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1. Introduction

In a series of recent works [1, 2, 3, 4, 5, 6, 7], the inverse β -decay of uniformly accelerated
protons, p→ n + e+ + νe, has served as a theoretical tool for testing the very nature of asymptotic
neutrino states – mass or flavor. By computing the scalar decay rate both in the laboratory frame
(where the proton is accelerated) and in the comoving frame (where the proton is at rest and in-
teracts with the Unruh [8] thermal bath of electrons and antineutrinos), it has been shown that the
only way to get consistency with: i) the general covariance of Quantum Field Theory (QFT) [2], ii)
the phenomenon of neutrino oscillations [6] and iii) the related effects of CP violation [7] is by use
of flavor states. However, due to the lack of feasible experiments1 and the widespread skepticism
on the realness of Unruh effect, one may question the physical relevance of the above framework
and the results it entails [4].

To avoid this kind of ambiguity, here we consider a more experimentally accessible process,
i.e. the neutron β -decay

n→ p + e− + ν̄e . (1.1)

Unlike protons, it is well-known that isolated neutrons decay spontaneously (i.e. no acceleration
is needed) with a mean lifetime of about 887s, according to the Standard Model. Hence, the
advantage of this study is that one can strip the formalism down to essentials at first, getting rid
of any extra ingredient which may overshadow the real core of the analysis (we shall refer to this
streamlined analysis as minimal analysis). Calculations can then be refined step-by-step, bringing
into play new (higher-order) effects, such as the acceleration of the neutron or the ensuing thermal
Unruh effect. Clearly, this bottom-up approach makes no sense for the proton: in that case, indeed,
the stability of the particle trivializes the minimal analysis.

Along this line, in what follows we start by investigating the rôle of neutrino mixing in the
β -decay of static neutrons. Calculations of the transition rate and energy spectrum are performed
within Pontecorvo theory with only two neutrino flavors [9]. To guarantee the family lepton number
conservation in the interaction vertices, we take the emitted antineutrino to be in a flavor eigenstate,
showing that our results are in agreement with the predictions of the minimal Standard Model
with massless neutrino in the relativistic limit. We also comment on the possibility to naturally
account for flavor oscillations within such a framework. The above analysis is later generalized to
accelerated neutrons by using the semiclassical treatment of Refs. [2, 6, 7].2 Apart from its intrinsic
interest in some astrophysical situations as, e.g., the cooling of neutron stars, where significant
accelerations can be provided by internal magnetic fields, we remark that this study is intended as
a “stress-test” of the formalism of Refs. [2, 6, 7]. In the limit of vanishing acceleration, indeed,
we prove that the obtained decay rate recovers the standard expression for static neutrons, thus
providing a check for the internal consistency of the formalism of Refs. [2, 6, 7], as well as for the
results there contained. We finally discuss the relevance of our outcome to some recent neutrino
experiments such as KATRIN and PTOLEMY.

1We recall that protons are not likely to decay in laboratory conditions, e.g. with typical accelerations at
LHC/CERN, a rough estimation of their lifetime yields τp ≈ 103×108

yr, a time out of reach even for the most long-
lived physicist.

2A similar analysis with massless neutrino was proposed in Ref. [10].
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The remainder of the work is organized as follows: in Sec. 2 we review the basics of Pon-
tecorvo theory of neutrino mixing and set the stage for the analysis of the β -decay. Section 3 is
devoted to compute the decay rate of both static and accelerated neutrons. Conclusions and future
prospects are summarized in Sec. 4 . Throughout all the work, we shall use natural units }= c = 1
and the mostly negative metric signature

η
µν = (1,−1,−1,−1). (1.2)

2. Neutron β -decay and neutrino mixing: the general framework

In the Standard Model of fundamental interactions, neutrinos weakly couple with other par-
ticles in flavor eigenstates |ν`〉 (` = e,µ), which are linear superpositions of mass eigenstates |ν〉
( j = 1,2) via Pontecorvo mixing transformation [9](

|νe〉
|νµ〉

)
=

(
cosθ sinθ

−sinθ cosθ

)(
|ν1〉
|ν2〉

)
, (2.1)

with θ being the mixing angle (a similar transformation holds for neutrino fields as well3). The fact
that the mass and flavor representations cannot be simultaneously diagonalized begs the question of
which one should be regarded as fundamental when computing observables such as cross-sections
or decay rates within the S-matrix framework. In spite of this ambiguity, a clue to the solution was
recently given in Ref. [12], where it was shown that the use of flavor neutrinos as external states is
well-founded both physically (since it leads to predictions which are in agreement with the Standard
Model) and mathematically (as the asymptotic t→±∞ limit does not pose any technical difficulties
in performing the computations). Additionally, this setting allows to naturally incorporate the
effects of flavor oscillations, a feature the treatment with mass states would fail to pinpoint [6].
Thus, based on the above considerations, in what follows we shall resort to the flavor representation
for developing our calculations.

