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We discuss nonfactorizable QCD corrections to Higgs boson production in vector boson fusion
at the Large Hadron Collider. We point out that these corrections can be computed in the eikonal
approximation retaining all the terms that are not suppressed by the ratio of the transverse mo-
menta of the tagging jets to the total center-of-mass energy. Our analysis shows that in certain
kinematic distributions the nonfactorizable corrections can be as large as a percent making them
quite comparable to their factorizable counter-parts.
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Vector boson fusion (VBF) is one of the two key channels for Higgs boson production at the
Large Hadron Collider (LHC) [2, 3]. Studies of Higgs boson properties in this process require
accurate theoretical prediction for its cross section and kinematic distributions. Radiative correc-
tions, both QCD and electroweak, are important for the reliable description of these processes.
Current understanding of QCD corrections to the VBF Higgs boson production is highly advanced:
following the original calculation of the next-to-leading (NLO) corrections [4], both the next-to-
next-to-leading (NNLO) [5, 6, 7] and the next-to-next-to-next-to-leading (N3LO) [8] corrections
were computed in the so-called structure function approximation [9]. The cross section of the elec-
troweak Higgs boson production in association with three jets is known to the NLO approximation
[10]. The electroweak corrections to VBF were computed in Ref. [11]. Other interesting effects
such as loop-induced interference between Higgs production in gluon fusion and in vector boson
fusion, and the gluon-initiated VBF Higgs production were studied in Refs. [12, 13], respectively.

The structure function approximation – the centerpiece of the current studies of QCD effects in
VBF – neglects interactions between incoming QCD partons and retains QCD effects confined to
a single fermion line. There are good reasons for doing this. Indeed, at NLO the gluon exchanges
between different quark lines do not change the VBF cross section as a consequence of color
conservation in t-channel. At NNLO, two gluons exchanged between two fermion lines can be in a
color-singlet state and for this reason do contribute to the VBF cross section. Such nonfactorizable
corrections, however, are necessarily color-suppressed, making it plausible that they are small. This
argument was used as the justification for computing higher-order QCD corrections to VBF Higgs
boson production in the structure function approximation [5].

However, it is interesting to ask just for how long does it make sense to improve the precision
on the factorizable contributions while ignoring the nonfactorizable ones. This question appears
to be quite relevant since computations of factorizable contributions have advanced to very high
orders in perturbative QCD [8]. Answering this question is difficult since not much is known about
nonfactorizable corrections beyond their color suppression. As we already mentioned, these cor-
rections do not contribute at NLO while at NNLO they require two-loop five-point functions that
depend on many kinematic variables and the masses of vector bosons and the Higgs boson. Thus,
the technical complexity of perturbative computations required to obtain the two-loop nonfactor-
izable contribution appears to be overwhelming to expect significant advances in the foreseeable
future. An estimate of nonfactorizable corrections that makes use of QCD dynamics and in this
sense goes beyond the color-suppression argument is highly desirable, in our opinion.

In this Letter we will show that it is possible and in fact rather simple to compute the dom-
inant contribution to nonfactorizable corrections, making use of the particular kinematics of the
VBF process. Indeed, this process is identified by the presence of two forward tagging jets whose
transverse momenta are small compared to their energies. Thus, we can try to compute the non-
factorizable corrections in an approximation where we only retain contributions that are leading in
p j,⊥/

√
s, where p j,⊥ is a transverse momentum of a tagging jet, and s is the center-of-mass energy

squared of the colliding partons. Since in the VBF process
√

s ∼> 600 GeV and p j,⊥ ∼ 100 GeV
[2, 3] this approximation is justified in large part of the phase space.

It is well known that the computation of cross sections at leading power in the small ratio
p⊥, j/

√
s, can be performed within the eikonal approximation for the colliding particles [14, 15, 16].

