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1. Introduction

The Drell-Yan (DY) production of a pair of high transverse momentum leptons through the de-
cay of a produced electrically neutral gauge boson (γ∗/Z) at hadron colliders, is one of the most
important processes for our understanding of Quantum Chromodynamics (QCD). Due to its clean
signature and abundant production at the hadron colliders, it is used for the setting of several high-
precision measurements of the electroweak (EW) sector of the Standard Model (SM), for instance,
a precise measurement of the weak mixing angle and of the properties of the Z boson. Because of
its high importance, precise theoretical prediction for the Z boson DY production has always gained
much attention. Following the pioneering calculations of the next-to-leading order (NLO) [1] and
next-to-next-to-leading order (NNLO) [2] QCD corrections to the total inclusive cross section, the
fully differential description of the leptonic final state has been obtained in Refs. [3, 4, 5, 6]. Fi-
nally, the next-to-next-to-next-to-leading order (N3LO) QCD corrections have been presented in the
threshold limit, for both the total inclusive cross section [7, 8, 9] and rapidity distribution [10, 11].
While the QCD corrections have reached high precision, the NLO EW corrections, as shown in
Refs. [12, 13, 14, 15], contribute at the O(1%) level as far as the total cross section is concerned
and are comparable to that of the NNLO QCD contributions. Additionally in specific phase-space
regions, kinematic distributions may be boosted, yielding corrections at the O(10%) level or more.
Since control over the kinematic distributions in some cases is required at the per mille level for the
high-precision determination of EW parameters (cf. Refs. [16, 17, 18] for specific cases), the com-
putation of the mixed QCD-EW corrections is quite demanding, for both the study of the gauge
boson resonances and of the high mass/momentum tails of the kinematic distributions [19, 20].
First steps have been taken by obtaining analytic expressions in Refs. [21, 22, 23, 24, 25]. They
are then compared with the approximations available via Monte Carlo simulation tools [26, 27]. In
these tools, the bulk of the leading effects, separately due to QCD and QED corrections, can be cor-
rectly evaluated for several observables, however, the remaining sub-leading QED effects and the
genuine QCD-weak corrections are still missing, Additionally, the matching of factorizable QCD
and EW contributions depends on the chosen recipes and hence introduces ambiguities to the esti-
mation of theoretical uncertainties, which must be addressed. For these reasons the evaluation of
the complete O(ααs) corrections to the DY processes is very much desirable. In Refs. [28, 29, 30]
the mixed QCD-QED corrections to the total inclusive cross section and transverse momentum
spectrum of an on-shell Z boson have been obtained. On another note, the Master Integrals (MIs)
required to compute the complete QCD-EW mixed corrections to DY process has been presented
in Refs. [31, 32].

In this proceeding, we discuss the results, presented in Ref. [33], for the total inclusive cross
section of production of an on-shell Z boson in the quark-antiquark partonic channel, including the
complete set of QCD-EW corrections of O(ααs).

2. Theoretical framework

The total inclusive production cross section σtot of a Z boson at hadron colliders (pp→ Z+X) can
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be written as

σtot(τ) = ∑
i, j∈q,q̄,g,γ

∫
dx1dx2 f̂i(x1) f̂ j(x2)σ̂i j(z) , (2.1)

where z = m2
Z

ŝ and τ =
m2

Z
S are the ratio of the squared Z boson mass, mZ , with ŝ and S, the partonic

and hadronic center of mass energy squared, respectively. ŝ and S are related by ŝ = x1x2S through
the Bjorken momentum fractions x1,x2. f̂i(x) is the bare parton density of the i-th incoming parton
and σ̂i j is the bare cross section of the partonic process i j→ Z +X . The sum over i, j includes
quarks (q), antiquarks (q̄), gluons (g) and photons (γ). In the SM, we have the following double
expansion of the partonic cross section in the electromagnetic and strong coupling constants, α and
αs, respectively:

σ̂i j(z) =
∞

∑
m,n=0

α
m
s α

n
σ̂
(m,n)
i j (z) , (2.2)

where σ̂
(m,n)
i j is the correction of O(αm

s αn) to the lowest-order inclusive total cross section σ̂
(0,0)
i j

of the partonic scattering i j→ Z. We consider the qq̄ initiated scattering, specifically the case of
an up-type quark: qq̄ = uū. The following scattering processes contribute to the complete set of
O(ααs) corrections to σ̂uū:

uū→ Z , (2.3)

uū→ Zg , (2.4)

uū→ Zγ , (2.5)

uū→ Zgγ , (2.6)

uū→ Zuū , (2.7)

uū→ Zdd̄ , (2.8)

where d is a down-type massless quark. Results for the process (2.6) and QCD-QED contributions
to process (2.3) have been presented in Ref. [34] and Ref. [21, 35], respectively. The corresponding
results for dd̄ initiated subprocesses can be obtained from our results with proper replacements of
the electric charge (Q f ) and the third component of the weak isospin (I(3)f ), for a fermion f .