In order to describe the β -decay (1.1), let us employ a Fermi-like effective theory with currents
defined in a covariant manner [10]. For this purpose, we consider a neutron in Minkowski space-
time of inertial coordinates x ≡ (t,x) ∈ R4. Denoting by xα(τ) the neutron worldline of proper
time τ , the associated current takes the form

ĵα
n (x) =

q̂(τ)uα(τ)

u0(τ)
δ

3[x−x(τ)] , (2.2)

where u0 = dt/dτ and q̂(τ) = eiĤ0τ q̂0e−iĤ0τ is the monopole operator, with Ĥ0 being the neutron
proper Hamiltonian [10].

The current ĵα in Eq. (2.2) depends in an essential way on the motion of the neutron. In
principle, a similar expression should be defined for the proton as well. In what follows, however,

3In Ref. [11] it was shown that the implementation of Pontecorvo transformations at level of fields leads to an
inconsistency with the definition (2.1) of flavor states, which actually turn out to be generalized coherent states. However,
in the relativistic regime and for small mass-difference between mixed neutrinos, Eq. (2.1) well approximate the exact
field theoretical definition (see, for instance, Refs. [3, 5]).
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we shall work in the so-called “no-recoil approximation”, namely we assume the four-velocity of
the proton to be insensitive to the electron-antineutrino emission. This holds true as far as the
momenta of the emitted leptons are much smaller than the masses of neutron and proton. Within
such a framework, we can naively neglect the different inner structures of the two hadrons and
regard them as energy levels of a unique quantum system, the nucleon, moving along a fixed
trajectory. The neutron current ĵα

n is then identified with the semiclassical nucleon current ĵα
n→p,

the matrix element of which reads

jα
n→p(x) ≡ 〈p| ĵα

n→p(x)|n〉

= Ge f f e−i(Mn−Mp)τ
uα(τ)

u0(τ)
δ

3[x−x(τ)], (2.3)

where Ge f f = |〈p|q̂0|n〉| is the effective coupling constant and |n〉(|p〉) is the neutron (proton)
energy eigenstate of eigenvalue Mn(p), i.e. Ĥ0|n〉(|p〉) = Mn(p)|n〉(|p〉).

On the other hand, we adopt a full quantum picture to describe the emitted electron and an-
tineutrino by defining the lepton current as

ĵα
l (x) = ∑

`=e,µ

(
Ψ̂ν`

(x)γα
(
1− γ

5)
Ψ̂`(x)+ Ψ̂`(x)γα

(
1− γ

5)
Ψ̂ν`

(x)
)
, (2.4)

where γα are the Dirac matrices in the Dirac representation [2].4 The neutrino and electron field,
Ψ̂ν`

and Ψ̂`, respectively, are quantized according to

Ψ̂(x) = ∑
σ=±

∫
d3k

[
b̂kσ ψ

(+ω)
kσ

(x) + d̂†
kσ

ψ
(−ω)
−k−σ

(x)
]
, (2.5)

where

ψ
(±ω)
kσ

(x) =
ei(∓ωt+k·x)

22π
3
2

u(±ω)
σ (k) . (2.6)

The spinors u(±ω)
σ (k) are given by

u(±ω)
+ (k) =

1√
ω(ω±m)


m ± ω

0

kz

kx + iky

 , u(±ω)
− (k) =

1√
ω(ω±m)


0

m ± ω

kx − iky

−kz

 . (2.7)

The operators b̂kσ (d̂kσ ) in Eq. (2.5) denote the annihilators of particles (antiparticles) having three-
momentum k ≡ (kx,ky,kz), polarization σ = ±, frequency ω =

√
k2 +m2 and mass m. Since the

modes (2.6) are normalized to Dirac delta [2], these operators obey the canonical anticommutation
relations.

