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1. Introduction

The exploration of the phase diagram of strongly interacting matter has become the focus
of intensive theoretical and experimental efforts during the last decades. The current theoretical
understanding of the phases of QCD matter is mainly based on universality arguments, effective
models and Lattice QCD calculations. The later predict a smooth crossover from the hadronic to
the quark-gluon phase at vanishing baryochemical potential (µb = 0) [1] and high temperatures
T . On the other hand phenomenological arguments based on effective models predict a first order
transition for large baryonic densities and low temperatures [2, 3]. These two limiting scenarios
suggest the presence of a second order transition from the hadron to the quark-gluon world at a
critical point (µc,Tc), occurring as the endpoint of a line of first order transitions. This critical end-
point (CEP) should be considered as the remnant of the chiral critical point in massless QCD and
its detection constitutes the holly grail for understanding strong interactions at finite temperature
and density.

However, despite the intensive theoretical work on the QCD phase diagram there are no strict
predictions, up to now, for the location and even the existence of this CEP. The reason is that the
only available fundamental tool to deal with strongly interacting matter, the Lattice QCD, suffers
from the so called "sign problem" at finite baryonic density (µb > 0) and therefore its predictions
in this regime are questionable. As a consequence the experimental exploration of the QCD phase
diagram becomes of higher priority. Current and future ion collision experiments are planned to
cover a wide range of this phase diagram: The crossover region (low µb, high T ) is probed by the
LHC (CERN) and RHIC (BNL) experiments, while the baryon rich region characterized by first
order transitions is investigated by FAIR (GSI) and NICA (forthcoming, JINR) experiments. Re-
cently it is argued that gravitational waves emitted from neutron stars could also provide invaluable
information concerning the equation of state and the first order transitions occurring in this regime.
Finally, in the intermediate region the experiments NA49 and NA61/SHINE (CERN, SPS) as well
as the RHIC-BES are expected to be able to approach the neighbourhood of the CEP.

In the experimental search for the QCD CEP the main task is to provide appropriate observ-
ables capturing the critical characteristics. In this effort, the guiding quantity is the order parameter
and its fluctuations which are expected to be power-law distributed at the CEP. The natural order
parameter for the remnant of the chiral transition is the chiral condensate which, due to its coupling
to the nucleons, transfers the critical fluctuations to the net-baryon density, and in particular the
proton density, as well [4]. As argued in recent works [5], factorial moment analysis of the proton
density could reveal the approach to the CEP through the phenomenon of intermittency which is
the manifestation of critical opalescence in sub-nuclear scales. Additionally, the formation of tails
in the distribution of the order parameter fluctuations close to the CEP, is expected to lead to non-
monotonic behaviour of the associated higher order cumulants [6], a scenario explored intensively
in RHIC-BES program.

The aim of the present work is to show that it is possible, employing the Ising-QCD partition
function, which is constructed from first principles (universality class arguments), to get significant
quantitative predictions for both, the appearance of the intermittency phenomenon in the neigh-
bourhood of the CEP as well as the behaviour of the higher order cumulants within the critical
region.
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2. The order parameter(s) of critical QCD

The thermodynamics close to the critical point is described by the fluctuations of the order
parameter. For strongly interacting matter, the order parameter of the QCD critical point is the chi-
ral condensate: 〈Ψ̄Ψ〉= ūu+ d̄d which defines the scalar-isoscalar field σ = 〈Ψ̄Ψ〉, remnant from
chiral phase transition. In fact, the tricritical point related to the spontaneous breaking of O(4)-
symmetry, carried by the isovector (σ ,~π) in massless QCD [7], becomes a 3d-Ising critical point
describing the spontaneous breaking of Z2-symmetry carried by the isoscalar field σ in massive
QCD [8].

