struc-
ture

Γcd = ΓS,cd +ΓP,cd

=−m
v

δcd

[
sQ FS + ipQγ5 FP

]
, (1.6)

where FS and FP denote the renormalized scalar and pseudoscalar form factors, respectively. The
form factors obey the expansion

Fi,l(x,as) = δl,1 +
∞

∑
k=1

ak
sF(k)

i (x), (1.7)

with i =V,A,S,P and l = 1,2 for i = A,V and as = αs/(4π) denotes the strong coupling constant.

2. Calculation and Results

To calculate the form factors for the various currents we follow to a large extend the commonly
used approach. The diagrams are generated using qgraf [16], the resulting diagrams are mapped
on prototypes using q2e/exp [17, 18], projectors are applied and the expressions are simplified
using (T)FORM [19, 20]. The resulting scalar integrals are reduced to a small set of master inte-
grals using integration-by-parts identities [21] implemented in the program Crusher [22]. This
procedure allows to represent the form factors as a linear combination of 103 master integrals,
which still have to be calculated. The calculation of the individual master integrals is a difficult
task since they involve elliptic or even more complicated structures. Therefore, we continue using
the method of arbitrarily large moments [23]. Compared to the complete analytic representation
their expansion about x = 1 can be fairly easily calculated. Therefore we first calculate the master
integrals in an expansion about x = 1. To obtain this expansion we insert a suitable ansatz into the
coupled system of differential equations for the master integrals thus obtaining a system of coupled
linear equations for the expansion coefficient. From these linear equations we can either calculate
a (small) number of expansion coefficients by directly solving the system of equations. Likewise
one may deduce recursions using SolveCoupledSystems [23] which allow for the calculation
of arbitrary many. Having obtained the expansions for the master integrals we can now calculate
the corresponding expansion of the full expressions for the form factors. In the final step, working
under the assumption that the sum is simpler then the parts, we try to obtain a closed analytic form
for the form factors by summing the obtained power series. To achieve this, we first determine a
recurrence using guessing [24] for the different parts corresponding to the constants introduced by
the boundary conditions. In the case that the recurrence is first-order factorizing it can be solved
using Sigma [25–27], i.e. an explicit representation of the n-th expansion coefficient can be given.
Once this representation is available it is possible to sum up the power series and find a closed ana-
lytic solution. The resulting infinite sums were then converted into harmonic polylogarithms using
the package HarmonicSums [28–36]. In the case of the first-order factorizable recurrences the
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corresponding solutions are in general given by iterated integrals, cf. [37]. Here, we encounter only
harmonic polylogarithms (HPLs) [38]. We needed at most 8000 moments to obtain the recursions
for the various parts of the form factors. For details of the method and its implemenation we refer
the reader to [1].

Let us illustrate the procedure with an example:

• We start with the sequence for Ci in ∑Ciyi

{−2,0,−1
6
,−1

6
,− 3

20
,− 2

15
,− 5

42
,− 3

28
,− 7

72
,− 4

45
,− 9

110
,− 5

66
,− 11

156
,− 6

91
,

− 13
210

,− 7
120

,− 15
272

,− 8
153

,− 17
342

,− 9
190

,− 19
420

, . . .}
(2.1)

• guess the recurrence
n2Cn− (n−1)(n+2)Cn+1 = 0 (2.2)

• find a solution for the recurrence
Cn =

1−n
n(n+1)

(2.3)

which in this case is valid starting from n = 1

• finally, performing the sum over n = 1, . . . ,∞ and adding the constant term C0 yields

−2+
∞

∑
n=1

1−n
n(n+1)

yn =−(y−2) log(1− y)
y

y→1−x
=

(1+ x) log(x)
1− x

. (2.4)

For many parts including all pole contributions we have been able to obtain closed analytic
results. In Table 1 we summarize the properties of the recurrences which are not first-order factor-
izing and thus we could not solve at this point.

The analytic results are too lengthy to be reproduced here in closed form and we refer the
reader to [1], where all results have been presented. For illustration we show in Fig. 1 the results
for the vector form factor FV,1 in the regions x ∈ [0,1], which corresponds to q2 ∈ [−∞,0], and
q2 ∈ [0,4m2], which corresponds to the upper half circle in x space.
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Figure 1: Vector form factor FV,1(ε
0n1

h), the approximation with 20, 50, 100, 200, 500 terms is shown in
brown, red, blue, green and black, respectively, [1].

In Fig 2 we show again the result for the vector form factor but to better illustrate the conver-
gences we normalize the different approximations to the most precise one.

Our results for the poles have been verified by comparing to predictions obtained from the
general infrared structure of QCD amplitudes and renormalization group arguments.
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color degree order remaining
order

FV g1nh 1288 54 15
g1nhζ3 409 29 10
g1nhζ2 295 24 6

g2nh 1324 55 15
g2nhζ3 430 30 10
g2nhζ2 273 23 6

FA g1nh 1314 54 15
g1nhζ3 419 29 10
g1nhζ2 280 23 6

g2nh 1130 52 15
g2nhζ3 352 28 10
g2nhζ2 232 23 6

FS nh 1114 50 15
nhζ3 350 27 10
nhζ2 230 22 6

FP nh 1130 52 15
nhζ3 352 28 10
nhζ2 232 23 6

Table 1: Structure of the recurrences for the remaining non–first-order contributions.
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Figure 2: Ratios of the approximations with 20, 50, 100, 200, 500 terms and our best approximation using
2000 terms for the vector form factor FV,1. Left ε0n1

h, right ε0n2
h. The ratio using 20, 50, 100, 200, 500 terms

is shown in brown, red, blue, green and black, respectively, [1].

3. Conclusions

We calculated the heavy-fermionic non-singlet three-loop contributions to the heavy quark
form factors for vector, axial-vector, scalar and pseudoscalar currents. We applied the method of
large moments to obtain deep series expansions for the final expressions, which for all pole terms
and a number of finite terms could be resummed. For the remaining structures series expansions
with an in priciple infinite number of terms are available. A closed analytic form for these contri-
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butions remains to be found and will be discussed in future work.
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