4In the case of a static neutron, it is well-known that a purely quantum definition in terms of the up and down quark
fields can be adopted for the hadronic current as well. Hence, the use of the semiclassical expression (2.2) in the present
analysis arises out of the attempt of formulating a description of the β -decay which can be applied to static, as well as
accelerated neutrons (for which a full-fledged field theoretical treatment that also accounts for the external accelerating
agent is still missing).
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To compute the neutron β -decay spectrum at tree level, we now couple the nucleon and lepton
currents through the weak-interaction action

ŜI =
∫

d4x
√
−g(x) ĵn→p,α(x) ĵα

l (x), (2.8)

with g being the determinant of the metric. Accordingly, the vacuum transition amplitude can be
evaluated as

A n→p(ν̄e) = 〈p|⊗ 〈e−, ν̄e|ŜI|0〉⊗ |n〉 , (2.9)

where ν̄e on the l.h.s. reminds us that we are analyzing the process with an electron antineutrino
among the detected particles.

Now, by plugging Eq. (2.8) into (2.9) with the field decomposition (2.5), we obtain

A n→p(ν̄e) = cos2
θ

∫
d4x
√
−g jn→p,α ψ̄

(+ωe)
ke,σe

γ
α
(
1− γ

5)
ψ

(−ων1 )

−kν ,−σν
(2.10)

+ sin2
θ

∫
d4x
√
−g jn→p,α ψ̄

(+ωe)
ke,σe

γ
α
(
1− γ

5)
ψ

(−ων2 )

−kν ,−σν
,

where the spacetime dependence on the r.h.s. has been omitted in order to streamline the notation.
Note that, since the interaction is the standard electroweak vertex producing the antineutrino with
definite flavor, we have resorted to the transformation (2.1) to express both the antineutrino field
and state in terms of the corresponding massive objects. Moreover, we have employed the equal-
momentum and equal-polarization assumptions for states with different masses.

Equation (2.10) allows us to evaluate the averaged differential transition probability as

dP n→p

d3kν d3ke
(ν̄e) =

1
2 ∑

σe,σν =±
|A n→p|2 . (2.11)

By explicit calculations, one can show that

dP n→p

d3kν d3ke
(ν̄e) =

1
2

cos4
θ

∫
d4x
√
−g(x)

∫
d4x′

√
−g(x′)Jn→p

αβ
(x,x′)Gαβ (1)

ke,kν
(x,x′) (2.12)

+
1
2

sin4
θ

∫
d4x
√
−g(x)

∫
d4x′

√
−g(x′)Jn→p

αβ
(x,x′)Gαβ (2)

ke,kν
(x,x′)

+
1
2

cos2
θ sin2

θ

(∫
d4x
√
−g(x)

∫
d4x′

√
−g(x′)Jn→p

αβ
(x,x′)Gαβ (1,2)

ke,kν
(x,x′) + c.c.

)
,

where

Jn→p
αβ

(x,x′) = G2
e f f

uα(τ)uβ (τ
′)

u0(τ)u0(τ ′)
e−i∆M(τ−τ ′)

δ
3[x−x(τ)]δ 3[x′−x(τ ′)] , (2.13)

with ∆M = Mn−Mp ' 1.29 MeV, and

Gαβ ( j)
ke,kν

(x,x′) = ∑
σe,σν=±

[
ψ̄

(+ωe)
ke,σe

(x)γα
(
1− γ

5)
ψ

(−ων j )

−kν ,−σν
(x)ψ̄

(−ων j )

−kν ,−σν
(x′)γβ

(
1− γ

5)
ψ

(+ωe)
ke,σe

(x′)
]
,

(2.14)

Gαβ (i, j)
ke,kν

(x,x′) = ∑
σe,σν=±

[
ψ̄

(+ωe)
ke,σe

(x)γα
(
1− γ

5)
ψ

(−ωνi )

−kν ,−σν
(x)ψ̄

(−ων j )

−kν ,−σν
(x′)γβ

(
1− γ

5)
ψ

(+ωe)
ke,σe

(x′)
]
,

(2.15)
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with (i, j) = {1,2}. The first of these two equations can be cast in the form

Gαβ ( j)
ke,kν

(x,x′) = tr

{
γ

α
(
1− γ

5)
∑

σν=±

[
ψ

(−ων j )

−kν ,−σν
(x)ψ̄

(−ων j )

−kν ,−σν
(x′)
]

(2.16)

× γ
β
(
1− γ

5)
∑

σe=±

[
ψ

(ωe)
ke,σe

(x′)ψ̄
(ωe)
ke,σe

(x)
]}

,

which can be further simplified by using the spin-sum relation

∑
σ=±

ψ
(±ω)
±k,σ (x)ψ̄

(±ω)
±k,σ (x

′) =
(/k ± m)

