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Quark and gluon jet functions at three loops in QCD
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We present the first result on the three-loop parton (quark/gluon) jet function in perturbative quan-
tum chromodynamics using already known three-loop coefficient functions for deep-inelastic
scattering via the exchange of a virtual photon that couples to quarks or a scalar that couples
to gluons. While the gluon jet function is a brand new result emerging from this article, the result
for the quark jet function provides an independent check to a more recent calculation. These jet
functions being universal ingredients in the Soft-collinear effective theory framework, will play
an important role in the phenomenological studies at the Large Hadron Collider, such as resum-
mation of jet observables and also in N-jettiness subtraction method.
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1. Introduction

In this precision era of the standard model (SM) of particle physics, it is important to accu-
rately measure various observables and compare them with the precise theoretical predictions that
uses state-of-the-art modern techniques. In addition such studies are of paramount importance to
understand the SM background to constrain any physics beyond the SM. In particular, processes
such as production of lepton pairs, vector bosons and multi-jets at the Large Hadron Collider (LHC)
play an important role in these studies. In addition, understanding of the jets will shed light on the
underlying structure of quantum chromodynamics (QCD).

The hadronic cross sections in the processes such as the lepton-nucleon deep-inelastic scatter-
ing (DIS) or in the Drell-Yan processes factorize into hard and soft plus virtual (SV) parts. The hard
part is associated with the physics of large momentum transfer Q; the soft part of the SV cross sec-
tion describes the interactions associated with emission of soft and collinear partons. Soft-collinear
effective theory (SCET) [1, 2, 3, 4, 5, 6] captures the physics of soft and collinear dynamics of these
processes at high energies through the soft and jet functions. The jet functions explain the propaga-
tion of collinear partons inside jets and the soft functions mediate low-energy interaction between
jets. In SCET, the quark and gluon soft as well as jet functions have been computed to higher
orders in perturbation theory. The quark and the gluon soft functions are already known to the
three-loop level; see [7] and references therein. For the quark jet function, results were known up
to the two-loop level for some time (see [8, 9, 10]), and the results at three loops were computed
recently in [11]. On the other hand, only one- [12] and two-loop [13] results are known for the
gluon jet function.

Our goal in this article is to demonstrate an intriguing connection between jet functions in
SCET and coefficient functions of DIS cross sections computed in perturbative QCD. We exploit
this novel connection to obtain quark and gluon jet functions up to three-loop level using the known
state-of-the-art three-loop coefficient functions in the context of DIS [14, 15]. To achieve this, we
exploit the Sudakov (KG) equation that the virtual part (form factor) of the cross section satisfy,
renormalization group invariance, factorization theorem and use various three-loop results. We
use the framework developed in [16, 17, 18, 19, 20] which describes resummation of soft gluons
to all orders in QCD perturbation theory. In [17], it was shown that DIS cross section in the
threshold limit factorizes into the square of ultraviolet (UV) renormalized form factor, soft plus
jet (SJ) function and the mass factorization kernels. The SJ function has a universal structure
and it depends only on the nature of external states namely quark or gluon states. In addition, it
satisfies KG type differential equation similar to the form factors. Factorization properties of the
cross section and renormalization group invariance can be used to unravel the structure of these
SJ functions to all orders in perturbation theory. Upon identifying the finite part of the square of
the form factor with the hard matching coefficient in the SCET framework, the finite part of SJ
function can be shown to coincide with the corresponding jet function. The latter identification is
simply due to the process-independent nature of both the SJ function and the jet function. We first
demonstrate that the quark jet function known up to the three-loop level agrees with the finite part
of quark SJ function obtained from the coefficient function [14] and proceed in the similar way to
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obtain the corresponding gluon jet function from [15].