The process (2.3) receives contributions (as shown in Fig. 1) from two-loop 2→ 1 Feynman
diagrams interfered with the Born process (the double-virtual contributions), and interference of
one-loop 2→ 1 Feynman diagrams (the virtual-virtual contributions).

× ×

Figure 1: Schematic diagrams for double-virtual and virtual-virtual contributions.

The processes (2.4)–(2.5) receive contributions from one-loop 2→ 2 Feynman diagrams that
have to be interfered with the corresponding tree-level (as schematically presented in Fig. 2). We
refer them as the real-virtual contributions.
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×

×
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×

Figure 2: Schematic diagrams for the real-virtual contribution.

The last three processes, (2.6)–(2.8), receive contributions from tree-level 2→ 3 Feynman
diagrams interfered with themselves (the double-real contributions as shown in Fig. 3).

×
×
×

×

×
×

×
×
×

Figure 3: Schematic diagrams for the double-real contributions

The complete O(ααs) corrections can be organized in two subsets, both gauge invariant:
QCD-QED and QCD-weak contributions. Processes (2.3)–(2.7) contribute to the former, and pro-
cesses (2.3), (2.4), (2.7) and (2.8) to the latter. On the other hand, depending on the presence of
one real or virtual photon, of one virtual Z boson, or of one/two virtual W bosons, we can organize
the full corrections in three groups. We note that the last two groups are separately gauge invari-
ant. Furthermore, we do not include the processes with the emission of one extra massive on-shell
gauge boson, as their measurement depends on the details of the experimental event selection.

3. Computational details

We follow the diagrammatic approach to obtain all the relevant contributions. We treat all
the processes, virtual and real emission contributions, with the same algorithmic approach. Two
independent parallel computations have been performed to have consistent check on our results. In
one process, we obtain all the Feynman diagrams contributing to a given amplitude with QGRAF
[36] and in another we use FeynArts [37]. Next, we perform algebraic simplifications using
in-house FORM [38] and Mathematica routines. The scalar Feynman integrals are reduced to
MIs using integration-by-parts (IBP) [39, 40, 41] and Lorentz-invariance (LI) identities [42]. The
reduction procedure is performed using LiteRed [43, 44] in the first procedure and using Kira
[45] and Reduze 2 [46, 47] in the second. The entire computation is carried out within dimen-
sional regularization in D = 4−2ε space-time dimensions. Then, we use the method of differential
equations [48, 49, 42, 50, 51, 52, 53] to obtain the MIs, for both the pure virtual and real emission
corrections. In the latter case, the phase-space delta functions are dealt using the reverse unitarity
technique [54, 55], as follows

δ (p2−m2)→ 1
2πi

(
1

p2−m2 + iη
− 1

p2−m2− iη

)
. (3.1)

Thus we transform the integration over the full phase space of the additional parton/s for processes
(2.4)–(2.8), into the evaluation of the two-loop integrals with cut propagators. Apart from imposing
an on-shell condition on the lines that correspond to the final-state particles, the integrals behave as

3



P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
4
0

NNLO mixed EW-QCD corrections to single vector boson production Narayan Rana

loop integrals and hence one can use the techniques like IBP and method of differential equations
to solve them. Below, we present a short description of the method (See [53, 56, 57] for details).

The MIs are functions of the space–time dimension D and the variable z. The basic idea is to
obtain a set of differential equations of the MIs by performing differentiation w.r.t z and then to use
the IBP identities. In all the cases in hand, we obtain a system of differential equations which can
be organized in a block-triangular form, with most of the blocks being 1×1 and the rest being 2×2.
For the coupled sub-systems, we obtain a second order linear differential equation by uncoupling
and solve them using the method of variation of constant. The solution for each integral is obtained
in series expansion in ε up to required order. In calculating the MIs, the package HarmonicSums
[58, 59, 60] has been used.

