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1. Introduction

Recently, new approach to the derivations of linear relations between Feynman integrals based
on the mathematical concept of the intersection number has been developed, as an alternative to
the traditional IBP-based method. While these proceedings are based on the publications [1, 2], the
application of Intersection theory to Feynman integrals was pioneered in ref. [3] by Mastrolia and
Mizera. See also the proceedings by Manoj K. Mandal [4].

Figure 1: State-of-the-art scattering processes, each illustrated by a representative two-loop Feyn-
man diagram. From left to right: Bhabha scattering, Higgs+jet production, double-Higgs produc-
tion, and three-jet production.

The evaluation of Feynman integrals, is an essential part of state-of-the-art scattering ampli-
tude computations, such as those illustrated in fig. 1. A Feynman integral is in general an object of
the form

Ia1···aP;···an =
∫ ddki

πd/2 · · ·
∫ ddkL

πd/2

N(k)
Da1

1 (k)D
a2
2 (k) · · ·D

aP
P (k)

(1.1)

where the Ds are propagators of the form Di = (k+ p)2−m2, where k and p are d-dimensional
momenta (internal and external). Additionally N(k) is a numerator function, and the ai are integer
powers.

Writing down all the Feynman diagrams, and performing the Dirac, Lorentz, and color algebra,
will give an expression containing O(10000) such Feynman integrals for one of the state-of-the-
art processes. In principle they all have to be calculated in order to get a result for the scattering
amplitude, but thankfully they are not all independent but are related by linear relation. The use off
these relations can reduce the set of Feynman integrals that have to be computed to a minimal set
of linearly independent integrals, known as master integrals, with a size of O(100) for one of the
state-of-the-art processes - a much more manageable number.

The derivation of such linear relations are the main bottleneck in current amplitude calcula-
tions. The traditional approach to the derivation of such identities relies on the use of integration-
by-parts identities [5] systematized by Laporta’s algorithm [6] which is implemented in a number
of public and private codes (in the following we will use FIRE [7] and Kira [8]). We will not here
go through the details of that approach, merely mention that it relies on the IBP equation∫ ddk

πd/2

∂

∂kµ

qµN(k)
Da1

1 (k) · · ·DaP
P (k)

= 0 (1.2)

where varying k, q, and the ai, yield different linear relations between Feynman integrals, and
reducing the set of Feynman integrals that may appear in a given scattering amplitude calculation
to master integrals, requires the solution of a huge linear system that may contain O(107) linear
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equation for a naive implementation. So even though a lot of effort has been put into optimizing
the algorithm, solving a linear system of that size is never going to be fast, so to find a different
way of deriving the linear relations seems highly desirable.

2. Theory

Writing a Feynman integral in terms of master integrals and their coefficients

I = ∑
i∈masters

ciIi (2.1)

seems reminiscent of writing a vector in a vector space in terms of basis-vectors of that space. In
fact the correspondence is not merely metaphorical, the set of Feynman integrals forms a vector
space in the mathematical sense. The existence of an inner product is not a requirement for forming
a vector space, but if an inner product existed, the coefficients of the basis vectors could be extracted
as [3]

〈v|= ∑
i, j
〈vv∗j〉

(
C−1)

ji〈vi| with Ci j = 〈viv∗j〉 (2.2)

⇔ ci = ∑
j
〈vv∗j〉

(
C−1)

ji (2.3)

For the proof of eq. (2.2) see e.g. refs. [1, 4], but notice that in the case of an orthonormal basis
Ci j = δi j, the formula above reduces to ci = 〈vv∗i 〉 known from high-school.

This means that if there were some way to define (what amounts to) an inner product between
Feynman integrals, it would be possible to extract the coefficients of the master integrals without
going through the IBP equation and the corresponding huge linear systems.

To get to that point, we will need the Baikov representation for Feynman integrals. The Baikov
representation [9] is a parametric representation1, which means that the integrations over the d-
dimensional loop-momenta of eq. (1.1), get replaced with integrations over an integer number of
scalar variables, here known as Baikov variables.

