
P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
2
2

Where we are on B-physics discrepancies

Diego Guadagnoli∗

LAPTh, CNRS & Université de Savoie Mont-Blanc, 74941 Annecy, France
E-mail: diego.guadagnoli@lapth.cnrs.fr

We discuss the theory interpretation of the discrepancies in semi-leptonic B decays as of Moriond
2019. By critically including loop-induced effects that have not been discussed before in the
context of global fits, we show that a fully coherent picture is possible all the way from the weak-
effective-theory to the SMEFT to the simplified-model level.

Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity"
(CORFU2019)
31 August - 25 September 2019
Corfù, Greece

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:diego.guadagnoli@lapth.cnrs.fr


P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
2
2

Where we are on B-physics discrepancies Diego Guadagnoli

1. Introduction

Recent years witnessed the build-up of several deviations from Standard-Model (SM) expec-
tations in semi-leptonic B decays. These deviations fall in four groups of datasets, each of which
characterized by different measurements, and different theory and experimental challenges:

(a) b→ sµµ differential branching-ratio data lower than the corresponding SM predictions [1,
2]. Here the main challenge is the control over B to light meson hadronic form factors
[3, 4, 5];

(b) Deviations with respect to SM predictions in B→ K∗µ+µ− angular observables in certain
kinematic regions for the di-lepton q2 [6, 7, 8, 9]. Although form factor uncertainties are
under better control than for branching ratios, hadronic uncertainties are nevertheless signif-
icant [10, 11] (see however [12]);

(c) Deviations from lepton universality in b→ s`` transitions in the processes B→K`` and B→
K∗`` (via the µ/e ratios RK [13] and RK∗ [14]). Here the challenge is mostly statistics, due in
particular to the ee channel, that requires harder pT thresholds and has larger bremsstrahlung
systematics;

(d) Deviations from τ-µ and τ-e universality in b→ c`ν transitions [15, 16, 17, 18, 19, 20,
21]. Here uncertainties, besides statistics, include a non-negligible experimental systematics,
whereas theory uncertainties are small [22, 23, 24, 25].

It is quite impressive that items (a) to (c) can be simultaneously explained with one and the
same shift to two four-fermion semi-leptonic operators and as a result, the picture be substan-
tially improved with respect to the SM. It is likewise quite enticing that all items (a) to (d) can
be explained, not only qualitatively but even quantitatively, all the way from the level of the Weak
Effective Theory (WET), to the so-called SM Effective Field Theory (SMEFT), to the level of
simplified models, as shown in Ref. [26].

Ref. [26]’s conclusions rely on a number of data updates, among the others:

(1) The new measurement of RK by the LHCb collaboration combining Run-1 data with 2 fb−1

of Run-2 data (corresponding to about one third of the full Run-2 data set) [27].

The SM predicts lepton flavour universality, i.e. RSM
K is unity with uncertainties [28] that are

well below the current experimental sensitivities. While the updated experimental value is
closer to the SM prediction than the Run-1 result [13], the reduced experimental uncertainties
imply a tension between theory and experiment at the level of 2.5σ , which is comparable to
the situation before the update.

(2) The new, preliminary measurement of RK∗ by Belle [29].

Averaged over B± and B0 decays, the measured RK∗ values at low and high q2 are

RK∗ =
BR(B→ K∗µµ)

BR(B→ K∗ee)
=

{
0.90+0.27

−0.21±0.10 , for 0.1GeV2 < q2 < 8GeV2 ,

1.18+0.52
−0.32±0.10 , for 15GeV2 < q2 < 19GeV2 .

(1.1)
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Given their sizable uncertainties, these values are compatible with both the SM predictions
and previous results on RK∗ from LHCb [14]

RK∗ =
BR(B→ K∗µµ)

BR(B→ K∗ee)
=

{
0.66+0.11

−0.07±0.03 , for 0.045GeV2 < q2 < 1.1GeV2 ,

0.69+0.11
−0.07±0.05 , for 1.1GeV2 < q2 < 6GeV2 ,

(1.2)
that are in tension with the SM predictions by ∼ 2.5σ in both q2 bins.

(3) One further, important piece of information included in our study is the 2018 measurement of
Bs→ µµ by the ATLAS collaboration [30], that we combine with the existing measurements
by CMS and LHCb [31, 32, 33]. (Later experimental updates are not included as of this
writing.)

We refer the reader to Ref. [26] for full details.

2. Weak Effective Theory

The first step is to address the question whether these datasets can be described within the
most general effective theory constructed at the electroweak scale. As well known, this is not only
possible, but even rather simple to accomplish. Data obey a pattern, which quite clearly suggests
that new effects may involve two dominant structures: a left-handed b̄s current times a vector (O9)
or an axial-vector muon current (O10). The best performing new-physics scenarios to explain the
data involve precisely these two operators, and in particular either O9 alone, or the combination
O9−O10, yielding a (V −A)× (V −A) structure, well suited to UV interpretations.
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Figure 1: Neutral-current lepton flavour universality (NCLFU) observables (blue), b→ sµµ and correlated
observables (yellow) and global fit (red). Dashed contours exclude the Moriond-2019 results.