In a finite-density medium the sigma field is coupled to the baryons. At leading order with
respect to baryonic density nb and temperature T one can write [3, 9]:

σ ≈ 〈Ψ̄Ψ〉0−
T 2

8 f 2
π

〈Ψ̄Ψ〉0−
ΣπN

f 2
π m2

π

〈Ψ̄Ψ〉0nb (2.1)

where 〈Ψ̄Ψ〉0 is the condensate at zero baryonic density and temperature. Thus, the fluctuations of
the σ -field have the form:

δσ ≈− ΣπN

f 2
π m2

π

〈Ψ̄Ψ〉0δnb ; δσ ∼ δnb (2.2)

where δσ are the fluctuations of the σ -field related to the corresponding isothermal susceptibility,
while δnb are the baryon-density fluctuations. For T → Tc the isothermal susceptibility diverges
(infinite system) and the fluctuations δσ and δnb attain the same singular behaviour. This qualifies
the net-baryon density nb to an equivalent order parameter for the QCD critical system, which
being a conserved quantity:

∂nb

∂ t
+ i~k · ~Jb(~k, t) = 0 (2.3)

dominates, as a slow variable, in the long-wavelength (k→ 0) limit. In the following we will focus
on the description of the baryon-density fluctuations close to the CEP.

3. Ising-QCD partition function

We employ the theoretical arguments supporting that the QCD CEP belongs to the 3d-Ising
universality class to construct a partition function describing the thermodynamics of the QCD crit-
ical system. The critical state of the 3d-Ising model is uniquely described by the following set of
critical exponents:

α ≈ 0, β ≈ 1
3
, γ ≈ 4

3
, δ ≈ 5, ν ≈ 2

3
, η ≈ 0 (3.1)

The effective action capturing the equation of state for the critical 3d-Ising system is given as [10]:

Se f f =
∫

V
d3x
[

1
2
|∇φ |2 +U(φ)−hφ

]
(3.2)

with the effective potential:

U(φ) =
1
2

m2
φ

2 +mg4φ
4 +g6φ

6 ; m = βcξ
−1 (g4 ≈ 1, g6 ≈ 2) (3.3)
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where the order-parameter field φ is the net magnetization (number of spins up minus number of

spins down) in a space cell of volume δV (measured in units β 3
c ): φ = β 3

c lim
δV→0

(
n↑−n↓

δV

)
and

βc =
1

kBTc
. In Eq. (3.3) ξ is the correlation length and g4, g6 are dimensionless coupling constants.

For an infinite system the correlation length ξ depends on the temperature T in a singular way as
T → Tc:

ξ ∼
∣∣∣∣1− T

Tc

∣∣∣∣−ν

(3.4)

We can map the effective action of the 3d-Ising critical system to the effective action of the QCD
critical point making use of the following Ising-QCD correspondence:

• (n↑,n↓) −→ (NB,NB̄) where NB and NB̄ are the baryon (spin up) and the antibaryon (spin
down) numbers respectively.

• Consequently the magnetization density is mapped to the net-baryon density: φ −→ β 3
c nb

• Finally, the external magnetic field h is mapped to the baryochemical potential (in units of
β−1

c ): h−→ (µ−µc)βc.

With this mapping we obtain from Eq. (3.4) the critical QCD adapted effective action Se f f ,QCD[nb]

which leads to the Ising-QCD partition function:

ZIQCD = ∑
{nb}

exp(−Se f f ,QCD[nb]) (3.5)

containing a sum over nb-configurations. Since nb is the slow mode, the long wavelength (constant)
configurations, for which ∇nb ≈ 0, dominate in the sum in Eq. (3.5). This allows to express the
partition function (3.5) in the grand-canonical description as [11]:

ZIQCD =
Λ

∑
Nb=0

ζ
Nb exp

[
−1

2
m2 N2

b
Λ
−mg4

N4
b

Λ3 −g6
N6

b
Λ5

]
(3.6)

with Λ = β−3
c V (V being the volume), m ∼ |t|ν , ζ = exp

(
µ−µc

Tc

)
and t = T−Tc

Tc
the reduced tem-

perature. Our claim is that ZIQCD in Eq. (3.6) describes correctly a critical system of protons, very
close to the critical point (ζ ≈ 1, t ≈ 0).