To explain this approximation, we consider a collision of two quarks that leads to the production
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(a) (b) (c)

Figure 1: The Feynman diagrams for the Higgs boson production in VBF: (a) the Born amplitude, (b, c) the
one-loop nonfactorizable QCD corrections. The solid, dashed, wavy and loopy lines stay for quark, Higgs,
vector boson and gluon fields, respectively.

of the Higgs boson in VBF

q1(p1)+q2(p2)→ q1(p3)+q2(p4)+H(p5).

The leading order contribution to this process is shown in Fig. 1(a). The eikonal approximation
separates dynamics in the plane spanned by the two four-momenta of the incoming quarks p1,2

from dynamics in the plane that is transversal to it. We will refer to a component of a four-vector kµ

in the transversal plane as kµ

⊥ or k. We choose the reference frame in such a way that p1 and p2 have
only a single light-cone component p−1 and p+2 , respectively. Then in the eikonal approximation
a gauge boson coupling to the quark line with momentum p1 (p2) is obtained by replacing the
corresponding current jµ with its light-cone component j− ( j+) while the quark propagators are
replaced as follows

1
/p1,2 +/k+ iε

→ γ±

2k±+ iε
, (1)

where γ± are the light-cone components of the Dirac γ-matrices.
In the VBF process Higgs bosons are produced at central rapidities so that they are well-

separated from the tagging jets. In this kinematical configuration one of the light-cone components
of each momentum transfer q3 = p3− p1 and q4 = p4− p2 is suppressed by p3,4,⊥/

√
s while the

second light-cone component scales as the Higgs boson mass mH ∼ p3,4,⊥�
√

s. Thus, the Higgs
boson emission does not spoil the applicability of the eikonal approximation. Moreover up to the
power suppressed terms q2

i ≈ −q2
i and one can neglect the light-cone momentum components in

the vector boson propagators.
We continue with the discussion of the nonfactorizable QCD corrections. In the one-loop

approximation the relevant diagrams are shown in Fig. 1(b,c). Since electroweak vector bosons
do not carry color, the one-loop contribution to the cross section vanishes at NLO by t-channel
color conservation. Nevertheless, the square of the one-loop amplitude contributes to the NNLO
cross section along with the generic two-loop nonfactorizable corrections. In both cases the two
gluons connecting the different quark lines must be in a color-singlet configuration. Thus we can
compute the corrections by replacing gluons by abelian gauge bosons with the effective coupling
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(a) (b)

Figure 2: One- and two-loop transversal space Feynman diagrams.

α̃s =
(

N2
c−1

4N2
c

)1/2
αs, where Nc = 3 and the prefactor arises from averaging over colors. Considering

the sum of the planar and non-planar diagrams in Figs. 1(b,c), we find that the eikonal quark prop-
agators add up to 1/(2k±+ iε)− c.c.=−iπδ (k±). Hence, when the two diagrams are combined,
the virtual quark propagators are replaced by δ (k+) and δ (k−) and the light-cone dynamics decou-
ples. Thus the computation of the nonfactorizable one-loop contribution is reduced to the analysis
of the effective Feynman diagram shown in Fig. 2(a) in the two-dimensional transversal space. In
the eikonal approximation QCD corrections are diagonal in the chiral basis. This implies that (for a
given type of electroweak gauge bosons that fuse into the Higgs) the Born amplitude M (0) factors
out. Hence, the expression for the one-loop amplitude can be written as follows

M (1) = iα̃sχ
(1)(q3,q4)M

(0) , (2)

with

χ
(1)(q3,q4) =

1
π

∫ d2k
k2 +λ 2

q2
3 +M2

V

(k−q3)
2 +M2

V

q2
4 +M2

V

(k+q4)
2 +M2

V
, (3)

where MV = MZ,W is an electroweak boson mass. We note that the function χ(1) is ultraviolet-finite
but infrared-divergent. To regulate the infrared divergence, we introduced an auxiliary gluon mass
λ . Moreover, the function χ(1) is explicitly real, so that the entire one-loop correction is imaginary.
This is yet another reason, in addition to color conservation, that leads to vanishing interference
between the one-loop amplitude computed in the eikonal approximation and the leading order
amplitude.

