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The ε-form of a system of differential equations for Feynman integrals has led to tremendeous
progress in our abilities to compute Feynman integrals, as long as they fall into the class of
multiple polylogarithms. It is therefore of current interest, if these methods extend beyond the
case of multiple polylogarithms. In this talk I discuss Feynman integrals, which are associated to
elliptic curves and their differential equations. I show for non-trivial examples how the system
of differential equations can be brought into an ε-form. Single-scale and multi-scale cases are
discussed.
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Simple differential equations Stefan Weinzierl

1. Introduction

Integration-by-parts identities [1,2] and differential equations [3–13] are standard tools for the
computation of Feynman integrals. In essence, integration-by-parts identities allow us to express
a Feynman integral from a large set of Feynman integrals as a linear combination of Feynman
integrals from a smaller set. The Feynman integrals in the smaller set are called master integrals
and we may think of the master integrals as a basis of an (abstract) vector space. We denote the
number of master integrals by NF = NFibre and the master integrals by I = (I1, ..., INF ). Public
available computer programs based on the Laporta algorithm [14] like REDUZE [15], FIRE [16]
or KIRA [17] can be used to perform the reduction to the master integrals.

For the master integrals one derives (again by using integration-by-parts identities) differential
equations in the external invariants or internal masses. We denote the number of kinematic variables
by NB = NBase and the kinematic variables by x = (x1, ...,xNB). The system of differential equations
for the master integrals can be written as

dI +AI = 0, (1.1)

where A(ε,x) is a matrix-valued one-form

A =
NB

∑
i=1

Aidxi. (1.2)

The Ai(ε,x)’s are matrices of size NF×NF , whose entries are rational functions in the dimensional
regularisation parameter ε and the kinematic variables x. The matrix-valued one-form A satisfies
the integrability condition

dA+A∧A = 0. (1.3)

Geometrically we have a vector bundle with a fibre of dimension NF spanned by I1, . . . INF and a
base of dimension NB with local coordinates x1, . . . ,xNB . The matrix-valued one-form A defines a
flat connection.

Up to this point everything is general and applies to any Feynman integral. In particular, com-
puting a Feynman integral is reduced to the problem of solving a system of differential equations as
in eq. (1.1). The solution of a system of differential equations requires in addition boundary values.
The boundary values correspond to simpler Feynman integrals, where some kinematic variables
have special values or vanish. Therefore at this stage the boundary values can be considered to be
known (otherwise one would first set up a system of differential equations for the boundary values).

The system of differential equations is particular simple [9], if A is of the form

A = ε

NL

∑
j=1

C j ω j, (1.4)

where

- the only dependence on the dimensional regularisation parameter ε is given by the explicit
prefactor,
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- the C j’s are NF ×NF -matrices, whose entries are (rational or integer) numbers,

- the differential one-forms ω j have only simple poles (and depend only on x).

We denote by NL = NLetters the number of letters, i.e. the number of Q-linear independent differen-
tial one-forms ω j. The set of letters is denoted by ω = (ω1, ...,ωNL).

A system of differential equations in the form of eq. (1.4) is easily solved order-by-order in
the dimensional regularisation parameter ε in terms of iterated integrals. For ω1, ..., ω j differential
1-forms on a manifold B and γ : [0,1]→ B a path, let us write for the pull-back of ωi to the interval
[0,1]

fi (λ )dλ = γ
∗
ωi. (1.5)

The iterated integral is defined by [18]

Iγ (ω1, ...,ω j;λ ) =

λ∫
0

dλ1 f1 (λ1)

λ1∫
0

dλ2 f2 (λ2) ...

λ j−1∫
0

dλ j f j (λ j) . (1.6)

We see that the computation of any Feynman integrals is reduced to finding a transformation (if it
exists) of the system of differential equations to the simple form of eq. (1.4).

A special case of iterated integrals are multiple polylogarithms. Assume that all ω j’s are of
the form

ω j = d ln p j (x) , (1.7)

where the p j’s are polynomials in the variables x, then (after factorisation of univariate polynomi-
als)

fi =
dλ

λ − zi
(1.8)

and all iterated integrals are multiple polylogarithms:

G(z1, ...,z j;λ ) =

λ∫
0

dλ1

λ1− z1

λ1∫
0

dλ2

λ2− z2
...