At the quantitative level, one may first try with a single d.o.f. left floating, and fit it to data.
In this case, two scenarios stand out, either C(µ)

9 alone or C(µ)
9 = −C(µ)

10 . This was the case also
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before Moriond 2019. However, at least within the approach of [26], the second scenario has an
appreciably better performance with respect to the former. This is due to a concurrence of causes,
notably the fact that B(Bs→ µµ) prefers more and more a non-zero shift to C(µ)

10 , as shown in the
C(µ)

9 vs. C(µ)
10 plane in Fig. 1. We see that RK(∗) and b→ sµµ data perfectly overlapped before the

Moriond-2019 update. Thereafter, these two regions are in much lesser agreement, especially in
the C9 direction. There is likewise a slight tension between RK and RK∗ , which may be addressed
with right-handed quark currents. Thus one would be tempted to advocate e.g. O(µ)′

9 . However,
such operator would not accommodate Bs→ µµ .

One important point is that, as mentioned, in the C(µ)
9 vs. C(µ)

10 plane there is a degree of tension
between RK(∗) and b→ sµµ data, and a lepton-universal shift to C9 would shift b→ sµµ but not
ratio data.

It is thus interesting to consider the case of ∆C(µ)
9 = −C(µ)

10 vs. Cuniv.
9 , displayed in the right

panel of Fig. 1. Before Moriond 2019, the RK band was lower, and overlapped with b→ sµµ in a
region with zero Cuniv.

9 . After Moriond, accord between the two datasets prefers a non-zero Cuniv.
9 .

As we will see, such occurrence admits a well-defined UV interpretation.

3. SMEFT

We next discuss the performance of an EFT description at a scale of a few TeV, and with-
out new d.o.f. beyond those in the SM. Effects beneath such new scale are described by the
SMEFT. In our case, contributions to the two directions identified before, namely ∆C(µ)

9 = −C(µ)
10

and Cuniv.
9 , can come from: (i) these very semi-leptonic operators, constructed out of left-handed

SM multiplets, L and Q, and either singlets or triplets under SU(2)L, i.e. L̄(3)γαL(3)Q̄(2)γαQ(3)

and L̄(3)γατaL(3)Q̄(2)γατaQ(3); (ii) Cuniv.
9 can be generated by 4-fermion operators where one of the

two bilinears is closed in a loop to which a virtual gauge boson emitting a lepton pair is attached
[34, 35]. Hence the amplitude is lepton-universal by gauge universality.

Interestingly, if the closed loop involves two τ’s, the corresponding 4-fermion operator can
also explain RD(∗) [35]. We find that the induced Cuniv.

9 contribution has the correct size and sign to
quantitatively accommodate b→ sµµ . Then the very same operators, but with muonic indices, can
explain RK(∗) . The only caveat is that singlet and triplet couplings in the semi-tauonic case must be
approximately equal in size in order to avoid B→ K(∗)νν̄ constraints [36].

This scenario can be visualized in the first panel of fig. 2, in the plane of tauonic vs. muonic
singlet-equal-to-triplet couplings. Again, before Moriond 2019, RK (blue) and b→ sµµ (yellow)
were in perfect agreement in a region that however did not overlap with the RD(∗) region (green).
After Moriond 2019, the blue, yellow and green regions all overlap.

4. Simplified models

The previous EFT picture finds a UV interpretation within the U1 vector-leptoquark model,
with U1 ∼ (3,1)2/3 under the SM gauge group [37, 38, 39, 40, 41, 42, 43, 44, 45, 46]. This is

the only single mediator that can yield non-zero values for [C(1)
lq ]3323 = [C(3)

lq ]3323 and [C(1)
lq ]2223 =

[C(3)
lq ]2223.
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Figure 2: First panel: Neutral-current lepton flavour universality (NCLFU) observables (blue), b→ sµµ and
correlated observables (yellow), RD(∗) (green) and global fit (red). Dashed contours exclude the Moriond-
2019 results. Second panel: plane of tauonic couplings within the U1 simplified model.

One can then define the simplified-model coupling LU1 ⊃ g ji
lq

(
q̄iγµ l j

)
Uµ + h.c.. A shift to

RK(∗) will depend on g22,23
lq , whereas a shift to RD(∗) depends on g33,32

lq . Tauonic couplings are
known to be constrained by τ → `νν , hence it is far from obvious that the whole picture can work
quantitatively. The plane of tauonic couplings is displayed in Fig. 2 (second panel) and it shows
that RD(∗) can indeed be comfortably accommodated in compliance with all constraints. We note
that radiative decays provide a further constraint, which is however very model-dependent, because
additional fermions would also contribute to dipole structures and shift B→ Xsγ along the diagonal
[47]. Choosing a benchmark point in the tauonic-couplings plane, e.g. (g32

lq ,g
33
lq ) = (0.6,0.7) also

displayed in the figure, one can see that all constraints are fulfilled in the plane g22,23
lq of the muonic

couplings [26]. In particular, the above benchmark point performs way better than the case of null
tauonic couplings. Finally, this model also allows to address the question whether such tauonic
couplings may be constrained by direct searches, discussed in [48, 49, 50, 51, 52, 53]. We find
that the indirect constraint from leptonic τ decays [54, 55] is stronger than the direct constraints in
nearly all of the parameter space.
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