4. Scaling laws for the infinite system

In this section we will demonstrate that the Ising-QCD partition function in Eq. (3.6) leads to
the correct scaling laws characterizing the 3d-Ising universality class at the critical point. To this
end we consider the general class of systems:

Z (ζ ,Λ,T ) =
Λ

∑
N=0

ζ
N exp [−βF(N,Λ,T )] (4.1)

with free-energy F(N,Λ,T ) obeying:

F(N,Λ,Tc) = Fc

(
N
Λq

)
; q < 1 , Λ� 1 (4.2)
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Figure 1: The real part of the zeroes of the partition function (4.1) with q = 5
6 as a function of the system’s

size Λ in log-log scale. Only the first 6 zeroes of ZIQCD (nearest to ζ = (1,0)) are displayed.

at the critical temperature Tc. The Ising-QCD partition function ZIQCD belongs to this class with
q = 5

6 .
To explore the properties of the partition function Z in Eq. (4.1) at a more fundamental level

we utilize the Lee-Yang theory of phase transitions [12]. In this treatment the zeroes {ρi(Λ,T )} of
the partition function in the complex ζ -plane play a central role: At T = Tc they accumulate at the
critical point ζ = 1 for Λ→ ∞ (infinite system). The underlying accumulation law determines the
scaling properties of the critical system.

In terms of {ρi(Λ,T )} the partition function Z is represented as:

Z =
Λ

∏
i=1

[ζ −ρi(Λ,T )] (4.3)

Using this representation, it is straightforward to calculate the first multiplicity moment 〈N〉:

〈N〉= ζ
∂ lnZ

∂ζ
; 〈N〉=

Λ

∑
i=1

ζ

ζ −ρi(Λ,T )
(4.4)

and in a similar manner all the higher moments 〈Nk〉. At the critical point these moments should
obey scaling-laws with exponents related to q. The q-class partition function Z satisfies the re-
quirements of scaling theory for Λ� 1 if:

ρi(Λ,Tc) = 1+ γiΛ
−q ; γi ∈ C (4.5)

This is an important property and its validity has been checked numerically for the q-class partition
function setting q = 5

6 . The results for the 6 nearest to ζ = (1,0) zeroes, are shown in Figs. 1, 2 in
double logarithmic scale. We observe the validity of the scaling law (4.5) with the correct exponent
q as Λ→ ∞.
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Figure 2: The imaginary part of the zeroes shown in Fig. 1 as a function of the system’s size Λ in log-log
scale.

In fact, using the scaling law in Eq. (4.5) one can derive a complete set of power-laws for the
Ising-QCD theory in the limit Λ→ ∞:

• Order parameter (T → Tc, ζ → 1):

〈nb〉 ∼ tνd(1−q) −→ β = νd(1−q)

• Order parameter, isothermal (T = Tc, ζ → 1):

〈nb〉 ∼ (ζ −1)
1−q

q −→ δ =
1−q

q

• Susceptibility (T → Tc, ζ = 1):

χ ∼ t−νd(2q−1) −→ γ = νd(2q−1)

• Specific heat (T → Tc, ζ = 1):

c∼ tνd−2 −→ α = νd−2

• Correlation function for large distances r (T → Tc, ζ → 1):

Γ(r)∼ r−2d(1−q) −→ η = 2+d−2dq

Thus, one obtains the standard solution of scaling theory for the critical exponents:

α = 2−νd ; β = νd(1−q) ; γ = νd(2q−1)

δ =
q

q−1
; η = 2+d−2qd

in terms of the two fundamental critical indices q and ν which are incorporated in the Ising-QCD
partition function. Consequently, the infinite system’s description with Ising-QCD is fully compat-
ible with scaling theory laws!