λ j−1∫
0

dλ j

λ j− z j
. (1.9)

Let us now discuss the possibilities to transform a generic system of differential equations as in
eq. (1.1) into the simple form of eq. (1.4). On the one hand we may change change the basis of the
master integrals

I′ = UI, (1.10)

where U(ε,x) is a NF ×NF -matrix. The new connection matrix is

A′ = UAU−1 +UdU−1. (1.11)

On the other hand, we may perform a coordinate transformation on the base manifold:

x′i = fi (x) , 1≤ i≤ NB. (1.12)
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The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i, j=1

Ai
∂xi

∂x′j
dx′j. (1.13)

Let us stress that a coordinate transformation on the base manifold is already required in rather

p

m

m

Figure 1: A one-loop two-point integral.

simple cases. Consider the one-loop two-point function with an equal internal mass shown in
fig. 1. Transforming the system of differential equations into a form, where ε appears only as a
prefactor will inevitably introduce the square root

dx√
−x(4− x)

, (1.14)

where x = p2/m2. Here, a change of variables in the base manifold

x = −(1− x′)2

x′
(1.15)

will rationalise the square root and transform

dx√
−x(4− x)

=
dx′

x′
. (1.16)

Can the required transformations be found systematically? In the case of Feynman integrals eval-
uating to multiple polylogarithms there are systematic algorithms to find a transformation of the
basis of master integrals I′ = UI provided that U is rational in the kinematic variables [9, 19–26].
In the case of coordinate transformations on the base manifold x′i = fi (x) there are now systematic
algorithms to rationalise square roots [27–29].

With the help of these algorithms the simple form of the differential equations as in eq. (1.4)
can be reached for many Feynman integrals evaluating to multiple polylogarithms. Please note that
these algorithms still have some limitations. Not all Feynman integrals, which can be expressed in
terms of multiple polylogarithms, can be treated with the algorithms mentioned above. An example
where further technical improvements are desirable is given by the two-loop electroweak-QCD
corrections to the Drell-Yan process [30].

However, not all Feynman integrals can be expressed in terms of multiple polylogarithms.
The next more complicated case are Feynman integrals associated to elliptic curves. These are
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a topic of current research interest [12, 28, 31–78] and the focus of this talk. We may ask if the
simple form for the system of differential equations as in eq. (1.4) can also be obtained in these
cases. The results obtained so far look promising. In the following we will discuss how the form
of eq. (1.4) is obtained for the equal mass sunrise integral and the unequal mass sunrise integral. In
both systems only one elliptic curve occurs. The former integral depends on one kinematic variable
(NB = 1), while the latter depends on three kinematic variables (NB = 3). We expect the methods
and techniques used in these examples to carry over to the wider class of multi-scale Feynman
integrals associated with a single elliptic curve. An example where exactly the same techniques
can be applied would be the kite integral [48, 49]. This integral is relevant to the two-loop electron
self-energy in QED [43].

2. One elliptic curve, one variable

Let us start with the single scale case. The standard example is the equal mass sunrise integral.
We have 3 master integrals and one kinematic variable, i.e. NF = 3, NB = 1. As kinematic variable
we use x = p2/m2. The first question which we should address is how to obtain the elliptic curve
associated to this integral. For the sunrise integral there are two possibilities, we may either obtain
an elliptic curve from the Feynman graph polynomial

−x1x2x3x+(x1 + x2 + x3)(x1x2 + x2x3 + x3x1) = 0, (2.1)

where x1,x2,x3 are Feynman parameters and x the kinematic variable or from the maximal cut:

v2− (u− x)(u− x+4)
(
u2 +2u+1−4x

)
= 0. (2.2)

Please note that these two elliptic curves are not isomorphic, but only isogenic. The Weierstrass
normal form of an elliptic curve reads

v2 = 4(u− e1)(u− e2)(u− e3) , (2.3)

where we already factorised the cubic polynomial in u on the right-hand side. The periods of the
elliptic curve in eq. (2.3) are given by

ψ1 = 2
e2∫

e1

du
v

=
2√

e3− e1
K
(√

e2− e1

e3− e1

)
, ψ2 = 2

e2∫
e3

du
v

=
2i√

e3− e1
K
(√

e3− e2

e3− e1

)
, (2.4)

where K(k) denotes the complete elliptic integral of the first kind. The periods ψ1, ψ2 of the elliptic
curve are solutions of the homogeneous system of eq. (1.1) [33]. This holds independently if we
start from the Feynman graph polynomial or from the maximal cut. The periods associated to
eq. (2.2) equal the maximal cuts. In general, the maximal cuts are solutions of the homogeneous
system of eq. (1.1) [47].