2. Theoretical framework and details of the calculation

The inclusive cross section for the scattering of a lepton with a hadron in the DIS is given by

σ
I(x,Q2) = σ

I
B(µ

2
R) ∑

a=q,q,g

∫ 1

x

dz
z

fa

(
x
z
,µ2

F

)
∆

I
a(as,z,Q2,µ2

R,µ
2
F). (2.1)

The scaling variables at the hadronic and partonic level are given by x = −q2

2P.q , z = −q2

2p.q respectively.
P, p and q are the momenta of the hadron, fraction of the parent hadron momentum and the interme-
diate off-shell particle respectively. For DIS we have Q2 =−q2. The parton distribution function is
given by fa

(
x,µ2

F
)

with the momentum fraction x of the hadron at the factorization scale µF . The
particle probing the structure of the hadron can be a photon (I = q) or the scalar particle (I = g). The
perturbatively computed UV and infrared (IR) finite part of the partonic cross section, called the co-
efficient function, is given by ∆I

a(as,z,Q2,µ2
R,µ

2
F), where µR denotes the UV renormalization scale.

The Born contribution σ I
B is chosen in such a way that ∆I

a to lowest order in perturbation theory
is equal to δ (1− z). The UV renormalized strong coupling constant is as = g2

s (µ
2
R)/16π2 is writ-

ten in terms of bare coupling constant âs = ĝ2
s/16π2 as âs(µ

2)Sε = as(µ
2
R)(µ

2/µ2
R)

ε/2Z(as(µ
2
R)).

The scale µ keeps ĝs dimensionless in n = 4+ ε space-time dimensions. Sε is the spherical factor
defined as Sε = exp

[
(γE − ln4π) ε

2

]
, where γE is the Euler-Mascheroni constant. Z(as(µ

2
R)) is the

renormalization term for the coupling constant.

The infrared safe coefficient functions ∆I
a get contributions from both soft gluons as well as

from hard partons. We write them as sum of contributions from SV and the remaining hard part:

∆
I
a(as,z,Q2,µ2

F ,µ
2
R) = ∆

I,SV(as,z,Q2,µ2
F ,µ

2
R)+∆

I,hard
a (as,z,Q2,µ2

F ,µ
2
R). (2.2)

The SV part of the cross section consists only of plus distributions Di(z) =
[

lni(1−z)
1−z

]
+

and δ (1−z).

In the soft limit z→ 1 these distributions give dominant contributions to the hadronic cross section
after they are convolved with the parton distribution functions as expressed through (2.1). As
discussed in [16] the SV part of the coefficient function can be shown to factorize in terms of the
square of the UV renormalized virtual contributions, SJ function appropriately convoluted with
mass factorization kernels as

∆
I,SV(z,Q2) = (ZI(âs,µ

2
R,µ

2,ε))2∣∣F̂ I(âs,Q2,µ2,ε)
∣∣2δ (1− z)⊗C e2ΦI

SJ(âs,Q2,µ2,z,ε)

⊗Γ
−1
II (âs,µ

2,µ2
F ,z,ε) . (2.3)

The symbol C denotes convolution operation and ⊗ indicates the Mellin convolution, which con-
volutes with respect to the variable z. As we are interested in evaluating the SV part of the cross
sections, we neglect all the regular functions that come from different convolutions. In (2.3), the
overall renormalization constant, ZI(âs,µ

2
R,µ

2,ε), for I = g can be obtained from that of Higgs-
gluon effective operator and the exact form can be written in term of the anomalous dimension
γg, known to the three-loop level [21]. For I = q, one finds Zq(âs,µ

2
R,µ

2,ε) = 1 to all orders due
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to vector current conservation of the respective interaction vertex. ΓII(âs,µ
2,µ2

F ,z,ε) is the mass
factorization kernel, known fully up to the three-loop level [22, 23] and in the large n f limit at
the four-loop level [24]. The quantity F̂ I(âs,Q2,µ2,ε) is the bare form factor which satisfies the
KG equation, where the latter is a consequence of factorization, gauge and renormalization group
invariances [25, 26, 27, 28]. Its general solution up to four loops can be found in [29, 16] in terms
of the universal three-loop cusp (AI) [22, 23, 30, 31, 32], collinear (BI) [22, 23], soft ( f I) [33, 23]
anomalous dimensions known to three-loop level and some form factor dependent constants. The
quantity ΦI

SJ(âs,Q2,µ2,z,ε) in (2.3) is the SJ function which contains singular as well as finite
parts due to soft gluons and collinear parton emissions. In [16, 17], it was shown that by demand-
ing finiteness of ∆I,SV, ΦI

SJ(âs,Q2,µ2,z,ε) can also be shown to satisfy a Sudakov-type differential
equation and the solution is found to be

Φ
I
SJ =

∞

∑
i=1

âi
sS

i
ε

(
Q2(1− z)

µ2

)i ε

2 iε
2(1− z)