5
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5. Finite-size scaling (FSS)

The effective description of critical QCD, through the Ising -QCD partition function, satisfies
the requirements of scaling theory, not only for the infinite system but also for a system of finite
volume Λ (finite-size scaling) at the critical point (ζ = 1, t = 0).

In fact, for a large but finite volume Λ, one obtains the power laws expected from scaling
theory of second-order phase transitions in the FSS regime, if the correlation length of the infinite
system is ξ∞� Λ

1
d :

nb ∼ Λ
− β

νd ; c∼ Λ
α

νd ; χ ∼ Λ
γ

νd (5.1)

where the exponents (α,β ,γ) correspond to the behaviour of the infinite system: nb ∼ tβ ; c ∼
t−α ; χ ∼ t−γ . In particular, the finite-size power law nb ∼Λ

− β

νd describes a geometrical structure
of the system with fractal dimension which is accessible to observation through the phenomenon
of intermittency: 〈Nb〉 ∼ Λq. It turns out that the fractal dimension of the critical system described
by a q-partition function is dF = qd. In the Ising-QCD system (q = 5

6 , d = 3) the fractal dimension
is dF = 5

2 and gives a measure of critical fluctuations. Thus, the Ising-QCD partition function
(3.6) provides us with a valuable effective description of critical QCD since it satisfies all the
requirements of scaling and universality near the QCD critical point.

6. Higher cumulants versus measurements at BNL-RHIC

Higher cumulants of net-baryon multiplicity and in particular non-Gaussian kurtosis (κnG) of
net protons is widely used in the search for the critical point [13]. They are defined as:

κnG =
C4−3C2

2

C2
2

; Ck = 〈(N−〈N〉)k〉 , k = 2, 3, .. (6.1)

It is argued that κnG possesses a non-monotonic behaviour, attaining a negative minimum when
crossing the critical point [6, 14].

The proposed Ising-QCD partition function leads to a prediction of κnG along the two direc-
tions (lnζ , t) in the phase diagram, employing the relations:

C2 =
∂ 2 lnZIQCD

∂ (lnζ )2 ; C4−3C2
2 =

∂ 4 lnZIQCD

∂ (lnζ )4 (6.2)

In Figure 3 we show the behaviour of the calculated kurtosis as a function of lnζ assuming T = Tc.
A sharp minimum near µ = µc is predicted as a signal for the critical point.

It is remarkable that the critical behaviour of the kurtosis cannot be captured in BES I mea-
surements (RHIC-STAR) as illustrated in Fig. 4.

In fact the broad minimum suggested by the data is not linked to the QCD critical point. From
theoretical point of view, the sharpness of the predicted minimum with a width of ≈ 5 MeV is a
manifestation of the narrowness of the critical region along the chemical potential direction. This
can be demonstrated in a detailed study of the Ising-QCD partition function. The basic argument
is that critical fluctuations are confined in a region of the phase diagram, around the critical point,
where a geometrical power law holds: 〈Nb〉 ∼Λq̃ with 3

4 < q̃ < 1. In the upper limit (q̃ = 1), critical

6
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Figure 3: The non-Gaussian kurtosis κnG, calculated through the partition function ZIQCD, as a function of
lnζ for T = Tc.

fluctuations disappear whereas in the lower limit (q̃ = 3
4 ) the fluctuations change universality class

(φ 6→ φ 4) and cannot be linked to the QCD critical point any more. The critical region is indeed
narrow (see Fig. 5) with size, for T = Tc, ∆µ ≈ 5−7 MeV, compatible with the width of the sharp
minimum of kurtosis.

