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1. Introduction

Accurate wave form templates are crucial for any gravitational wave detection experiment.
Significant improvements will be needed in order to match the requirements of next-generation
experiments such as LISA or the Einstein telescope. The signals detected so far match the expecta-
tions for gravitational wave emission from mergers of two compact objects, such as black holes or
neutron stars. Templates for this scenario are constructed with the help of the effective one-body
formalism [1], which in turn relies on calculations from first principles describing the different
phases of the binary system’s evolution. Of particular importance is the inspiral phase, where the
compact objects are well separated and the relative velocity is small compared to the speed of light.

Indeed, for a sufficiently large distance the system is described well by Newtonian mechanics.
The average kinetic and gravitational energy are then related via the virial theorem, which predicts
the scaling

v∼
√

Gm
r
� 1 , (1.1)

where v is the characteristic velocity of a compact object, m its mass and r the distance between the
two objects. G denotes Newton’s constant. Corrections from general relativity can then be obtained
in a simultaneous expansion in the small velocity and coupling, the Post-Newtonian (PN) expansion.
The kPN order corresponds to a suppression by v2k.

All relevant parameters of the system are connected by the same small expansion parameter.
The system emits gravitational quadrupole waves, whose frequency is twice the orbital frequency
ω ∼ v

r . The wavelength λ is therefore of the order of r
v . On the other side of the spectrum, the

size of the compact objects is characterised by the Schwarzschild radius rs = 2Gm ∼ rv2. In the
following, we will assume point-like objects. Finite-size effects first contribute at 5PN order for
neutron stars, and at 6 PN order for black holes [2]. In the events detected at LIGO and VIRGO [3]
no evidence for non-zero spin has been observed so far and we will not discuss spin effects in the
remainder of this note.

For conservative dynamics, the Lagrangian and Hamiltonian of an inspiraling binary system
has been calculated to 4PN order in different formalisms [4–8]. First corrections at 5PN order have
been obtained in [9–12]. In the following we discuss the calculation of the static 5PN interaction
potential in a non-relativistic effective field theory [13].

2. Expansion of the general relativity action

Our starting point is the Einstein-Hilbert action in harmonic gauge in d = 3− 2ε spatial
dimensions and one time dimension, viz.

SEH +SGF =
1

16πG

∫
dd+1x

√−g
(

R− 1
2

ΓµΓµ

)
, (2.1)

where g is the determinant of the metric gµν , R the scalar curvature, and Γµ = gαβ Γµ

αβ
with

Christoffel symbols Γµ

αβ
. Our aim is to first perform a PN expansion of this action, which includes

an expansion around the flat metric η = diag(−1,1,1,1). In this sense, the compact objects induce
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non-perturbative short-distance fluctuations which can be absorbed into the point-particle action

Spp =−
2

∑
i=1

mi

∫
dτ =−

2

∑
i=1

mi

∫
dt

√
−gµν

∂xµ

i
∂ t

∂xν
i

∂ t
. (2.2)

This is akin to the operator product expansion in QCD, where non-perturbative field modes are
absorbed into local condensates. The resulting action is

SGR = SEH +SGF +Spp . (2.3)

To facilitate the PN expansion of this action we employ a temporal Kaluza-Klein decomposition of
the metric [14]:

gµν = e2φ

(
−1 A j

Ai e−2 d−1
d−2 φ (δi j +σi j)−AiA j

)
. (2.4)

The coupling of the point objects to the spatial vector field A and the tensor field σ are suppressed
by v1 and v2, respectively. This greatly simplifies the Feynman rules contributing at a given order in
the PN expansion.

3. Effective theory matching

In the next step, we match the expanded general relativity action of eq. (2.3) to the action
of a non-relativistic effective theory of gravity (NRGR). The derivation is similar to the one of
non-relativistic QCD (NRQCD) [15]. We distinguish between two relevant modes of the graviton
fields φ , A, and σ . Potential (or orbital) gravitons have wavelengths of the order of the orbital
separation r. In the matching to NRGR, they are integrated out and their effects are absorbed into
interaction potentials. The radiation modes (called ultrasoft in NRQCD) are associated with the
emitted gravitational waves with wavelengths of the order of r

v . They remain part of the effective
theory. In contrast to potential gravitons, radiation gravitons are parametrically on-shell. Both
modes have frequencies of the order of r

v .
At leading order, NRGR is just Newtonian mechanics with the action

SNRGR =
∫

dt
1
2

m1v2
1 +

1
2

m2v2
2 +

Gm1m2

r
+ . . . , (3.1)

where the ellipsis denotes higher-order PN corrections to the kinetic energy, the potential, and terms
including the radiation fields.