φ̂
I,(i)
SJ (ε) , (2.4)

with
φ̂

I,(i)
SJ (ε) =

1
iε

(
K̄I,(i)(ε)+ ḠI,(i)

SJ (ε)
)
. (2.5)

Expressing K̄I = ∑
∞
i=1 âi

s
(
µ2

R/µ2
)i ε

2 Si
ε K̄I,(i), the coefficients K̄I,(i)(ε) can be written in terms of AI

i ,

beta function of QCD, βi [34] and ḠI,(i)
SJ (ε) given by

∞

∑
i=1

âi
s

(
Q2

z

µ2

)i ε

2

Si
εḠI,(i)

SJ (ε) =
∞

∑
i=1

ai
s(Q

2
z )Ḡ

I
i,SJ(ε) , (2.6)

with Q2
z = Q2(1− z), can be expressed in terms of the BI−, f I− and ε-dependent part in the fol-

lowing way: Ḡ I
i,SJ = −(BI

i + f I
i )+CI

i +∑
∞
k=1 εkḠ I,k

i,SJ, where the constants CI
i depend on the lower

order coefficients. The z-independent constants Ḡ I,k
i,SJ are determined from the explicit computation

of the SV coefficient functions ∆I,SV(z,Q2).

Computation of the coefficient functions ∆I
a in perturbative QCD plays an important role in un-

derstanding the structure of hadrons. In the DIS process, the cross section factorizes into hadronic
and the leptonic parts and the former can be computed by using operator product expansion in the
Björken limit. Using various symmetries, the hadronic part can be expressed in terms of the struc-
ture functions F1(x,Q2) and F2(x,Q2). These functions factorize into calculable coefficient func-
tions ci(x,Q2,µ2

F), i = 1,2 and non-perturbative parton distribution functions fa(x,µ2
F), a = q, q̄,g.

Applying the optical theorem, one relates the DIS cross section to the imaginary part of the for-
ward scattering amplitude, where a virtual photon scatters off a nucleon. This forward scattering
amplitude can be written in terms of coefficient functions ci, where the latter can be computed by
expanding in a perturbative series of the strong coupling constant. Computation of the higher-order
coefficient functions [35, 36, 37, 38, 39] along with the higher order splitting functions [22, 23]
and the precise measurements at DIS experiments were used to extract F1 and F2 accurately. Using
the non-singlet part of the quark coefficient function c2,q computed up to three loops [14] and c3

φ ,g
computed using the off-shell scalar DIS process in [15], we can extract ∆q,SV and ∆g,SV, respec-
tively, up to three-loops. Using these results and the known three-loop results for A,B, f and the
form factor dependent constants, we can determine Ḡ I,k

i,SJ to desired accuracy in ε .
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3. Results

At the hadron colliders, the jets of quarks and gluons [40, 41, 42] capture the properties of
QCD and provide insight into the IR structure of QCD processes. SCET provides a suitable plat-
form to study the scattering or decay processes involving jet final states with small invariant masses.
The corresponding observables can be factorized in terms of certain process-dependent functions
such as hard functions and process-independent soft and jet functions. If we apply SCET formal-
ism to the DIS process for the cases with I = q,g, we can identify the UV and IR finite parts of the
form factor and SJ function with the process-dependent matching coefficient and the jet function of
SCET, respectively. Note that only one massless parton initiates the hard process in each case, (for
I = q, quark/antiquark scatters of the virtual photon in the hard process and for I = g, gluon scatters
of off-shell scalar), there will be only one jet function in each case and hence it is straightforward
to identify it with the finite part of SJ function.

The SJ function ΦI
SJ can be factorized into part containing IR poles in ε and a part containing

the finite terms in the limit ε → 0, that is

C e2ΦI
SJ = Z I ⊗C e2Φ

I,fin
SJ , (3.1)

where Z I contains only IR poles in ε and can be expanded as

Z I = δ (1− z)+
n

∑
i=1

2 i

∑
j=1

ai
s
Z I

i j

ε j . (3.2)

The coefficients Z I
i j expressed in terms of AI , BI, f I , δ (1−z) and Di(z) can be found in the original

article [43]. The general expression for the jet function C e2Φ
I,fin
SJ = δ (1−z)+∑

∞
i=1 ai

sJ
I
i

∣∣
k up to three

loops where JI
i

∣∣
k represent the coefficients of D j(z),δ for j ≤ (2i− 1) can also be found in [43].