The Baikov representation is given as

I =
∫ ddk1

πd/2 · · ·
∫ ddkL

πd/2

N(k)
Da1

1 (k) · · ·DaP
P (k)

= K
∫

C
dnx

Bγ(x)N(x)
xa1

1 · · ·x
aP
P

(2.4)

where xi are the Baikov variables, B is known as the Baikov polynomial, the integration con-
tour is defined by the equation C = {B > 0}, and the power γ = (d−E−L−1)/2. Additionally
n = L(L+1)/2+EL which is the same as the number of independent scalar product one can form
between the L loop-momenta and the E independent external momenta. We will point out that the
Baikov representation has the property that the propagators Di are in one-to-one correspondence
with the Baikov variables xi. The quadratic growth of the number of variables with the number of
loops, makes the Baikov representation worse behaved that other parametric representations such

1Other examples of parametric representations are the Feynman representation, the Schwinger representation, and
the Lee-Pomeransky representation.
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as Feynman parametrization. One way of remedying this quadratic growth a little is to use the
loop-by-loop version [10] of Baikov parametrization

I = K̃
∫

C
dñx

(
∏

2L−1
j=1 B

γ j
j (x)

)
N(x)

xa1
1 · · ·x

aP
P

(2.5)

introduced by making a Baikov representation of each loop in a multi-loop Feynman integral indi-
vidually, rather than parametrizing the whole integral at once. Doing this has the property that
it might decrease the number of integration variables compared to the standard version of the
parametrization (ñ≤ n). This is a property we will use a lot in the following.

The reason for using the Baikov representation over one of the other parametric representa-
tions, is that it a natural representation for doing generalized unitarity cuts. A generalized unitarity
cut is in this context to be understood as the contour deformation∫

C

f (x)
xa dx →

∮ f (x)
xa dx (2.6)

where the right hand side can be evaluated trivially using the residue theorem. We should highlight
the fact that if a ≤ 0 so the propagator is not present as a propagator, the value of the cut integral
will be zero. The property of generalized unitarity cuts that will interest us here, is that even though
they change the value of the integrals, they preserve the linear relations between them [11, 12], so
relations such as eq. (2.1) are equally true before and after such a cut.

The Baikov representation can be re-written as

I =
∫

C
dnx

Bγ(x)N(x)
xa1

1 · · ·x
aP
P

=
∫

C
uφ (2.7)

where

u = Bγ and φ =
N(x)

xa1
1 · · ·x

aP
P

dx1∧·· ·∧dxn (2.8)

are defined such that u is a multi-valued function (since γ non-integer in dimensional regularization)
and φ is a rational function times a differential n-form, and this definition carries over to the loop-
by-loop representation as well. Rewriting I further, we can can express is as [3]

I =
∫

C
uφ = ω〈φ |C ] (2.9)

where ω = dlog(u) is known as the twist. In this notation C and φ should be understood as repre-
sentatives of a twisted cycle and a twisted co-cycle respectively, which are defined as equivalence
classes of those integration contours (for C ) and differential forms (for φ ) that integrate to the
same result, given a specific u [3]. The set of twisted co-cycles is known as the twisted cohomol-
ogy group, and we realize that the number of master integral will be the dimension of the twisted
cohomology group, as it is nothing but the number of different integrands that integrate to gen-
uinely different results. From this fact one may derive the Lee-Pomeransky criterion [13] for the
number of master integrals ν , which says that

ν = the number of solutions to “ω = 0”, (2.10)
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something we will use in the following.
This bring us to the intersection number 〈φ |ξ 〉. This is also defined as a pairing, but rather

than between a twisted cycle and co-cycle, it is between a twisted co-cycle φ and a dual twisted co-
cycle ξ , and this object has exactly the properties of a scalar product that we have been looking for.
For the mathematical definitions of ξ , its associated dual cohomology group, and the intersection
number itself, see e.g. refs. [14, 15, 16], but let us here merely write an expression for it valid in
the univariate case:

〈φ |ξ 〉ω = ∑
p∈P

Resz=p(ψξ ) (d+ω)ψ = φ (2.11)

where P is defined as the set of poles of ω . One might fear that to compute ψ would involve
the genuine solution of a differential equation, but since the result has to be used only inside the
residue, it is sufficient to use a series ansatz around the point where the residue is taken

ψ → ψp =
max

∑
i=min

κi(z− p)i (2.12)

making sure that ’min’ and ’max’ are chosen such that all the terms that may contribute to the
residue are included.

With these definitions in mind, we may now write down the expression for the coefficients in
the master integral decomposition. It is as given [3] by eq. (2.3) as

〈φ |C ] =
ν

∑
i=1

ci〈φi|C ] ⇒

ci =
ν

∑
j=1
〈φ |ξ j〉

(
C−1)

ji with Ci j = 〈φi|ξ j〉 (2.13)

where the scalar product is to be understood as the intersection number which in the univariate case
is given by eq. (2.11).

3. Example: the double box

Let us as an example show the decomposition of the massless double box (see fig. 2) on the
maximal2 cut, following ref. [1].

Figure 2: The massless double box

2Different people mean different things with the phrase “maximal cut”. In these proceedings it is going to mean
cutting all the propagators that are actually there, so 7 for the case of the double box.
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The double-box is defined by the seven propagators

D1 = k2
1, D2 = (k1−p1)

2, D3 = (k1−p1−p2)
2, D4 = (k1−k2)

2,

D5 = (k2−p1−p2)
2, D6 = (k2+p4)

2, D7 = k2
2. (3.1)

and additionally the kinematics is such that p2
i = 0, (p1+ p2)

2 = s, and (p1+ p4)
2 = t. In the loop-

by-loop Baikov representation eight variables are needed, so the above set has to be supplemented
by one additional Baikov variable

z = (k2− p1)
2 (3.2)

allowing us to write the double-box as an eight-fold integral. But on the maximal cut, seven of
those integrations become trivial, leaving us with a one-fold integral

I7×cut =
∫

C
u7×cut φ with u7×cut = zd/2−3(z+s)2−d/2(z−t)d−5 (3.3)

From there we can compute

ω = dlog(u) =

(
d−6

2z
+

4−d
2(z+s)

+
d−5
z−t

)
dz (3.4)

and we see that ω = 0 has two solutions, corresponding to there being ν = 2 master integrals
surviving on the maximal cut, a result known to be correct from the literature [17].

Let us try to perform a reduction, using eq. (2.13), of the integral with two powers of the ISP z
in the numerator, to a basis of master integrals with zero and one powers respectively. This means
we want to find the coefficients c1 and c2 in the relation

I1111111;−2 = c1I1111111;0 + c2I1111111;−1 + lower (3.5)

To use eq. (2.13) we need expressions for the co-cycles and dual co-cycles. The co-cycles φ are
fixed by the problem, and are given by

φ = z2 dz , φ1 = 1dz , φ2 = zdz . (3.6)

For the dual co-cycles ξ we are free to pick almost whatever we like, but it turns out that picking a
dlog-form for the co-cycles simplifies intermediate expressions. We pick

ξ1 =
(1

z−
1

z+s

)
dz , ξ2 =

( 1
z+s−

1
z−t

)
dz . (3.7)

We may then compute the intersection numbers between the co-cycles and dual co-cycles using
eq. (2.11). We will not go into further details with the computation, merely state the results

〈φ |ξ1〉= s(4(d−5)t2−3(d−4)(3d−14)s2−4(d−5)(2d−9)st)
4(d−5)(d−4)(d−3) ,

〈φ |ξ2〉= s(s+t)(3(d−4)(3d−14)s+2(d−6)(d−5)t)
4(d−5)(d−4)(d−3) , (3.8)

〈φ1|ξ1〉= −s
d−5 , 〈φ1|ξ2〉= s+t

d−5 ,

〈φ2|ξ1〉= s((3d−14)s+2(d−5)t)
2(d−5)(d−4) , 〈φ2|ξ2〉= −(3d−14)s(s+t)

2(d−5)(d−4) .