In the mathematical literature the shape of the elliptic curve is often described by the variable
τ (or q), defined by

τ =
ψ2

ψ1
, q = e2iπτ . (2.5)
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1

τ τ ′

Figure 2: The pair of vectors 1 and τ and the pair of vectors 1 and τ ′ generate the same lattice.

The periods ψ1 and ψ2 generate a lattice. Any other basis of the lattice is as good as (ψ2,ψ1).
One often normalises one basis vector to one, e.g. (ψ2,ψ1)→ (τ,1) with τ = ψ2/ψ1. Let us now
consider a change of basis for the basis vectors of the lattice:(

ψ ′2
ψ ′1

)
=

(
a b
c d

)(
ψ2

ψ1

)
, γ =

(
a b
c d

)
. (2.6)

The transformation should be invertible, therefore γ ∈ SL(2,Z). In terms of τ and τ ′ we have

τ
′ = γ (τ) =

aτ +b
cτ +d

. (2.7)

Transformations as in eq. (2.6) are called modular transformations. A function f (τ) is called a
modular form if

f (γ (τ)) = (cτ +d)k f (τ) , (2.8)

and f (τ) is holomorphic in the complex upper half-plane H and at the cusp τ = i∞. The number k
is called the modular weight of f (τ).

In order to bring the system of differential equations for the equal mass sunrise integral into
the simple form of eq. (1.4) we perform a change of the basis of the master integrals from a pre-
canonical basis (S110,S111,S211) to

I1 = 4ε
2S110, I2 = ε

2 π

ψ1
S111, I3 =

1
ε

1
2πi

d
dτ

I2 +
1
24
(
3x2−10x−9

) ψ2
1

π2 I2. (2.9)

This transformation is not rational or algebraic in x, as can be seen from the prefactor 1/ψ1 in
the definition of I2. The period ψ1 is a transcendental function of x. In addition we change the
kinematic variable from x to τ (or q) [34]. Again, this is a non-algebraic change of variables. One
obtains

dI = ε A I, A = Aτdτ, (2.10)
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The ε-independent 3×3-matrix Aτ is given by

Aτ =

 0 0 0
0 − f2(τ) 1

1
4 f3(τ) f4(τ) − f2(τ)

 , (2.11)

where f2, f3 and f4 are modular forms of Γ1(6) of modular weight 2, 3 and 4, respectively. This
allows us to express I1, I2 and I3 as iterated integrals of modular forms to all orders in ε [40,42]. A
modular form fk(τ) is by definition holomorphic at the cusp and has a q-expansion

fk(τ) = a0 +a1q+a2q2 + ..., q = exp(2πiτ). (2.12)

The transformation q = exp(2πiτ) transforms the point τ = i∞ to q = 0 and we have

2πi fk(τ)dτ =
dq
q

(
a0 +a1q+a2q2 + ...

)
. (2.13)

Thus a modular form non-vanishing at the cusp τ = i∞ has a simple pole at q = 0.

3. One elliptic curve, several variables

Let us now consider the multi-scale case. Our standard example is the unequal mass sunrise
integral. We have 7 master integrals and 3 kinematic variables, i.e. NF = 7, NB = 3. As kinematic
variables we use x = p2/m2

3, y1 = m2
1/m2

3, y2 = m2
2/m2

3. The system of differential equations can
again be transformed into the simple form of eq. (1.4) by a redefinition of the master integrals and
a change of coordinates. The explicit formula for fibre transformation is a little bit lengthy and
can be found in the literature [74]. Let us discuss here the coordinate transformation. It has a nice
geometric interpretation. We introduce the moduli space Mg,n as the space of isomorphism classes
of smooth (complex, algebraic) curves of genus g with n marked points. Please note that a complex

real surface
P1

P2

P3 ⇔ P2

P1

P3

complex curve

Figure 3: A complex curve can be viewed as a real surface.

curve can also be viewed as a real (Riemann) surface (fig. 3). The dimension of Mg,n is

dimMg,n = 3g+n−3. (3.1)

Let us now introduce coordinates on Mg,n. We are interested in the cases g = 0,1. In genus 0
we have dimM0,n = n− 3. The Riemann sphere has a unique shape. The isomorphisms are the
Möbius transformations and we may use a Möbius transformation to fix three marked points at
specific values, say zn−2 = 1, zn−1 = ∞, zn = 0. Thus we may take (z1, ...,zn−3) as coordinates on
M0,n.