At two loops the structure of the corrections is similar. In the color-singlet configuration the
gluon vertices commute and the factorization property of the eikonal approximation [17] can be
applied. As a result the sum over all the permutations of the gluon and vector-boson vertices
reduces to the effective transversal space diagram in Fig. 2(b) [14]. The corresponding expression
for the amplitude reads

M (2) =− α̃2
s

2!
χ
(2)(q3,q4)M

(0) , (4)

where 1/2! factor results from the symmetrization of two identical gluons and

χ
(2)(q3,q4) =

1
π2

∫ ( 2

∏
i=1

d2ki

k2
i +λ 2

)
× q2

3 +M2
V

(k1 + k2−q3)
2 +M2

V

q2
4 +M2

V

(k1 + k2 +q4)
2 +M2

V
. (5)
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Squaring the sum of tree-, one- and two-loop contributions to the scattering amplitude, we obtain
the NNLO QCD correction to the cross section due to nonfactorizable contributions

dσ
NNLO
nf =

(
N2

c −1
4N2

c

)
α

2
s χnf dσ

LO . (6)

In Eq.(6) dσLO is the leading-order differential cross section for VBF and

χnf(q3,q4) =
[
χ
(1)(q3,q4)

]2
−χ

(2)(q3,q4) (7)

is the nonfactorizable correction.
The nonfactorizable correction has peculiar properties. It is independent of the vector boson

couplings to quarks and to the Higgs boson; these couplings are accommodated in the leading order
cross section in Eq. (6). In the large-Nc limit the color factor in Eq. (6) remains finite while for
the factorizable corrections it grows as N2

c providing the color suppression of the nonfactorizable
contribution. Finally, the two terms in Eq. (7) are separately infrared divergent. These divergences,
however, are not related to the usual (nonfactorizable) real soft gluon emissions that, in fact, are
suppressed as p⊥/

√
s and, therefore, do not contribute to the VBF cross section at leading power.

The infra-red divergencies in non-factorizable corrections originate from the exchange of static
Glauber gluons [18] propagating in the transversal space. It is well known that when abelian gauge
bosons are exchanged, the amplitudes acquire a factor eiφ where φ is the infrared-divergent Glauber
phase φ = −α̃s lnλ 2 [14]. This phase factor disappears in the cross section, which means that the
infrared-divergent parts of the first and the second term in Eq. (7) must cancel each other.

To show this cancellation explicitly, we consider the λ → 0 limit, extract the infrared singu-
larities from the two functions χ(1,2) and write them as follows

χ
(1) =− ln

(
λ 2

M2
V

)
+ f (1) ,

χ
(2) = ln2

(
λ 2

M2
V

)
−2ln

(
λ 2

M2
V

)
f (1)+ f (2) .

(8)

The functions f (1),(2) read

f (1) =
1∫

0

dx
∆3∆4

r2
12

[
ln
(

r2
12

r2M2
V

)
+

r1− r2

r2

]
,

f (2) =
1∫

0

dx
∆3∆4

r2
12

[(
ln
(

r2
12

r2M2
V

)
+

r1− r2

r2

)2

(9)

− ln2
(

r12

r2

)
− 2r12

r2
ln
(

r12

r2

)
−2Li2

(
r1

r12

)
−
(

r1− r2

r2

)2

+
π2

3

]
,

where we used the notations

r1 = q2
3 x+q2

4 (1− x)−q2
H x(1− x) ,

r2 = q2
H x(1− x)+M2

V ,

r12 = r1 + r2 ,

∆i = q2
i +M2

V .

(10)
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In Eq.(10) qH = −q4− q3 is the Higgs boson transverse momentum. This result can be obtained
by using the Feynman parameter representation for one- and two-loop two-dimensional triangle
diagrams corresponding to the functions χ(1) and χ(2) respectively.

We note that it should be possible to compute the two functions analytically.1 However, the
one-dimensional integral representations in Eqs. (9,10) are perfectly suitable for the numerical eval-
uation of the nonfactorizable corrections so that we decided not to pursue the analytic calculation
further.