7. Critical fluctuations of proton density versus measurements at CERN-SPS

According to our general discussion, the FSS property: 〈Nb〉 ∼ ΛdF/3, implies a fractal struc-
ture of critical fluctuations at large scales: 〈n(~x)n(~x′)〉 ∼ |~x−~x′|dF−3 for |~x−~x′| = O(Λ1/3). This
singular behaviour is transferred to the density-density correlation in proton transverse momentum
space for small momentum differences [15]: 〈n(~k)n(~k′)〉 ∼ |~k−~k′|−

2dF
3 (dF = 5

2 ). Such a singularity
is detectable through intermittency studies in proton transverse momentum space [5]. The second

7
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Figure 4: The non-Gaussian kurtosis κnG (red circles) measured in central Au + Au collisions at BES
I (RHIC-STAR). The blue line is the result of the calculation of κnG employing the Ising-QCD partition
function.

Figure 5: A map of the critical region in the (lnζ , t)-plane, obtained through the Ising-QCD partition
function. In the shaded region the scaling 〈Nb〉 ∼ Λq̃ with 3

4 < q̃ < 1 is valid.

factorial moment F2(M) in a cell of the transverse momentum space with side 1
M is expected to fol-

low a power law of the form: F2(M)∼M2φ2 for large M with a characteristic critical index φ2 =
5
6 .

Measurements at CERN-SPS have uncovered such a behaviour, but with large experimental un-
certainties, in Si + Si collisions at 158 GeV/c (NA49 experiment, [16]). The central value of the
corresponding intermittency index was found φ̃2 ≈ 0.96, suggesting that the Si + Si freeze-out state
is located within the critical region, close to the boundary. This result may serve as a reference in
order to proceed to a more detailed phenomenology of the critical point based on the Ising-QCD

8
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Figure 6: A map of the critical region in the (lnζ , t)-plane containing the location of the measured freeze-
out states in NA49 experiment as well as predictions concerning the Be +Be, Xe + La and Ar + Sc freeze-out
states expected to be measured in NA61/SHINE experiment. For completeness, we present also the Au +
Au freeze-out state (central collisions) at

√
s = 14.5 GeV (RHIC-STAR).

partition function and on new measurements at CERN-SPS.
In practice, the constraints imposed by FSS, Ising universality, recent measurements of freeze-

out states and intermittency measurements in Si + Si, Pb + Pb and C + C collisions at CERN-SPS
(NA49) lead to the location of various systems in the phase diagram, showing their distance from
the area of the critical region, as shown in Fig. 6. Only the process Si + Si freezes out within
the critical region while the freeze-out state of peripheral collisions in the Ar + Sc system may
approach the boundary. Proton-intermittency analysis in this process is, at present, in progress.

8. Summary

It is demonstrated that the Ising-QCD universality leads to the construction of partition func-
tion which describes the QCD system (net baryons) close to the critical point. This description
satisfies all requirements of scaling theory and universality. Based on this Ising-QCD partition
function one can formulate predictions which are relevant to measurements in the search for the
QCD critical point:

• The system develops a fractal structure at the critical point with dimension dF = 5
2 , which is

a measure of critical fluctuations. This fractal structure in configuration space implies self-
similar fluctuations in transverse momentum space, detectable through intermittency analy-
sis.

• The critical region is narrow along the chemical potential direction (∆µ ≈ 5−7 MeV).

• A sharp minimum of kurtosis appears close to the critical point. The sharpness of this mini-
mum is linked to the narrowness of the critical region.

9
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These predictions do not depend on the details of the description but only on the principles of
Ising-QCD universality and FSS. The BES I measurements (RHIC-STAR) of net-proton kurtosis
cannot capture the sharp minimum in the search for the critical point. The observed broad mini-
mum is not related to the CEP. Measurements at CERN-SPS provide us with indications of critical
fluctuations in the freeze-out states of Si+Si central collisions at 158A GeV/c (NA49). This opens
up the perspective to detect critical fluctuations in peripheral Ar + Sc collisions at 150A GeV/c
(NA61/SHINE).
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