2(2π)3
ω

e±ikλ (x−x′)
λ , (2.17)

where kλ ≡ (ω,k) is the four-momentum of the emitted fermion and /k≡ kλ γλ in the usual Feynman
slash notation. On the other hand, Gαβ (i, j)

ke,kν
is less easy to handle, as it involves the product of

neutrino spinors with different masses. We shall face it explicitly on a case-by-case basis.
Substitution of Eqs. (2.13) - (2.17) into (2.12) yields

dP n→p

d3kν d3ke
(ν̄e) =

1
2

cos4
θ

∫
dτ

∫
dτ
′ G2

e f f

(2π)6
e−i∆M(τ−τ ′)

ων1ωe
ei(kν1+ke)

λ [x(τ)−x(τ ′)]λ (2.18)

×
{

2
[
2k(αe kβ )

ν1 − iεαβγρ(ke)γ(kν1)ρ

]
uα(τ)uβ (τ

′)−2(ke)
λ (kν1)λ uδ (τ)uδ (τ

′)
}

+
1
2

sin4
θ

∫
dτ

∫
dτ
′ G2

e f f

(2π)6
e−i∆M(τ−τ ′)

ων2ωe
ei(kν2+ke)

λ [x(τ)−x(τ ′)]λ

×
{

2
[
2k(αe kβ )

ν2 − iεαβγρ(ke)γ(kν2)ρ

]
uα(τ)uβ (τ

′)−2(ke)
λ (kν2)λ uδ (τ)uδ (τ

′)
}

+
1
2

cos2
θ sin2

θ

{∫
dτ

∫
dτ
′G2

e f f e−i∆M(τ−τ ′) uα(τ)uβ (τ
′)

× ∑
σe,σν=±

[
ψ̄

(+ωe)
ke,σe

(
x(τ)

)
γ

α
(
1− γ

5)
ψ

(−ων1 )

−kν ,−σν

(
x(τ)

)
ψ̄

(−ων2 )

−kν ,−σν

(
x(τ ′)

)
γ

β
(
1− γ

5)
ψ

(+ωe)
ke,σe

(
x(τ ′)

)]
+c.c.

}
,

where εαβγδ is the Levi-Civita pseudotensor (with ε0123 = 1) and

k(αe kβ )
ν j ≡ (kα

e kβ

ν j + kβ
e kα

ν j
)/2. (2.19)

Equation (2.18) will be the starting point of our next analysis.

3. Calculation of the β -decay rate

Let us exploit the notions and formalism of Sec. 2 to compute the β -decay of both static and
uniformly accelerated neutrons. The two results shall then be compared in the limit of vanishing
acceleration, showing that they are consistent with each other, as well as with the full-fledged field
theoretical outcome of Ref. [12].
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3.1 Static neutron

In the case of a static neutron, the worldline xα(τ) is simply given by

xα(τ) = (τ,x1,x2,x3) , (3.1)

with xi = const. Accordingly, the four-velocity takes the form

uα(τ) = (1,0,0,0) . (3.2)

By plugging the above relations into the differential transition probability (2.18), after some tedious
but straightforward calculations we get

dP n→p

d3kν d3ke
(ν̄e) = cos4

θ

(
1 +

kν ·ke

ων1ωe

)∫
dτ

∫
dτ
′ G2

e f f

(2π)6 ei(−∆M+ων1 +ωe)(τ−τ ′) (3.3)

+ sin4
θ

(
1 +

kν ·ke

ων2ωe

)∫
dτ

∫
dτ
′ G2

e f f

(2π)6 ei(−∆M+ων2 +ωe)(τ−τ ′)

+
1
2

cos2
θ sin2

θ

ωe

[
|kν |2 +(ων1−mν1)(ων2−mν2)

]
+ ke ·kν (ων1 +ων2−mν1−mν2)

ωe
√

ων1ων2 (ων1−mν1)(ων2−mν2)

×
∫

dτ

∫
dτ
′ G2

e f f

(2π)6 ei(−∆M+ωe)(τ−τ ′) ei(ων1 τ−ων2 τ ′) + c.c.

}
.