Using representations Eq. (8) in Eq. (7), we obtain the finite result

χnf(q3,q4) = [ f (1)(q3,q4)]
2− f (2)(q3,q4) , (11)

for the two-loop nonfactorizable correction to the VBF cross section. It can be used for the numer-
ical evaluation of the correction factor for values of the transverse momenta that are much smaller
than the energy of the two colliding partons.

It is instructive to compute the function χnf in a few limiting cases. The simplest case is when
all the transverse momenta are small compared to the vector boson mass |q3,4| �MV . In this limit
r1 = 0, r2 = M2

V and we find

lim
q3,4→0

χnf = 1− π2

3
. (12)

Another interesting case is when the Higgs boson momentum is small q2
H �M2

V ,q
2
3,4. In this limit

r1 = q2
3, r2 = M2

V and we obtain

lim
qH→0

χnf = ln2
(

1+ x
x

)
+2Li2

(
1

1+ x

)
− π2

3
+2

1+ x
x

ln
(

1+ x
x

)
+

(
1− x

x

)2

, (13)

with x = M2
V/q2

3. In the opposite limit when the transverse momentum q3 of one of the tagging jets
is small compared to q4 ≈ qH the result reads

lim
q3→0

χnf = ln2
(

1+ x
x

)
+2Li2

(
1

1+ x

)
− π2

3
. (14)

The coefficient of the quadratic logarithm in Eq. (13) can be read off from the infrared divergences
of the one- and two-loop massless amplitudes at zero Higgs boson momentum. We have verified
this coefficient by exact evaluation of the scattering amplitudes in dimensional regularization as
functions of q2

3/s with subsequent expansion of the result at small transverse momentum; this
calculation provides a nontrivial test of the eikonal approximation used in the above analysis.

One can use these asymptotic formulas to discuss characteristic features of the nonfactorizable
contribution. For example, taking αs ∼ 0.1, we find that the zero-momentum limit Eq. (12) implies
minus one percent correction to the differential cross section Eq. (6). At the same time, the limit of
the small Higgs transverse momentum Eq. (14) suggests that positive corrections as large as a few
percent occur when the transverse momentum of the tagging jets exceeds 100 GeV.

It follows from the above discussion that the nonfactorizable corrections can reach a few per-
cent in differential distributions. However, since the corrections appear with opposite signs at low

1It is well-known that in the two-dimensional space-time three-point functions can be described by linear combina-
tions of two-point functions. The one-loop case is explicitly discussed in Ref. [19].
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Figure 3: Differential cross sections for the transverse momentum distributions for the two leading jets,
p j1,⊥ and p j2,⊥ and for the Higgs boson, ph,⊥ as well as the rapidity distributions of the first jet and of the
Higgs boson in VBF at the 13 TeV LHC. We also show the rapidity difference distribution of the two tagging
jets, see text for details. Sizable fluctuations of the correction factor in the regions where the leading order
distributions vanish are of statistical origin.

and high transverse momenta, they may cancel in quantities that are inclusive with respect to kine-
matic features of the tagging jets.

The reason behind sizable nonfactorizable effects can be traced to their connection to the
Glauber scattering phase. This connection leads to a π2-enhancement of the nonfactorizable con-
tribution characteristic to the imaginary phase, which partially overcomes the effect of the color
suppression, cf. Eq. (6). Interestingly, previous attempts to estimate nonfactorizable corrections
were based on the analysis of real radiation [20] or the real part of the one-loop amplitude [21]
which are insensitive to contributions of this type.