For the matching of the two theories, i.e. to determine the parameters of the effective theory,
we equate the amplitudes for the scattering of the two compact objects under the exchange of
a four-momentum q that is negligible compared to the object masses m1,m2. On the effective
theory side, the objects interact via the potential. In perturbative general relativity, the interaction is
transmitted by the gravitons φ ,A,σ in the potential region. The matching equation then reads

q −iV +
1
2!

+
1
3!

+ . . .

= φ + A + + + + · · · , (3.2)
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where the solid black lines illustrate the classical point object sources. Diagrams with closed graviton
loops correspond to quantum corrections. These are highly suppressed and can be safely neglected.

Adding unity and taking the logarithm on both sides of the matching equation (3.2) eliminates
all higher iterations of the potential insertion in the effective theory and the graviton exchange
diagrams that are reducible when cutting all source lines, for example the box and crossed-box
diagrams shown in (3.2). The reason for this is the following [16]. In position space, we label each
interaction vertex V with a time tV and integrate over all time variables. Initially, the vertices along a
given source line in each diagram are ordered in time. That is, a source line connecting two vertices
1 and 2 numbered from left to right corresponds to a step function Θ(t2− t1). These step functions
can be eliminated by adding up all diagrams obtained by permuting all vertices along each source
line. After removing all step functions any source-reducible diagrams factorises and cancels against
the product of lower-order diagrams when taking the logarithm.

As an example, let us consider the one-loop seagull diagram. Indicating the time ordering with
an arrow along the source line we can write

t1 t2

Θ(t2−t1)

=
1
2


t1 t2

Θ(t2−t1)

+
t1 t2

Θ(t1−t2)

=
1
2

. (3.3)

In the second step we have exploited the symmetry of the diagram under exchange of the vertices
on the lower source line. Applying the same procedure to the sum of a one-loop box and the
corresponding crossed-box diagram we obtain

+ = +

=
1
2

(
+ + +

)

=
1
2

=
1
2

( )2

.

(3.4)

The factorisation in the last step is evident in position space. The resulting product is cancelled
against the contribution from the square of the tree-level scalar exchange diagram upon taking the
logarithm.

In the following, we restrict ourselves to the static limit v1 = v2 = 0. In this case, the sources
only couple directly to the scalar φ . Vector gravitons A are then always produced in pairs and are
therefore always part of pure graviton loops. As mentioned before, pure graviton loops do not
contribute in the classical limit and the A field decouples completely from the theory.

4. Setup of the calculation

The diagrams contributing to the static gravitational potential can be calculated using standard
multi-loop tools and techniques. We employ QGRAF [17] to generate FORM [18, 19] code for the
diagrams. We eliminate diagrams that are irrelevant according to the criteria listed in Section 3.
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Since the only scale is given by the external momentum q the diagrams belong to the well-studied
class of massless propagators. At five-loop order, we identify 22 topologies, see [11].

In the next step, we perform the symmetrisation discussed in Section 3 and insert the momentum-
space Feynman rules obtained from the expanded general relativity action, cf. Section 2:

p = − i
2cd~p 2 , (4.1)

p

i1i2 j1 j2
= − i

2~p 2

(
δi1 j1δi2 j2 +δi1 j2δi2 j1 +(2− cd)δi1i2δ j1 j2

)
, (4.2)

mi

. . .
n

= − i
mi

mn
Pl
, (4.3)

p1

p2

i1i2 = i
cd

2mPl
(V i1i2

φφσ
+V i2i1

φφσ
) , (4.4)

V i1i2
φφσ

= ~p1 ·~p2δ
i1i2−2pi1

1 pi2
2 , (4.5)

p1

p2 i1i2

j1 j2

= i
cd

16m2
Pl
(V i1i2, j1 j2

φφσσ
+V i2i1, j1 j2

φφσσ
+V i1i2, j2 j1

φφσσ
+V i2i1, j2 j1

φφσσ
) , (4.6)

V i1i2, j1 j2
φφσσ

= ~p1 ·~p2(δ
i1i2δ

j1 j2−2δ
i1 j1δ

i2 j2)−2(pi1
1 pi2

2 δ
j1 j2 + p j1

1 p j2
2 δ

i1i2)+8δ
i1 j1 pi2

1 p j2
2 , (4.7)

i1i2
p1

j1 j2

p2

k1k2
=

i
32mPl

(Ṽ i1i2, j1 j2,k1k2
σσσ +Ṽ i2i1, j1 j2,k1k2

σσσ ) , (4.8)

Ṽ i1i2, j1 j2,k1k2
σσσ =V i1i2, j1 j2,k1k2

σσσ +V i1i2, j2 j1,k1k2
σσσ +V i1i2, j1 j2,k2k1

σσσ +V i1i2, j2 j1,k2k1
σσσ , (4.9)