6
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In genus 1 we have dimM1,n = n. We need one coordinate to describe the shape of the torus.
As isomorphisms we only have translations, which can be used to fix zn = 0. Thus we may take
(τ,z1, ...,zn−1) as coordinates on M1,n.

For the unequal mass sunrise integral we change coordinates from (x,y1,y2) to coordinates
(τ,z1,z2) of M1,3. (In this language the change of coordinates for the equal mass sunrise integral
is from the coordinate x to the coordinate τ of M1,1.) This raises the question how to find z1 and z2.
The coordinate τ is defined as before as the ratio ψ2/ψ1. In the Feynman parameter representation
there are two geometric objects of interest: the domain of integration σ and the zero set X of the
second graph polynomial. X and σ intersect at three points, as shown in fig. 4. The images of these

x1

x2

x3

σ

X

Re z

Im z

τ

z1

z2

Figure 4: X and σ intersect at three points, the images of these three points in C/Λ are 0,z1,z2.

three points in C/Λ are 0,z1,z2, where we used a translation transformation to fix one point at 0.
After a redefinition of the basis of master integrals and a change of coordinates from (x,y1,y2) to
(τ,z1,z2) one obtains [74] the simple form of eq. (1.4)

A = ε

NL

∑
j=1

C j ω j, with ω j only simple poles, (3.2)

where ω j is either

(2π)2−k fk (τ)
dτ

2πi
, (3.3)

where fk(τ) is a modular form, or of the form

ωk (zi,τ) = (2π)2−k
[

g(k−1) (zi,τ)dzi +(k−1)g(k) (zi,τ)
dτ

2πi

]
, (3.4)

where g(k)(z,τ) are functions appearing in the expansion of the Kronecker function

F (z,α,τ) = πϑ
′
1 (0,q)

ϑ1 (π (z+α) ,q)
ϑ1 (πz,q)ϑ1 (πα,q)

=
1
α

∞

∑
k=0

g(k) (z,τ)α
k, q = eiπτ . (3.5)
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ϑ1 denotes the first Jacobi ϑ -function. The properties of g(k)(z,τ) are [58,79]: g(k) has only simple
poles as a function of z, g(k) is quasi-periodic as a function of z, i.e. periodic by 1 and quasi-
periodic by τ , g(k) is almost modular, the nice modular transformation properties are only spoiled
by the divergent Eisenstein series E1(z,τ).

Finally let us remark that the equal mass case corresponds to the situation, where z1 and z2

attain the fixed value z1 = z2 = 1/3.

4. Outlook

The computation of Feynman integrals is trivial, as soon as the system of differential equations
is transformed to

A = ε

NL

∑
j=1

C j ω j, with ω j only simple poles. (4.1)

This form can be reached for many Feynman integrals evaluating to multiple polylogarithms and a
few non-trivial elliptic examples. It is an open question if any Feynman integral can be obtained
from a system of differential equations of this form. A constructive proof would gives us an algo-
rithm to compute any Feynman integral.

References

[1] F. V. Tkachov, Phys. Lett. B100, 65 (1981).

[2] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159 (1981).

[3] A. V. Kotikov, Phys. Lett. B254, 158 (1991).

[4] A. V. Kotikov, Phys. Lett. B267, 123 (1991).

[5] E. Remiddi, Nuovo Cim. A110, 1435 (1997), hep-th/9711188.

[6] T. Gehrmann and E. Remiddi, Nucl. Phys. B580, 485 (2000), hep-ph/9912329.

[7] M. Argeri and P. Mastrolia, Int. J. Mod. Phys. A22, 4375 (2007), arXiv:0707.4037.

[8] S. Müller-Stach, S. Weinzierl, and R. Zayadeh, Commun.Math.Phys. 326, 237 (2014),
arXiv:1212.4389.

[9] J. M. Henn, Phys. Rev. Lett. 110, 251601 (2013), arXiv:1304.1806.

[10] J. M. Henn, J. Phys. A48, 153001 (2015), arXiv:1412.2296.