The above equation can be simplified by introducing the new coordinates

ξ =
τ− τ ′

2
, s =

τ + τ ′

2
, (3.4)

in term of which the integrals in Eq. (3.3) can be decoupled, giving

dP n→p

d3kν d3ke
(ν̄e) = 2cos4

θ

(
1 +

kν ·ke

ων1ωe

)∫
ds
∫

dξ
G2

e f f

(2π)6 e2i(−∆M+ων1 +ωe)ξ (3.5)

+2sin4
θ

(
1 +

kν ·ke

ων2ωe

)∫
ds
∫

dξ
G2

e f f

(2π)6 e2i(−∆M+ων2 +ωe)ξ

+ cos2
θ sin2

θ

ωe

[
|kν |2 +(ων1−mν1)(ων2−mν2)

]
+ ke ·kν (ων1 +ων2−mν1−mν2)

ωe
√

ων1ων2 (ων1−mν1)(ων2−mν2)

×
∫

ds ei(ων1−ων2 )s
∫

dξ
G2

e f f

(2π)6 ei(−2∆M+ων1 +ων2 +2ωe)ξ + c.c.

}
.

Note that, for θ → 0 and/or mν1 → mν2 , the result of Ref. [10] is straightforwardly recovered, as
expected in the absence of mixing5.

5More precisely, since we are computing the averaged β -decay rate, the result (3.7) is one half of the outcome of
Ref. [10] for θ → 0.

6
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Let us emphasize that the presence of the off-diagonal term in Eqs. (3.3) and (3.5) is a direct
consequence of describing the outgoing antineutrino via the flavor eigenstate |ν̄e〉. On the other
hand, by using mass eigenstates, one would simply obtain the inchoerent sum of the probabilities
for each massive antineutrino ν̄i multiplied by the square of the associate mixing matrix element
Uei, i.e.

dP n→p

d3k̃ν d3k̃e
≡ dP n→p

d3k̃ν d3k̃e
(ν̄1) +

dP n→p

d3k̃ν d3k̃e
(ν̄2) (3.6)

= 2cos2
θ

(
1 +

kν ·ke

ων1ωe

)∫
ds
∫

dξ
G2

e f f

(2π)6 e2i(−∆M+ων1 +ωe)ξ

+2sin2
θ

(
1 +

kν ·ke

ων2ωe

)∫
ds
∫

dξ
G2

e f f

(2π)6 e2i(−∆M+ων2 +ωe)ξ .

Clearly, this latter setting fails to account for the quantum interference between the two mass states.
A more detailed discussion on this can be found in Refs. [2, 5, 6, 7].

In order to compare our result with Ref. [12], let us now perform the ξ - and s- integrals over
infinite time intervals. Denoting by T = 2πδ (0) the (infinite) proper time of the nucleon, Eq. (3.5)
becomes

dΓn→p

d3kν d3ke
(ν̄e) = cos4

θ
G2

e f f

(2π)5

(
1 +

kν ·ke

ων1ωe

)
δ (ων1 +ωe−∆M) (3.7)

+ sin4
θ

G2
e f f

(2π)5

(
1 +

kν ·ke

ων2ωe

)
δ (ων2 +ωe−∆M) ,

where

Γ
n→p = Pn→p/T (3.8)

is the transition probability per proper time. Note that in this case the off-diagonal contribution
vanishes, as it is equal to a Dirac delta of non-null argument (ων1 6= ων2) resulting from the s-
integration (see Sec. 3.2 for a comparison with the case of an accelerated neutron). Equivalently,
in terms of the old coordinates τ,τ ′, it is easy to see that this term consists of the product of two
Dirac deltas picked up around the two different energy values ων1 +ωe−∆M and ων2 +ωe−∆M,
respectively.

The obtained formula (3.7) allows us to point out an interesting consideration about the sta-
bility of static (or, more generally, inertial) protons. Starting from the outlined picture, indeed, we
can analyze the decay of a proton into a neutron by simply reversing the rôles of the two particles.
In that case, the mass difference ∆M would acquire a negative sign, resulting in strictly positive
arguments of the two Dirac deltas in Eq. (3.7), and, thus, in a vanishing expression for the decay
rate, in agreement with Standard Model.

Now, by choosing a spherical coordinate system with respect to kν and integrating over the
electron and antineutrino momenta, the terms containing the product kν · ke in Eq. (3.7) vanish,

7
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yielding

dΓ
n→p(ν̄e) = cos4

θ
G2

e f f

2π3 |kν |2 |ke|2δ (ων1 +ωe−∆M)dkν dke (3.9)

+ sin4
θ

G2
e f f

2π3 |kν |2 |ke|2δ (ων2 +ωe−∆M)dkν dke .

