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1. Introduction

Diphoton production is an important process at hadron colliders for phenomenological studies
from both the experimental and theoretical side. Most prominently, the diphoton final state served
as one of the key discovery channels for the Higgs boson, even though the branching ratio of
the diphoton decay channel is just about a few per-mille. Up to now it is still the channel with
the highest mass resolution. As being experimentally very clean, a precise knowledge about the
diphoton spectrum at hadron colliders is desirable both from the point of view of examining the
dynamics of the Standard Model, and for searching possible manifestations of Beyond-Standard-
Model physics.

Another interesting aspect of diphoton production is the possibility of measuring the top quark
mass via the characteristic threshold effects manifest in the diphoton invariant mass spectrum
around the top quark pair production threshold [1]. As discussed in ref. [1], while current LHC
measurements are not yet able to provide the necessary statistics for such an analysis, the fea-
sibility at a future hadron collider is worth investigating. To this end a more precise theoretical
computation of the diphoton invariant mass spectrum, especially around the top quark pair produc-
tion threshold, is needed, which is the focus of this work.

To categorize different contributing channels to the pp — ¥y cross section, let us briefly reca-
pitulate previous work on this subject. Direct diphoton production! in hadronic collisions proceeds
via gg — yy at the leading order (LO), of order o in the QCD coupling. The next-to-leading
order (NLO) QCD corrections, including fragmentation contributions at NLO, were implemented
in the public program Diphox [2]. The next-to-next-to-leading order (NNLO) QCD corrections
to pp — Yy were first completed in ref. [3], including the loop-induced gg — Y7y contribution (at
order a?) with massless quark loops.

The loop-induced subprocess gg — vy [4] enters starting from NNLO in QCD (order o?).
Even though the gg — 7Yy contribution to pp — vy is of higher orders in ¢, it is comparable in
size to that of the LO process gg — 7y at the LHC, due to the large gluon luminosity. NLO QCD
corrections to the gluon fusion channel with massless quarks, i.e. order o corrections, have been
first calculated in refs. [5, 6] and implemented in 2yMC [6] as well as in MCFM [7]. Diphoton
production at NNLO with massless quarks is also available in MATRIX [8].

Very recently, the NLO QCD corrections to the gluon fusion channel including massive top
quark loops have become available [9]. In this work, we first provide an independent calculation
of the QCD corrections to the process gg — vy including massive top quark loops, and then we
combine our fixed order result with a threshold-resummation improved calculation as advocated in
ref. [1].

2. Building blocks of the fixed-order calculation

We consider the following scattering process,

g(pr,Mya1) +g(pa, Ao, az) = ¥(p3, A3) 4 ¥(pa, Aa), 2.1

'We denote by “direct photons” the photons produced directly in the hard scattering process, as opposed to photons
originating from a hadron fragmentation process.
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with on-shell conditions p? =0,j=1,...,4. The helicities A; of the external particles are defined by
taking the momenta of the gluons p; and p, (with color indices a; and a,, respectively) as incoming
and the momenta of the photons p3 and p4 as outgoing. The Mandelstam invariants associated with

eq. (2.1) are defined as s = (p1 +p2)*, t = (p2 — p3)*, u= (p1 — p3)°.

Projection operators

Pulling out the polarisation vectors €' of external gauge bosons from the amplitude .7 de-
scribing the process eq. (2.1), one defines the tensor amplitude .2, y, i, 1, by

M =& (p1) &2 (p2) €27 (3) €))7 (Pa) Moy (P15 P2, P35 D) - 2.2

We compute .#;, i, through projection onto a set of Lorentz structures related to linear po-
larisation states of the external gauge bosons, with the corresponding D-dimensional projection
operators constructed following the prescription proposed in ref. [10].> These linear polarisation
projectors are based on the momentum basis representations of external polarisation vectors (for
both bosons and fermions, massless or massive), and all their open Lorentz indices are by definition
taken to be D-dimensional to facilitate a uniform projection with just one dimensionality D=g" L
For the process in question, we introduce two linear polarisation states 8;(1 and 8# lying within
the scattering plane determined by the three linearly independent external momenta {py, p2,p3},
and transversal to p; and p3 respectively. In addition, a third linear polarisation state vector &,
orthogonal to py, p2, and p3, is constructed with the help of the Levi-Civita symbol. To determine

the momentum basis representations for 8;; we first write down a Lorentz covariant ansatz and

then solve the orthogonality and normalisatign conditions of linear polarisation state vectors for the
linear decomposition coefficients. Once we establish a definite Lorentz covariant decomposition
form in 4 dimensions solely in terms of external momenta and kinematic invariants, this form is
declared as the definition of the corresponding polarisation state vector in D dimensions.