Combining these according to eq. (2.13) gives the results

c1 =
(d−4)st
2(d−3) , c2 =

2t−3(d−4)s
2(d−3) , (3.9)

in agreement with public codes such as FIRE [7]. This shows that our approach to integral decom-
position works.
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4. Further examples
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Figure 3: Thirty examples of integrals for which we did the reduction on the maximal cut, in
ref. [1]. Please note that while there are examples of integrals with an arbitrary number of loops
or legs respectively, one thing that all the integrals in this figure have in common, is that the loop-
by-loop Baikov representation allows for a univariate expression after the maximal cut has been
performed.

In ref. [1] we did a lot of additional examples of reductions on the maximal cut (see fig. 3). It
may be seen that many of the integrals are of a type relevant for Higgs production, giving the reason
for title of these proceedings, and the talk on which they are based. Let us focus on one example
- that of the third integral in the fourth row of fig. 3, relevant for NLO QCD H + j production
retaining the full dependence on the masses of the Higgs and the internal quark (see ref. [18]). As
before, the loop-by-loop Baikov representations requires the introduction of one extra variable, and
on the maximal cut that integral may be written as eq. (3.3) but with

u7×cut = zd−5(z2+sz+m2
t s
) 4−d

2

×
(
(m2

H−s)2z2 +2(m2
H−s)stz+ st

(
4m2

t (m
2
H−s−t)+st

))d−5
2

(4.1)

Here eq. (2.10) gives ν = 4, again corresponding to the result in the literature. One example of a
reduction unto master integrals is

I1111111;−1 = c1I1111111;0 + c2I1211111;0 + c3I1111211;0 + c4I1111112;0 + lower (4.2)

and again the expressions for the ci may be computed using eq. (2.13) giving results in agreement
with the public codes.

5. The multivariate case

Aside from eq. (2.11), there is nothing in the previous that is restricted to the univariate case
or to maximal cuts. In particular the projection formula eq. (2.13) has exactly the same form in
the multivariate case, the only difference is that the 〈φ |ξ 〉 have to be interpreted as multivariate

6
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intersection numbers. Multivariate intersection numbers are discussed in refs. [15, 19, 2] and based
on the formulation in ref. [2], an n-variate intersection number n〈φ |ξ 〉 is specified by the following
equations (5.1) to (5.5)

n〈φ (n)|ξ (n)〉=−∑
p∈Pn

Res
zn=p

(
n−1〈φ (n)|h(n−1)

i 〉ψ(n)
i

)
, (5.1)

(
δi j ∂zn− Ω̂

(n)
i j

)
ψ

(n)
j = ξ̂

(n)
i , (5.2)

Ω̂
(n)
i j =−

(
C−1
(n−1)

)
ik n−1〈e

(n−1)
k |(∂zn− ω̂n)h

(n−1)
j 〉 , (5.3)

ξ
(n)
i =

(
C−1
(n−1)

)
i j n−1〈e

(n−1)
j |ξ (n)〉 , (5.4)

(
C(n−1)

)
i j ≡ n−1〈e

(n−1)
i |h(n−1)

j 〉 . (5.5)

We will not go through in detail how these equations should be understood or applied, merely
point out a few features: We see that the expression for the intersection number, eq. (5.1) is given
as a sum over residues exactly as in the univariate case of eq. (2.11). Additionally we see that
inside the residue appears an object ψ defined as the solution to a differential equation eq. (5.2)
which in principle can be solved with a series ansatz as in the univariate case. Finally we notice that
the expression in recursive, in the sense that the n-variate intersection number of eq. (5.1) in given
in terms of (n−1)-variate intersection numbers, and since we know how to evaluate a univariate
intersection number, the recursion will eventually end.