The pure virtual MIs are presented in [61, 62, 63, 64, 65, 66], considering an off-shell Z
boson. In case of a single internal massive line, the solutions for these integrals contain generalised
harmonic polylogarithms (GPLs) or harmonic polylogarithms (HPLs) [67, 68, 69, 70] over the
alphabet {1

z
,

1
1− z

,
1

1+ z

}
. (3.2)

In case of two internal massive lines, square-root letters appear. To rationalize them, we introduce
the Landau variable x as

ŝ
m2

Z
=−(1− x)2

x
. (3.3)

and the new letters contributing to the alphabet are{ 1
1− x+ x2 ,

x
1− x+ x2

}
, (3.4)

which are the cyclotomic extension [71] of the HPLs. Since in our case the Z boson is on-shell,
we have obtained these integrals taking the appropriate on-shell limit, i.e. evaluating the GPLs or
HPLs at z = 1 or equivalent limit of x. All the constants appearing, can be reduced to the basis
introduced in Ref. [72]. The off-shell integrals and most of their on-shell limit have been checked
using FIESTA [73, 74, 75].

The two- and three-body phase-space MIs with only gluon or photon lines are already available
in the literature [55]. To validate our routines developed for the present calculation, however,
we have recomputed them and found complete agreement with the known expressions. We have
computed all the new MIs, with one or two internal massive lines. During the computation, we
need to introduce several other variables e.g. w and ρ as

z =
w

(1+w)2 ; z =
ρ

1−ρ +ρ2 (3.5)

to obtain a rationalized alphabet with addition of the following letters{ 1
1+ x+ x2 ,

x
1+ x+ x2 ,

1
1+ x2 ,

x
1+ x2

}
. (3.6)

The boundary conditions are obtained by explicitly calculating the MIs in the soft limit (z→ 1).
After the phase-space integration, the various contributions to partonic total cross section de-

pends solely on the variable z. The virtual contributions are proportional to δ (1− z). The part that
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corresponds to processes (2.4)–(2.8) is expressed almost entirely in terms of δ (1− z) and of GPLs,
or cyclotomic HPLs [71], functions of z. Three MIs appearing in processes (2.7) and (2.8) satisfy
elliptic differential equations, whose homogeneous behaviour has already been studied in Ref. [64].
We have obtained their complete solution with a series expansion around z = 1 (see for instance
[76, 64, 77, 78, 79, 80, 81]). In the computation of the MIs, the mass of the W boson is set equal to
mZ , the mass of Z boson, to avoid the presence of an additional energy scale in the problem, which
would make the analytical solution of the differential equations in terms of known functions more
complicated. However, to obtain precise result, we can perform an expansion of the integrand in
powers of the ratio δ 2

m = (m2
Z −m2

W )/m2
Z , and reduce all the terms of the series to a combination

of the same basic equal-mass MIs. We note that the couplings of the Z boson to fermions are
expressed in terms of the physical value of the weak mixing angle sin2

θW = 1−m2
W/m2

Z .

4. Ultraviolet and infrared singularities

In general, we require the renormalization of the couplings and the fields up to O(ααs). How-
ever, the Born process does not contain αs, hence no ultraviolet (UV) renormalization is required
for the same. The Z boson field and the EW couplings also do not receive O(αs) renormaliza-
tion corrections. On the other hand, the quark field receives EW (O(α)) and mixed QCD-EW
(O(ααs)) renormalization corrections which we consider in the on-shell scheme. To simplify the
UV singularities arising from the EW sector, we perform the calculation in the EW background
field gauge (BFG) [82]. The advantage of using BFG is that, on the one hand, the combination of
one-particle-irreducible vertex and external quark wave function corrections are UV finite, and on
the other, the external Z boson wave function and the lowest-order coupling renormalization cor-
rections, whose combination, order-by-order in perturbation theory, is also UV finite. We remark
that, in general notion, the EW gauge sector of the SM Lagrangian depends on three parameters
(g,g′,v), the two gauge couplings and the Higgs-doublet vacuum expectation value. However, we
choose to use the combination of (Gµ ,mW ,mZ), respectively the Fermi constant, the W and Z bo-
son masses, after introducing counterterms and renormalized parameters. See Ref. [83] for the
description of the additional counterterms appearing for such replacement. An alternative scheme
with the effective leptonic weak mixing angle as input parameter has been discussed in Ref. [84].

The infrared (IR) singularities arising in this scenario are of two types by nature: one is called
soft singularity due to a soft massless boson and the other is collinear singularity coming from
collinear partons. As the O(ααs) corrections are organized in two gauge invariant subsets: QCD-
QED and QCD-weak contributions, we study the IR singularities for each subset. For both the
subsets, once all the degenerate states are summed up, i.e. the processes (2.3)–(2.8), the soft and
final-state collinear singularities cancel. What remains are the collinear singularities arising from
initial states, which are removed by mass factorization. For the QCD-QED subset, a new type
of mass factorization kernel Γi j with mixed non-factorizing contributions, appears [85]. However
initial state collinear singularities in the QCD-weak case are of QCD origin only. The mass factor-
ization introduces the physical parton densities fi(x,µF), at the factorization scale µF , which are
defined through the mass factorization kernel Γi j as follows

f̂i = f j⊗Γi j . (4.1)
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The kernel admits series expansion in α and αs. Finally, using Eq. (4.1) in Eq. (2.1), we obtain the
total cross section expressed in terms of subtracted, finite, partonic cross sections σi j(z,µF):

σtot(z) = ∑
i, j∈q,q̄,g,γ

∫
dx1dx2 fi(x1,µF) f j(x2,µF)σi j(z,µF) . (4.2)

The σi j also admits a perturbative expansion in powers of α and αs, in analogy to Eq. (2.2).