Applied to the scattering process (2.1), this construction leads to eight projectors

M oy M3 M
Eix v Eix. Er v Ty 2.3)
where the square bracket [-, -] in the subscripts means either entry, and where only the combinations

containing an even number of & are considered. This is simply because (2.1) is a P-even 2-to-
2 scattering process. Let us emphasize that, in order to end up with an unambiguous form of
projectors to be used in D dimensions, all pairs of Levi-Civita tensors should be contracted first
(as explained in ref. [10]) before being used for the projection of the amplitude. In this way the
aforementioned projectors are expressed solely in terms of external momenta and metric tensors
whose open Lorentz indices are all set to be D-dimensional. We remark that since all projectors
thus constructed obey all defining physical constraints, the index contraction between (2.3) and the
tensor amplitude .7}, i, u;, 1S always done with the spacetime metric tensor g,y (rather than the
physical polarisation sum rule). The usual helicity amplitudes can be composed using the relations

between circular and linear polarisation state, e.g. € (p;) = % (8;; + ie# )

2This approach has been applied recently in the calculation of ref. [11].
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Numerical evaluation of amplitudes

With the linear polarisation projectors defined in (2.3), we re-computed the LO amplitudes for
the process (2.1) analytically, with both massless and massive quark loops. These expressions were
implemented in our computational setup for the NLO QCD corrections, which we describe below.

The bare scattering amplitudes of the process (2.1) beyond LO contain poles in the dimensional
regulator € = (4 — D) /2 arising from ultraviolet (UV) as well as soft and/or collinear (IR) regions
of the loop momenta. In our computation, we renormalise the UV divergences using the MS
scheme, except for the top quark contribution which is renormalised on-shell. For details on the UV
renormalisation, please refer to ref. [12]. To deal with the intermediate IR divergences, we employ
the FKS subtraction approach [13], as implemented in the POWHEG-BOX~-V2 framework [14, 15,
16]. In practice, we need to supply only the finite part of the born-virtual interference, under a
specific definition [16] in order to combine it with the FKS-subtracted real radiation generated
within the GOSAM/POWHEG-BOX~-V2 framework.

For the two-loop QCD diagrams contributing to our scattering process, there is a complete
separation of quark flavors due to the color algebra and Furry’s theorem, with samples shown in
fig. 1. We obtain the two-loop amplitude with the multi-loop extension of the program GOSAM [17]

RN EN?

Figure 1: Examples of diagrams contributing to the virtual corrections.

where REDUZE 2 [18] is employed for the reduction to master integrals. In particular, each of the
linearly polarised amplitudes projected out using (2.3) is eventually expressed as a linear combi-
nation of 39 massless integrals and 171 integrals that depend on the top quark mass, distributed
into three integral families. All massless two-loop master integrals involved are known analyti-
cally [5, 19, 20], and we have implemented the analytic expressions into our code. Regarding the
two-loop massive integrals, which are not yet fully known analytically, we first rotate to an integral
basis consisting partly of quasi-finite loop integrals [21]. Our integral basis is chosen such that the
second Symanzik polynomial, .%, appearing in the Feynman parametric representation of each of
the integrals is raised to a power, n, where |n| < 1 in the limit € — 0. This choice improves the
numerical stability of our calculation near to the ¢7 threshold, where the .# polynomial can vanish.
All these massive integrals are evaluated numerically using pySECDEC [22, 23].

The phase-space integration of the virtual interferences is achieved by reweighting unweighted
Born events. The accuracy goal imposed on the numerical evaluation of the virtual two-loop am-
plitudes in the linear polarisation basis in pySECDEC is 1 per-mille on both the relative and the
absolute error. We have collected 6898 phase space points out of which 862 points fall into the
diphoton invariant mass window my, € [330, 360] GeV. We further have calculated the amplitudes
for 2578 more points restricted to the threshold region.

The real radiation matrix elements are calculated using the interface [24] between GOSAM [25,
26] and the POWHEG-BOX-V2 [14, 15, 16], modified accordingly to compute the real radiation
corrections to loop-induced Born amplitudes. Only real radiation contributions where both photons
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couple to a closed quark loop are included. We also include the ¢4 initiated diagrams which contain
a closed quark loop, even though their contribution is numerically very small.

3. Treatment of the threshold region

When the #f pair inside the loop is produced close to the threshold, the Coulomb interactions
between the non-relativistically moving top quarks could lead to divergences in a fixed order calcu-
lation. To overcome this issue and correctly describe diphoton production around the ¢7 threshold,
we employ the non-relativistic QCD (NRQCD) [27, 28, 29, 30], which is an effective field theory
designed to describe non-relativistic heavy quark-antiquark systems in the threshold region.