V i1i2, j1 j2,k1k2
σσσ = (~p2

1 +~p1 ·~p2 +~p2
2)
(
−δ

j1 j2
(
2δ

i1k1δ
i2k2−δ

i1i2δ
k1k2
)

+2
[
δ

i1 j1
(
4δ

i2k1δ
j2k2−δ

i2 j2δ
k1k2
)
−δ

i1i2δ
j1k1δ

j2k2
])

+2
{

4
(

pk2
1 pi2

2 − pi2
1 pk2

2

)
δ

i1 j1δ
j2k1

+2
[(

pi1
1 + pi1

2

)
pi2

2 δ
j1k1δ

j2k2− pk1
1 pk2

2 δ
i1 j1δ

i2 j2
]

+δ
j1 j2
[
pk1

1 pk2
2 δ

i1i2 +2
(

pk2
1 pi2

2 − pi2
1 pk2

2

)
δ

i1k1−
(

pi1
1 + pi1

2

)
pi2

2 δ
k1k2
]

+ p j2
2

(
4pi2

1 δ
i1k1δ

j1k2 + p j1
1

(
2δ

i1k1δ
i2k2−δ

i1i2δ
k1k2
)

+2
[
δ

i1 j1
(

pi2
1 δ

k1k2−2pk2
1 δ

i2k1
)
− pk2

1 δ
i1i2δ

j1k1
])

+ p j2
1

(
p j1

1

(
2δ

i1k1δ
i2k2−δ

i1i2δ
k1k2
)
−4pi2

2 δ
i1k1δ

j1k2

+2
[
pk2

2 δ
i1i2δ

j1k1 +δ
i1 j1
(
2pk2

2 δ
i2k1− pi2

2 δ
k1k2
)])}

, (4.10)

with cd = 2 d−1
d−2 ,mPl = 1/

√
32πG. There is no propagator associated with the classical sources.

We perform an expansion around ε = 3−d
2 → 0 and exploit integration-by-parts identities [20] to

reduce the scalar integrals to a small set of master integrals. The reduction is based on Laporta’s
algorithm [21], implemented in our in-house code crusher [22]. We find that at five loops only
four out of eight master integrals contribute in the limit ε → 0. Similar to the findings of [10], we
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observe that all of them factorise into lower-order integrals. Defining L−loop master integrals with
propagator momenta ~p1, . . . ,~pP as

MP =
∫ ( L

∏
i=1

dd li
πd/2

)
1

~p2
1 . . .~p

2
P
, (4.11)

we obtain

=
Γ
(
6− 5d

2

)
Γ6
(
−1+ d

2

)
Γ(−6+3d)

, (4.12)

=
Γ
(
7− 5d

2

)
Γ(3−d)Γ

(
2− d

2

)
Γ7
(
−1+ d

2

)
Γ(5−2d)

Γ
(
5− 3

2 d
)

Γ(−2+d)Γ
(
−3+ 3

2 d
)

Γ(−7+3d)
, (4.13)

=
Γ
(
7− 5d

2

)
Γ2(3−d)Γ7

(
−1+ d

2

)
Γ
(
−6+ 5d

2

)
Γ(6−2d)Γ2

(
−3+ 3d

2

)
Γ(−7+3d)

, (4.14)

= 6π
7/2S5

ε

[
2
ε
−4(1− ln(2))−

(
48+8ln(2)−4ln2(2)−105ζ2

)
ε +

(
480−96ln(2)

−8ln2(2)+
8
3

ln3(2)−530ζ2 +402ln(2)ζ2−
1522

3
ζ3

)
ε

2

]
+O(ε3) , (4.15)

where Sε = exp(−γEε). The first three diagrams can be decomposed into products of one-loop
integrals

a

b

q
=

1
(q2)a+b−d/2

Γ
(d

2 −a
)

Γ
(d

2 −b
)

Γ
(
a+b− d

2

)
Γ(a)Γ(b)Γ(d−a−b)

, (4.16)

whereas the last master integral also contains a factor of

= 2π
2S4

ε

[
1
ε2 +

2
ε
−2(16−ζ2)+16

[
9−6ζ2

(
13
8
− ln(2)

)
− 77

6
ζ3

]]
ε +O(ε2) ,

(4.17)
which was calculated in [23, 24].

Up to four loops, our results for the potential agree with the previous calculations in the effective
field theory framework [6, 13, 25, 26]. At five loops we obtain

V S
5PN =

G6

r6 m1m2

[
5
16

(m5
1 +m5

2)+
91
6

m1m2(m3
1 +m3

2)+
653
6

m2
1m2

2(m1 +m2)

]
, (4.18)

in agreement with a concurrent independent calculation [10].
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