5. Results

We obtain the results for σ
(1,1)
uū . As mentioned earlier, σ

(1,1)
uū depends on z through δ (1− z)

and GPLs [67, 68, 69, 70] or cyclotomic HPLs [71]. Additionally, the contributions from elliptic
integrals appear as series expansion around threshold i.e. z→ 1. With the δ (1− z) contribution,
apart from the multiple zeta values [86], the following constants appear

{ln2,Li4(1/2),GI[r2],GI[0,r2],GI[0,1,r4]} , (5.1)

where ri are the sixth root of unity defined as

r1 = eiπ/3 , r2 = e−iπ/3 , r3 = e2iπ/3 , r4 = e−2iπ/3 . (5.2)

Additionally, the computation of the boundary constants of the differential equations for the double-
real emissions, generates the following cyclotomic constants [71, 87]

H[{4,1},0,−1,(−1)2/3], H[{4,1},0,0,(−1)2/3], H[{4,1},{3,0},−1,(−1)2/3],

H[{4,1},{3,1},−1,(−1)2/3], H[{4,1},{3,0},0,(−1)2/3], H[{4,1},{3,1},0,(−1)2/3] . (5.3)

Here, the letters of cyclotomy 3 and 4 are

f{3,0}(x) =
1

1+ x+ x2 , f{3,1}(x) =
x

1+ x+ x2 , f{4,0}(x) =
1

1+ x2 , f{4,1}(x) =
x

1+ x2 . (5.4)

In order to anticipate the relative size of the different sets of corrections, we define:

αsασ
(1,1)
uū =σ

(0)
uū

(
∆
(1,1)
uū,γ +∆

(1,1)
uū,Z +∆

(1,1)
uū,W

)
(5.5)

where σ
(0,0)
uū ≡ σ

(0)
uū δ (1− z) = 4

√
2Gµ(π/Nc)(C2

v,u +C2
a,u)δ (1− z) is the Born cross section. Nc

is the number of colours and Cv/a,u are the vector/axial-vector couplings of the Z boson to the

up quark. ∆
(1,1)
uū,K with K = γ,Z,W are the corrections due to the exchange of a photon, a Z bo-

son, and of one or two W boson/s including the lowest order charge renormalization counterterms,
respectively. We introduce the NLO-QCD correction to the same partonic process, defined as
αsσ

(1,0)
uū = σ

(0)
uū ∆

(1,0)
uū , to have a comparison. In Figure 4 we present the contributions of the differ-

ent subsets, ∆
(1,1)
uū,K with K = γ,Z,W , and their sum. We also present ∆

(1,0)
uū , divided by a factor 10.

We exclude from the plot all the contributions proportional to δ (1− z). For the numerics, we use
the following input parameters:

mW = 80.385 GeV mZ = 91.1876 GeV
mt = 173.5 GeV mH = 125 GeV
Gµ = 1.1663781×10−5 GeV−2 αs(mZ) = 0.118

mt and mH are the top quark and Higgs boson mass, respectively. We set the factorisation scale
µF = mZ .
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Figure 4: ∆
(1,0)
uū in grey dashed, ∆

(1,1)
uū,K with K = γ,Z,W in blue, red, and magenta, respectively, and

their sum in black solid, as a function of the partonic variable z. ∆
(1,0)
uū is divided by a factor 10.

6. Conclusion

In this proceeding, we discuss Ref. [33], where we have presented the first results for the total
inclusive partonic cross section for the process qq̄→ Z +X , including the exact O(ααs) correc-
tions, with both photon and W/Z boson exchanges. The results are analytic and are expressed in
terms of GPLs, but also contain three elliptic MIs, which have been computed with a series ex-
pansion around z = 1. The universal structure of the infrared singularities along with the final can-
cellation among all sub-processes to produce a subtracted, finite, partonic cross section, provides
also a strong check on our calculation. The computation represents an important step towards the
evaluation of the hadron-level cross section for Z production at this perturbative order.
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