[11] J. Ablinger et al., Comput. Phys. Commun. 202, 33 (2016), arXiv:1509.08324.

[12] L. Adams, E. Chaubey, and S. Weinzierl, Phys. Rev. Lett. 118, 141602 (2017), arXiv:1702.04279.

[13] J. Bosma, K. J. Larsen, and Y. Zhang, Phys. Rev. D97, 105014 (2018), arXiv:1712.03760.

[14] S. Laporta, Int. J. Mod. Phys. A15, 5087 (2000), hep-ph/0102033.

[15] A. von Manteuffel and C. Studerus, (2012), arXiv:1201.4330.

[16] A. V. Smirnov, Comput. Phys. Commun. 189, 182 (2015), arXiv:1408.2372.

[17] P. Maierhöfer, J. Usovitsch, and P. Uwer, Comput. Phys. Commun. 230, 99 (2018), arXiv:1705.05610.

8



P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
6
1

Simple differential equations Stefan Weinzierl

[18] K.-T. Chen, Bull. Amer. Math. Soc. 83, 831 (1977).

[19] T. Gehrmann, A. von Manteuffel, L. Tancredi, and E. Weihs, JHEP 06, 032 (2014), arXiv:1404.4853.

[20] M. Argeri et al., JHEP 03, 082 (2014), arXiv:1401.2979.

[21] R. N. Lee, JHEP 04, 108 (2015), arXiv:1411.0911.

[22] M. Prausa, Comput. Phys. Commun. 219, 361 (2017), arXiv:1701.00725.

[23] O. Gituliar and V. Magerya, Comput. Phys. Commun. 219, 329 (2017), arXiv:1701.04269.

[24] C. Meyer, JHEP 04, 006 (2017), arXiv:1611.01087.

[25] C. Meyer, Comput. Phys. Commun. 222, 295 (2018), arXiv:1705.06252.

[26] R. N. Lee and A. A. Pomeransky, (2017), arXiv:1707.07856.

[27] M. Becchetti and R. Bonciani, JHEP 01, 048 (2018), arXiv:1712.02537.

[28] M. Besier, D. Van Straten, and S. Weinzierl, Commun. Num. Theor. Phys. 13, 253 (2019),
arXiv:1809.10983.

[29] M. Besier, P. Wasser, and S. Weinzierl, (2019), arXiv:1910.13251.

[30] M. Heller, A. von Manteuffel, and R. M. Schabinger, (2019), arXiv:1907.00491.

[31] S. Laporta and E. Remiddi, Nucl. Phys. B704, 349 (2005), hep-ph/0406160.

[32] S. Müller-Stach, S. Weinzierl, and R. Zayadeh, Commun. Num. Theor. Phys. 6, 203 (2012),
arXiv:1112.4360.

[33] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 54, 052303 (2013), arXiv:1302.7004.

[34] S. Bloch and P. Vanhove, J. Numb. Theor. 148, 328 (2015), arXiv:1309.5865.

[35] E. Remiddi and L. Tancredi, Nucl.Phys. B880, 343 (2014), arXiv:1311.3342.

[36] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 55, 102301 (2014), arXiv:1405.5640.

[37] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 56, 072303 (2015), arXiv:1504.03255.

[38] L. Adams, C. Bogner, and S. Weinzierl, J. Math. Phys. 57, 032304 (2016), arXiv:1512.05630.

[39] S. Bloch, M. Kerr, and P. Vanhove, Adv. Theor. Math. Phys. 21, 1373 (2017), arXiv:1601.08181.

[40] L. Adams and S. Weinzierl, Commun. Num. Theor. Phys. 12, 193 (2018), arXiv:1704.08895.

[41] C. Bogner, A. Schweitzer, and S. Weinzierl, Nucl. Phys. B922, 528 (2017), arXiv:1705.08952.

[42] L. Adams and S. Weinzierl, Phys. Lett. B781, 270 (2018), arXiv:1802.05020.

[43] I. Hönemann, K. Tempest, and S. Weinzierl, Phys. Rev. D98, 113008 (2018), arXiv:1811.09308.

[44] S. Bloch, M. Kerr, and P. Vanhove, Compos. Math. 151, 2329 (2015), arXiv:1406.2664.

[45] M. Søgaard and Y. Zhang, Phys. Rev. D91, 081701 (2015), arXiv:1412.5577.