Having discussed features of the nonfactorizable contribution, we can now evaluate its impact
on the VBF Higgs production cross section. We consider proton-proton collisions at the LHC
with the center of mass energy 13 TeV. To select VBF events, we require that tagging jets have
transverse momenta larger than 25 GeV and their invariant mass exceeds 600 GeV. Besides that,
jets’ rapidities should satisfy the conditions |y j1, j2 | < 4.5 and |y j1 − y j2 | > 4.5, i.e. the jets are
required to be in opposite hemispheres y j1y j2 < 0. To compute the leading order cross section and
the nonfactorizable corrections we adopt the following factorization and renormalization scales

µF =

[
mH

2

√
m2

H
4

+ p2
h,⊥

]1/2

, µR =
√

p j1,⊥p j2,⊥ . (15)

Note that our choice of the factorization scale is identical to that of Ref. [6] which ensures that our
leading order cross sections and kinematic distributions are in agreement with that references. For
numerical simulations we use the NNPDF 3.0 parton distribution function (NNPDF_nnlo_as_0118)
with the default value αs(mZ)= 0.118. Electroweak parameters are determined from the Fermi con-
stant GF = 1.16637× 10−5 GeV−2 and masses of electroweak gauge bosons MW = 80.398 GeV
and MZ = 91.1876 GeV. We take the mass of the Higgs boson to be mH = 125 GeV. Within the
above setup we obtain the VBF cross section and the non-factorizable contribution at the 13 TeV

6
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LHC
σ

LO
VBF = 957 fb, σ

NNLO,NF
VBF =−3.73 fb , (16)

which implies a negative nonfactorizable correction

∆NF =
σ

NNLO,NF
VBF

σLO
VBF

×100% =−0.39% . (17)

While the nonfactorizable correction is small, it is quite comparable to the N3LO QCD factorizable
corrections computed in Ref. [8]. We note that the choice of a proper renormalization scale for
the computation of nonfactorizable corrections is an interesting problem. Indeed, as follows from
our computation, they appear for the first time at NNLO and so their scale dependence is not
compensated. If we simply decrease (increase) the renormalization scale in Eq. (15) by a factor of
two, ∆NF changes to −0.5% (−0.3%), respectively.

The situation becomes even more interesting when we consider differential distributions. For
example, in Fig. 3 the nonfactorizable QCD corrections to the transverse momentum distributions
of the two jets and the Higgs boson as well as various rapidity distributions are shown. For each
plot, the upper panel displays leading order distributions whereas the lower panel shows the correc-
tion ∆NF, cf. Eq. (17), in dependence of a relevant kinematic variable. As it follows from the plots,
the corrections to the jet transverse momenta distributions depend strongly on p j,⊥ and can even
exceed 1% in certain cases. By contrast, the correction to Higgs transverse momentum is rather flat
and, for this reason, is comparable to the correction to the VBF cross section Eq. (17). Correction
to the rapidity distribution of the Higgs boson is rather flat too but some dependence on the rapidity
is present in the corrections to the leading jet rapidity distribution and to the distribution in the
rapidity difference of the two jets. The correction to the rapidity distribution of the second jet is
similar to that of the first and we therefore do not show it separately.

We emphasize that in the numerical simulation we keep the full dependence of the leading
order cross section on the kinematic variables without expanding in transverse momenta. The plots
in Figs. 3 show that kinematic distributions peak below p j,⊥ = 100 GeV, which suggests that the
leading O(p2

j,⊥/s) power corrections to our result for σNNLO
nf are in a few percent range and, for

this reason, negligible. The plots also indicate that the Higgs boson is predominantly produced in
the central rapidity region with a large rapidity gap with respect to the tagging jets, which justifies
the momentum scaling used in our analysis.

Thus we have obtained analytic results for the nonfactorizable NNLO QCD corrections to the
Higgs boson production in the vector boson fusion valid in the phenomenologically most interesting
kinematic region where the characteristic transverse momenta are much smaller than the center-
of-mass energy of the process and a rapidity gap between the Higgs boson and the tagging jets
is present. The leading in p j,⊥/

√
s correction is related to the Glauber phase and has a natural

π2-enhancement along with the color suppression relative to the factorizable ones. It exhibits
nontrivial dependence on the transverse momenta and rapidities of the tagging jets. Numerically,
the corrections are found to be close to half of a percent although they can become as large as a
percent in certain kinematic regions.
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