The spectrum for the β -decay process is then

dΓn→p

dωe
(ν̄e) = cos4

θ
G2

e f f

2π3

√
(∆M−ωe)2−m2

ν1
|ke|ωe(∆M−ωe) (3.10)

+ sin4
θ

G2
e f f

2π3

√
(∆M−ωe)2−m2

ν2
|ke|ωe(∆M−ωe) .

To the linear order in mν j/ων j , the above relation takes the form

dΓn→p

dωe
(ν̄e) = (1− 1

2
sin2 2θ)

G2
e f f

2π3 |ke|ωe(∆M−ωe)
2 + O

(
mν

ων

)2

, (3.11)

which is simply the product of the spectrum for massless antineutrino, multiplied by the average
survival probability. This could be somehow expected, since when we perform the time integration
and take the asymptotic limit T →∞, we are effectively averaging the oscillation probability of the
antineutrino.

It is now worth noting that Eq. (3.11) is consistent with the result obtained in the relativistic
limit in Ref. [12] by using the generalized coherent flavor states (instead of Pontecorvo states) for
mixed antineutrinos and a weak Lagrangian which properly takes into account the different quark
compositions of the neutron and proton. Specifically, we have to compare Eq. (3.11) with Eq. (4.41)
of Ref. [12], here recast in our notation

dΓn→p

dωe
(ν̄e) = (1− 1

2
sin2 2θ)

G2
FV 2

ud
2π3

(
f 2 + 3g2) |ke|ωe(∆M−ωe)

2 + O

(
mν

ων

)2

, (3.12)

where GF ' Ge f f /2 is the Fermi coupling constant6, Vud ' 1 is the element of the CKM matrix
describing the transition amplitude from a quark down to a quark up, and f ' 1, g & 1 are the form
factors [13].

So far, we have only considered the decay channel (1.1): due to the asymptotic occurrence of
flavor oscillations, however, the process n→ p + e−+ ν̄µ has a non-vanishing probability as well.
By following similar calculations, one can show that the energy spectrum for this process is

dΓn→p

dωe
(ν̄µ) =

1
2

sin2 2θ
G2

e f f

2π3 |ke|ωe(∆M−ωe)
2 + O

(
mν

ων

)2

, (3.13)

6The relation between the effective coupling constant Ge f f and the Fermi coupling constant GF can be found by
imposing that the neutron proper lifetime is 887s, i.e. Γn→p ' 1/887s−1.
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which is the the spectrum for massless antineutrino times the average oscillation probability. Then,
the total neutron β -decay spectrum is simply given by the sum over the two flavors, i.e.

dΓn→p

dωe
≡ dΓn→p

dωe
(ν̄e) +

dΓn→p

dωe
(ν̄µ) (3.14)

=
G2

e f f

2π3 |ke|ωe(∆M−ωe)
2 + O

(
mν

ων

)2

,

which matches the prediction of the (minimal) Standard Model with massless neutrino.
Finally, let us note that, even though dΓn→p(ν̄e)/dωe 6= dΓn→p(ν̄1)/dωe + dΓn→p(ν̄2)/dωe,

the following equality holds:

dΓn→p

dωe
(ν̄e) +

dΓn→p

dωe
(ν̄e) =

dΓn→p

dωe
(ν̄1) +

dΓn→p

dωe
(ν̄2) , (3.15)

regardless of the approximation of relativistic neutrinos. As explained in Ref. [7], this is related
to the conservation of the total lepton number both in the presence and in the absence of flavor
mixing.

3.2 Accelerated neutron

Let us now analyze how the transition probability (3.5) gets modified for an accelerated neu-
tron [14]. The computation of the energy spectrum requires further analysis and will be presented
elsewhere [15].

Denoting by a the proper acceleration of the nucleon and assuming the motion to be along the
z-axis, the worldline in the usual Minkowski coordinates reads [10]

xα(τ) = (a−1 sinhaτ, 0, 0, a−1 coshaτ) , (3.16)

the corresponding four-velocity of which is

uα(τ) = (coshaτ, 0, 0, sinhaτ) . (3.17)

As in Sec. 3.1, it comes in handy to introduce the coordinates ξ and s, in terms of which one has

[x(τ)− x(τ ′)]λ = 2a−1 sinh(aξ ) [cosh(as),0,0,sinh(as)] = 2a−1 sinh(aξ )uλ (s), (3.18)

uα(τ) = cosh(aξ )uα(s)+asinh(aξ )xα(s), uα(τ ′) = cosh(aξ )uα(s)−asinh(aξ )xα(s), (3.19)

uα(τ)uα(τ
′) = cosh(2aξ ) . (3.20)

However, in this case the decoupling of the ξ - and s-integrals requires a further step, namely a
boost in the z-direction to the inertial frame instantaneously at rest with the accelerated nucleon
current at the proper time s. In so doing, the four-momenta of the emitted fermions take the form

kα → k̃α ≡ (ω̃, k̃) =
[
kλ uλ (s),k

x,ky,−akλ xλ (s)
]
. (3.21)

Note that, for a→ 0, we have k̃α → kα , as it should be.