[46] L. Tancredi, Nucl. Phys. B901, 282 (2015), arXiv:1509.03330.

[47] A. Primo and L. Tancredi, Nucl. Phys. B916, 94 (2017), arXiv:1610.08397.

[48] E. Remiddi and L. Tancredi, Nucl. Phys. B907, 400 (2016), arXiv:1602.01481.

[49] L. Adams, C. Bogner, A. Schweitzer, and S. Weinzierl, J. Math. Phys. 57, 122302 (2016),
arXiv:1607.01571.

9



P
o
S
(
R
A
D
C
O
R
2
0
1
9
)
0
6
1

Simple differential equations Stefan Weinzierl

[50] R. Bonciani et al., JHEP 12, 096 (2016), arXiv:1609.06685.

[51] A. von Manteuffel and L. Tancredi, JHEP 06, 127 (2017), arXiv:1701.05905.

[52] J. Ablinger et al., J. Math. Phys. 59, 062305 (2018), arXiv:1706.01299.

[53] A. Primo and L. Tancredi, Nucl. Phys. B921, 316 (2017), arXiv:1704.05465.

[54] G. Passarino, European Physical Journal C 77, 77 (2017), arXiv:1610.06207.

[55] E. Remiddi and L. Tancredi, Nucl. Phys. B925, 212 (2017), arXiv:1709.03622.

[56] J. L. Bourjaily, A. J. McLeod, M. Spradlin, M. von Hippel, and M. Wilhelm, Phys. Rev. Lett. 120,
121603 (2018), arXiv:1712.02785.

[57] M. Hidding and F. Moriello, JHEP 01, 169 (2019), arXiv:1712.04441.

[58] J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, JHEP 05, 093 (2018), arXiv:1712.07089.

[59] J. Broedel, C. Duhr, F. Dulat, and L. Tancredi, Phys. Rev. D97, 116009 (2018), arXiv:1712.07095.

[60] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, JHEP 08, 014 (2018), arXiv:1803.10256.

[61] R. N. Lee, A. V. Smirnov, and V. A. Smirnov, JHEP 03, 008 (2018), arXiv:1709.07525.

[62] R. N. Lee, A. V. Smirnov, and V. A. Smirnov, JHEP 07, 102 (2018), arXiv:1805.00227.

[63] L. Adams, E. Chaubey, and S. Weinzierl, Phys. Rev. Lett. 121, 142001 (2018), arXiv:1804.11144.

[64] L. Adams, E. Chaubey, and S. Weinzierl, JHEP 10, 206 (2018), arXiv:1806.04981.

[65] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, JHEP 01, 023 (2019), arXiv:1809.10698.

[66] J. L. Bourjaily, A. J. McLeod, M. von Hippel, and M. Wilhelm, Phys. Rev. Lett. 122, 031601 (2019),
arXiv:1810.07689.

[67] J. L. Bourjaily, A. J. McLeod, M. von Hippel, and M. Wilhelm, JHEP 08, 184 (2018),
arXiv:1805.10281.

[68] P. Mastrolia and S. Mizera, JHEP 02, 139 (2019), arXiv:1810.03818.

[69] J. Ablinger, J. Blümlein, P. Marquard, N. Rana, and C. Schneider, Nucl. Phys. B939, 253 (2019),
arXiv:1810.12261.

[70] H. Frellesvig et al., JHEP 05, 153 (2019), arXiv:1901.11510.

[71] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, JHEP 05, 120 (2019), arXiv:1902.09971.

[72] J. Blümlein, (2019), arXiv:1905.02148.

[73] J. Broedel and A. Kaderli, (2019), arXiv:1906.11857.

[74] C. Bogner, S. Müller-Stach, and S. Weinzierl, (2019), arXiv:1907.01251.

[75] H. Frellesvig et al., Phys. Rev. Lett. 123, 201602 (2019), arXiv:1907.02000.

[76] B. A. Kniehl, A. V. Kotikov, A. I. Onishchenko, and O. L. Veretin, Nucl. Phys. B948, 114780 (2019),
arXiv:1907.04638.

[77] J. Broedel et al., JHEP 09, 112 (2019), arXiv:1907.03787.

[78] C. Duhr and L. Tancredi, (2019), arXiv:1912.00077.

[79] F. Brown and A. Levin, (2011), arXiv:1110.6917.

10