Throughout our computation, we have set µ2
R = µ2

F = Q2. The renormalization group equation
satisfied by the jet function is given by

µ
2
R

d
dµ2

R
JI = Γ

I
J⊗ JI , (3.3)

where ΓI
J =

{
BI + f I−AI ln

(
Q2/µ2

R
)}

δ (1− z)− AID0. We can get the logarithmic-dependent
parts as well as the coefficients of D j(z) of JI in terms of lower order coefficients through the
above renormalization group equation in (3.3). Finally, we present the coefficients of the δ (1− z)

4
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parts of both quark and gluon jet functions at three-loops:

Jq
3 |δ = C3

F

(
274ζ3 +

22
3

π
2
ζ3−

400
3

ζ
2
3 −88ζ5 +

1173
8
− 3505

72
π

2 +
622
45

π
4− 9871

8505
π

6
)

+ C2
FCA

(
− 28241

27
ζ3 +

2200
27

π
2
ζ3 +

424
3

ζ
2
3 +

560
9

ζ5 +
206197

324
− 17585

72
π

2 +
18703
1215

π
4

+
18703
1215

π
4 +

1547
4860

π
6
)
+C2

Fn f

(
11216

81
ζ3−

136
27

π
2
ζ3 +

80
3

ζ5−
261587

972
+

4853
108

π
2

− 2938
1215

π
4
)
+CFC2

A

(
− 187951

243
ζ3 +

394
9

π
2
ζ3 +

1528
9

ζ
2
3 −

380
9

ζ5 +
50602039

52488

− 464665
4374

π
2 +

1009
1620

π
4 +

221
5103

π
6
)
+CFCAn f

(
7414
81

ζ3−
32
9

π
2
ζ3 +

16
3

ζ5−
2942843
13122

+
68324
2187

π
2− 209

405
π

4
)
+CFn2

f

(
376
243

ζ3 +
124903
13122

− 466
243

π
2 +

2
45

π
4
)
, (3.4)

Jg
3 |δ = C3

A

(
− 452770

243
ζ3 +

1364
9

π
2
ζ3 +

1600
9

ζ
2
3 −44ζ5 +

55853711
26244

− 2055109
4374

π
2

+
53633
1620

π
4− 16309

20412
π

6
)
+C2

An f

(
2734

9
ζ3−

88
9

π
2
ζ3 +

208
9

ζ5−
17323633

26244

+
330062
2187

π
2− 18727

2430
π

4
)
+CAn2

f

(
− 1004

243
ζ3 +

1613639
26244

− 3656
243

π
2 +

506
1215

π
4
)

+ CACFn f

(
21200

81
ζ3−

160
9

π
2
ζ3 +

584
9

ζ5−
389369

972
+

712
27

π
2 +

76
405

π
4
)

+ C2
Fn f

(
148
3

ζ3−80ζ5 +
143

9

)
+CFn2

f

(
− 104

3
ζ3 +

7001
162
− 10

9
π

2
)

+ n3
f

(
− 1000

729
+

40
81

π
2
)
. (3.5)

Our result for the quark jet function (3.4) provides an independent check on the more recent cal-
culation completed using SCET framework [11] and the result for the gluon jet function (3.5) is a
new result originating from our work.

4. Conclusion

In this article, we have shown how one of the building blocks of SCET, namely, the jet function
can be related to the well-known coefficient function of the DIS cross section. This novel connec-
tion provides an alternate and elegant way to obtain both quark and gluon jet functions order by
order in pQCD from the known coefficient functions. While we confirm the three-loop quark jet
function reported recently in [11], the three-loop gluon jet function presented in the article is a new
result. The important ingredient to obtain these results is the parton coefficient functions [14, 15]
of DIS process up to the three-loop level in QCD. We have used the factorization properties of
scattering cross section and exploited universal structure of soft and collinear dynamics to relate
soft plus jet function of DIS against the jet function in SCET. The three-loop quark and gluon jet
functions are the important ingredients to the N-jettiness IR subtraction method [44, 45] at N3LO
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and to threshold resummation up to N3LL′ in the SCET framework to study processes involving
final state jets. Thanks to the wealth of precise predictions in perturbative QCD for various im-
portant observables, one can unfold the underlying universal infrared structure QCD amplitudes
and determine process-independent building blocks that capture infrared dynamics of high-energy
scattering processes.
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