To the order which we consider here, the amplitude .# can be expressed as a coherent sum of
light quark loop contributions and the top quark loop contribution,

%(ph)’iaal?ch) = 8aeas TR 6a1a2 [(ZQZ) Mq(sat) +Q[2Mt(s7t)] y (31)
q

where a, = ¢?/(47) and 0, denotes the electric charge of quark g. Near the production threshold

of an intermediate ¢7 pair, myy = \/s >~ 2m;, we define E = myy —2m;, B = \/ 1 —4m?/ mjz,y%— id.
Consequently the scattering angle is given by cos @ = 1+ (1 — 32)/(2m?). Close to the threshold,
the amplitude M, can be parametrised as [31, 1]

MR = 7,(0) + %,(B) G(0:6) + 0 (B?), (3.2)

where & = E + iI; includes the top-quark decay width I;>. In this parametrisation, the amplitude
MMR s split into two parts: % () G(0;&), which contains the ¢ bound-state effects, and <7 (8),
which does not. The term %, () G(0; &) contains the effects from resumming the non-relativistic
static potential interactions, where the Green’s function G(ﬁ;é" ) is obtained by solving the non-
relativistic Schrodinger equation describing a colour-singlet ## bound state:

ny

2
<V V() - g) G(HE) = 8(F), (33)

with the NLO QCD static potential given in [33, 34, 1]. We remark that the mass m;, appearing
in (3.3) is the pole mass of the top quark. G(();f) is the r — O limit of the Green’s function
G(#,&). The real part of the NLO Green’s function at r = 0 is divergent and therefore has to be
renormalised. We adopt the MS scheme, thus introducing a scale u into the renormalised Green’s
function [35, 36, 37, 38].

To retain NRQCD resummation effects and, at the same time, keep the matched cross section
accurate up to NLO in the fixed-order power counting, we define our NLO-matched cross section

3It has been shown in ref. [32] that in the non-relativistic limit the top width can be consistently included by
calculating the cross section for stable top quarks supplemented by such a replacement up to next-to-leading-order
according to the NRQCD power counting.
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as follows,
olg" = af(uR)/T:m drg‘g’(‘;f_mcﬂ /dqbz ‘///B—kc (%(H)G(();é",u) —Mg)():) 2,
NS = ofg"
) Tl drd"?igdmc/t/ /d(DZZRe [///; (.//zv<uR>_cMgg<m)}
(1 /derZ CELEe) i, [ s | o]+ o (e ). (3.4)

1y

where .#;; contains the flux factor and the average over spins and colours of the initial state partons

of flavour i and j, e.g. %g = 21; 614411
4% _

as frl “}f filx,ur) fi(£,ur), where f;(x,ur) is the parton distribution function (PDF) of a
parton with momentum fraction x and flavour i (including gluons) and r is the factorisation scale.

We have introduced the luminosity factors .%;;, defined

The usual renormalisation scale is denoted by ug. The 2- and 3-particle phase-space integration
measures are denoted by d, and d®5. The symbol ¢ =327 o, Qt2 Tr 64192 collects constants which
have been extracted in the definition of M. .# and .y () are the one-loop and UV renormalised
two-loop amplitudes, respectively, with power factors in the coupling a; = o (Ug)/(47) pulled out.
The real-radiation contributions with the factors of a; extracted are symbolically denoted by .# |;

and the collinear-subtraction counterterm is denoted by o for short. The Mg)é and Mg(): (1) denote
the LO and NLO double-counted part of the amplitude in the matching, given by

M = 2760 (0:E),
Mg = 26O (0:E) + 2 G (0: E). (3.5)

(1)

Note that the explicit dependence of M (i) on the scale p stems from the renormalisation of the
Green’s function G(0; E), while iz comes from the renormalisation of UV divergences in .y (iz)
and up from initial-state collinear factorisation. For the numerical evaluation of eq. (3.4), we
expand Mg)(): and Mgé to respectively @ (B3) and &(B?) (see ref. [ 12] for their explicit expressions).

At the two-loop order, the UV-renormalised amplitude M, (after IR subtraction) contains a
Coulomb singularity which is logarithmic in B. This singularity is, however, subtracted by the
expanded term Mgé, while a resummed description of the Coulomb interactions is added back by
the term %, G(6; &). For this purpose, we evaluate the Schrodinger equation (3.3) numerically [39]
to obtain G(0; &), where we include ¢(a) corrections to the QCD potential [33, 34]. Unlike the

calculation in ref. [1], we also include &'(a) corrections to %, as listed above.

4. Results

Our numerical results are calculated at a hadronic centre-of-mass energy of 13 TeV, using the
parton distribution functions PDF4LHC15_nlo_100 [40, 41, 42, 43] interfaced via LHAPDF [44],
along with the corresponding value for ¢. For the electromagnetic coupling, we use o = 1/137.03.
The mass of the top quark is fixed to m; = 173 GeV. The top-quark width is set to zero in the
fixed order calculation, and to I; = 1.498 GeV in the numerical evaluation of the Green’s function
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G(0;&, 1) in accordance with ref. [1]. We use the cuts prTm;}l =40GeV, prT’“‘;}2 =25GeV and |n,| <
2.5. No photon isolation cuts are applied.