9
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Now, by plugging Eqs. (3.18) - (3.21) into (2.18), we obtain

dP n→p

d3kν d3ke
(ν̄e) =

2
ων1ωe

cos4
θ

∫
ds
∫

dξ
G2

e f f

(2π)6 e2i[−∆Mξ +a−1 sinh(aξ )(ω̃ν1+ω̃e)] (3.22)

×
[
ω̃ν1ω̃e + k̃z

ν k̃z
e + cosh(2aξ ) k̃

⊥
ν · k̃

⊥
e + i sinh(2aξ )(k̃ν ∧ k̃e)

z]
+

2
ων2ωe

sin4
θ

∫
ds
∫

dξ
G2

e f f

(2π)6 e2i[−∆Mξ +a−1 sinh(aξ )(ω̃ν2+ω̃e)]

×
[
ω̃ν2ω̃e + k̃z

ν k̃z
e + cosh(2aξ ) k̃

⊥
ν · k̃

⊥
e + i sinh(2aξ )(k̃ν ∧ k̃e)

z]
+ cos2

θ sin2
θ

1
ωe
√

ων1ων2(ων1−mν1)(ων2−mν2)

∫
ds
∫

dξ
G2

e f f

(2π)6

{
e−2i∆Mξ

×e2ia−1 sinh(aξ )ω̃e eia−1{sinh[a(s+ξ )]ων1 −sinh[a(s−ξ )]ων2} e−2ia−1 sinh(aξ )sinh(as)kz
ν

×
{

cosh(2as)
[
ωe

(
|kν |2 + (ων1−mν1)(ων2−mν2)

)
+ kz

ν kz
e(ων1 +ων2−mν2−mν2)

]
+(ων1 +ων2−mν2−mν2)

[
cosh(2aξ )k⊥ν ·k⊥e + isinh(2aξ )(kν ∧ke)

z
]

−sinh(2as)
[

kz
e

(
|kν |2 +(ων1−mν1)(ων2−mν2)

)
+ kz

νωe(ων1 +ων2−mν1−mν2)
]}

+ c.c.
}
,

where k⊥ ≡ (kx,ky) is the transverse momentum and ∧ denotes the (three) vector product. Further-
more, we have exploited the invariance of the product k̃λ k̃λ under the boost (3.21). Clearly, where
left untouched, the frequencies ωe(ν j) and the momenta ke(ν) must be regarded as functions of the
new variables k̃α

e(ν j)
through the transformation (3.21), from which one obtains

d3k̃ν d3k̃e = d3kν d3ke
[ωe cosh(as)− kz

e sinh(as)] [ων cosh(as)− kz
ν sinh(as)]

ωνωe
(3.23)

= d3kν d3ke
ω̃ν ω̃e

ωνωe
.

For infinite nucleon proper time, the evaluation of the integrals in the two diagonal terms in
Eq. (3.22) is quite straightforward, as shown in Ref. [10]. By contrast, the simultaneous dependence
on mν1 and mν2 makes the interference contribution tougher to treat, since the ξ - and s-integrals
cannot be decoupled just as easily (a first estimate was exhibited in Ref. [2] for the case of the
inverse β -decay of an accelerated proton). Preliminary calculations [15] seem to indicate that,
due to the acceleration, the two Dirac deltas arising from the τ- and τ ′-integrations in the last
term of Eq. (3.5) would smear out over the energy scale (see the discussion after Eq. (3.7)). The
ensuing overlapping would thus be responsible for a non-trivial interference between the two mass
eigenstates (contrary to what happens in Eq. (3.5)), despite being ων1 6= ων2 .