Figure 4: Those Feynman integrals for which we in ref. [2] have done the complete reduction using
the intersection-based approach.

If ref. [2] we did the complete reduction of a number of one- and two-loop Feynman integrals,
using the intersection-based approach (see fig. 4). Let us show as an example the simplest of them
all, the massless one-lop box. We want to do the reduction

= c1 + c2 + c3 (5.6)

where the dot denotes a squared propagator. The integrals in this integral family, without any
unitarity cuts, may be expressed as

∫
uφ with

u(x) =
(
(st−sx4−tx3)

2−2tx1(s(t+2x3−x2−x4)+tx3)

+ s2x2
2 + t2x2

1−2sx2(t(s−x3)+x4(s+2t))
) d−5

2 . (5.7)

7
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and

φ̂ = (x2
1x2

2x3x4)
−1, φ̂1 = (x1x2x3x4)

−1, φ̂2 = (x1x3)
−1, φ̂3 = (x2x4)

−1, (5.8)

with φ = φ̂
∧

i dxi. Introducing regulators3 u→ u∏i xρi
i where the ρi are to be put to zero at the end

of the computation, we may compute ω , and from there we obtain ν = 3 as it is seen in eq. (5.6) and
known to be the correct number. Applying the projection formula eq. (2.13) with the multivariate
intersection numbers as they may be computed from eqs. (5.1) to (5.5), we get the coefficients

c1 =
(d−5)(d−6)

st , c2 =
−4(d−5)(d−3)

s3t , c3 =
−4(d−5)(d−3)

st3 , (5.9)

in agreement with the public codes.

6. Discussion

In ref. [2] we propose a different algorithm for multivariate reductions that the one presented
above. This algorithm we call the bottom-up approach and it works by doing the reductions not on
the full multivariate expression, but on a set of “spanning cuts” [20] chosen such that each master
integral is non-vanishing on at least one of the cuts. In the one-loop box example above, this would
be the cuts corresponding to the two bubbles. Such an algorithm would involve more uses of the
projection formula eq. (2.13), but this is counteracted by the fact that the intersection numbers
involved are of fewer variables, making their computation simpler, something that will most likely
be a worthwhile trade-off in more complicated examples. But in spite of this, it is still an open
question what algorithm is the most optimal for the derivation of a complete reduction. Also a
worthwhile investigation is into ways of calculating multivariate intersection numbers other than
eqs. (5.1) to (5.5), that perhaps will be easier or more computationally effective.

The utility of the intersection based approach is not limited to the kind of linear relations given
by eq. (2.1). In refs. [3, 1, 2] it is also discussed how to use the technology to express the right hand
sides of differential equations (in kinematic variables) and of dimension shift relations. Focusing
on the former case we have

∂sI =
∫

C
∂s(uφ) =

∫
C

uφ̃ with φ̃ = ∂sφ +φ(∂su)/u (6.1)

where φ̃ is a form with rational pre-factor, that may be reduced using eq. (2.13) as the other cases
we have seen. Likewise the approach does also work for purely mathematical functions such as the
hypergeometric function 2F1 and its generalisations, where it can be used to deduce linear relations
(known as contiguity relations in that context) between functions with different values of their
arguments.

Directions worth exploring in the future may be connection to the co-product for Feynman in-
tegrals and special functions (see e.g. refs. [21, 22]) and to the ε-expansions of Feynman integrals
(see ref. [23]), but at least from the speakers perspective the most promising potential develop-
ment would be that of a completely general computer implementation of the reduction algorithm

3This has to be done to ensure that all poles of φ are poles of ω , which is a requirement for the intersection theory,
in the way we use it, to be valid.
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described in the above, since there is much reason to believe that such an implementation would be
much more efficient that those based on IBPs, as the huge linear systems that have to be solved as
an intermediate step in the IBP based approach, are avoided completely.
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