The factorisation and renormalisation scale uncertainties are estimated by varying the scales
ur and ug. Unless specified otherwise, the scale variation bands in figures below represent the
envelopes of a 7-point scale variation with g r = cg r myy/2, where cg,cr € {2,1,0.5} and where
the extreme variations (cg,cr) = (2,0.5) and (cg,cr) = (0.5,2) have been omitted. The depen-
dence on the scale p introduced by renormalisation of the Green’s function G(7; &) in our NRQCD
matched results is investigated separately. We have validated the massless NLO cross section by
comparison to MCFM version 9.0 [45] and find agreement within the numerical uncertainties for
all scale choices.

The distribution of the diphoton invariant mass is shown in fig. 2 for invariant masses up to

1 —— NLO (full)
10" 4 o F
— —— NLO (Tlf = o)
oz 10
=3 10° 4 = LO (full) E
- 1071 4 3
[ ’j‘
S 10724 E
1073 4 3
1.75 £
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0 B Wt s saad M AT
" M
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—
(S
L

NLO(full)

NLO(ny

Figure 2: Diphoton invariant mass distribution (fixed order calculation), comparing the result
with ny = 5 to the result including massive top quark loops. The shaded bands show the enve-
lope of the 7-point scale variation as explained in the text. The lower panels shows the ratios
NLO(full) /LO(full) and NLO(full) /NLO(ny = 5) evaluated at the central scale Uz = Ur = myy/2.
The bars indicate the uncertainty due to the numerical evaluation of the phase-space and loop inte-
grals.

1 TeV, where we show purely fixed order results at LO, at NLO with five massless flavours and
including top quark loops. The ratio plots show the K-factor including the full quark loop content
and the ratio between the full and the five-flavour NLO cross-section. We observe that the scale
uncertainties are reduced at NLO, and that the top quark loops enhance the differential cross section
for myy values far beyond the top quark pair production threshold, asymptotically approaching the
ny = 6 value [71.4

In fig. 3 we zoom into the threshold region, still showing fixed order results only. We can

4We compared against the results shown in [9] and find agreement for the central scale choice, while we observe a
smaller scale uncertainty band.
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Figure 3: Zoom into the threshold region of the diphoton invariant mass distribution (fixed order
calculation), showing the ny = 5 and full result separately. The shaded bands indicate the scale
uncertainties, while the bars indicate uncertainties due to the numerical evaluation of the phase-
space and loop integrals. The ratio plot in the lower panel shows the ratios NLO(full) /LO(full)
(red) and NLO(ny =5)/LO(ny = 5) (green).

clearly see that around the top quark pair production threshold, the full result shows a dip and
then changes slope, due to the Coulomb effect in the virtual amplitude and also the appearance of
additional imaginary parts above the threshold (see top left diagram of fig. 1).

In fig. 4 we show the my,~distribution in the threshold region which results from a combination
of our fixed order NLO (QCD) calculation with the resummation of Coulomb gluon exchanges. The
scale bands in this figure are produced by varying only u, the scale associated to the renormalisation
of the Green’s function. We observe that the dependence on the scale u is considerably reduced at
NLO compared to the leading-order matched cross-section. The scale band at NLO is comparable
to the size of our numerical uncertainties. Further, our leading-order matched cross-section shows
a milder dependence on u than the one presented in ref. [1]. This is due to the inclusion of NLO-
terms in the coefficient %, (), which was omitted in ref. [1]. We find that the “dip-bump” structure
advertised in ref. [1] remains present at NLO.

5. Conclusions

We have calculated diphoton production in gluon fusion at NLO in QCD (i.e. order ¢), in-
cluding top quark loop corrections. Matching our fixed order NLO result to a non-relativistic QCD
calculation with resummed Coulomb interactions, we obtain an accurate description of the dipho-
ton invariant mass spectrum around the top quark pair production threshold. In this matched result,
we observe a reduction of the renormalisation and factorisation scale uncertainties in the thresh-
old region, and an even more drastic reduction of the scale uncertainty related to the renormalised
NLO Green’s function. These results are promising in view of the possibility to measure the top
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Figure 4: Zoom into the threshold region of the diphoton invariant mass distribution, comparing
results with and without NRQCD. The shaded bands indicate the scale uncertainty by varying
the scale ( by a factor of 2 around the central scale u = 80 GeV. The renormalisation and the
factorisation scales are set to Hg = Ur = myy/2 and not varied in this plot. The bars indicate
uncertainties due to the numerical evaluation of the phase-space and loop integrals.

quark mass from the characteristic behaviour of the diphoton invariant mass spectrum around the
top quark pair production threshold at a future hadron collider.
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