In order to check the consistency of our formalism, let us now compute the a→ 0 limit of

10
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Eq. (3.22). By explicit calculations, we obtain

dP n→p

d3kν d3ke
(ν̄e) =

2
ων1ωe

cos4
θ

∫
ds
∫

dξ
G2

e f f

(2π)6 e2i(−∆M+ων1+ωe)ξ
(

ων1ωe + kz
νkz

e + k⊥ν ·k⊥e
)

+
2

ων2ωe
cos4

θ

∫
ds
∫

dξ
G2

e f f

(2π)6 e2i(−∆M+ων2+ωe)ξ
(

ων2ωe + kz
νkz

e + k⊥ν ·k⊥e
)

+ cos2
θ sin2

θ
1

ωe
√

ων1ων2(ων1−mν1)(ων2−mν2)

∫
ds
∫

dξ
G2

e f f

(2π)6

{
e−2i∆Mξ

×e2iωeξ ei[ων1 (s+ξ )−ων2 (s−ξ )]
{

ωe

[
|kν |2 + (ων1−mν1)(ων2−mν2)

]
+kz

ν kz
e(ων1 +ων2−mν2−mν2) + (k⊥ν ·k⊥e )(ων1 +ων2−mν2−mν2)

}
+ c.c.

}
, (3.24)

which exactly reproduces the result in Eq. (3.5).
A comment is in order at this stage: as a first step of our analysis, by considering the decay of

a static neutron, we have found that our formalism is consistent with Standard Model expectations
and with a natural description of neutrino flavor oscillations, provided one adopts flavor states as
fundamental representation for antineutrinos. Next, we have addressed the case of an accelerated
neutron, showing that the previous framework is correctly recovered (both at physical and mathe-
matical levels) in the limit of vanishing acceleration. In light of this, we can look at the following
scenario. Consider a static neutron: since it decays through the weak interaction, the conservation
(at tree level) of the family lepton number ensures that the antineutrino will be emitted with definite
flavor. Let us now accelerate the neutron: what does our formalism predict for the antineutrino?
Will it still appear with definite flavor? Will it be produced as a massive antineutrino? Since the
formalism can accommodate arbitrarily small values of the acceleration, we can focus on a barely
accelerated particle: in this context, we have no a priori reason to believe that a slight change in
the kinematics of the neutron may affect the properties of the decay products so drastically as to
alter the nature of the antineutrino. Actually, these properties do depend on the type of interaction
– which remains unchanged – rather than the motion of the parent particle. Thus, the answer is that
the outgoing antineutrino will still appear in a definite flavor eigenstate.

Let us now observe that all the above considerations also apply to the analysis of Refs. [2, 6, 7],
where the same formalism is employed for studying the inverse β -decay of accelerated protons.
Hence, the adoption of flavor eigenstates for describing asymptotic neutrinos is physically well-
grounded and correct even in that framework, contrary to what stated elsewhere in the literature.

4. Conclusions and Discussion

Since Pontecorvo’s pioneering work [9], the theoretical foundations of neutrino mixing have
been studied with great care. Phenomenological and experimental developments have successfully
confirmed the original idea of the occurrence of the phenomena of flavor mixing and oscillations,
thus opening new scenarios beyond the Standard Model. Challenging problems, however, remain
unsolved. Among these, the question of whether to consider mass or flavor states as fundamental
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representation for asymptotic neutrinos is still a vibrant subject of investigation [2, 6, 7, 11, 12, 16,
17, 18]. Along this line, in the present work we have attempted to answer this question by studying
the rôle of neutrino mixing in weak decay processes. As a test bench, we have considered the
β -decay of both static and accelerated neutrons. In the first case, we have found that the adoption
of flavor states leads to expressions for the decay rate and energy spectrum which agree with the
minimal Standard Model predictions in the relativistic limit, as well as with a natural description
of flavor oscillations. Then, we have extended our analysis to non-inertial neutrons, showing the
formalism to be well-defined and consistent with the above findings for vanishing acceleration
Beyond its intrinsic interest, we have discussed the relevance of our result in connection with the
recent controversy on the very nature of asymptotic neutrinos in the context of the inverse β -decay
of accelerated protons [1, 2, 4]. Clearly, several aspects remain to be addressed, including a full-
fledged QFT treatment of the problem which accounts for the description of the accelerating source
and for acceleration-induced effects on neutrino mixing and oscillations [19, 20].

Apart from theoretical investigation, let us remark that important pieces of information on the
dichotomy between flavor and mass neutrino states are expected to be provided by experiments.
In Ref. [12] and therein, indeed, it has been been shown that the spectrum of the Tritium β -decay
near the end-point energy is highly sensitive to whether neutrinos are flavor or mass eigenstates.
Similar considerations apply to the neutrino capture by Tritium as well. Therefore, data from recent
neutrino experiments such as KATRIN (which is projected to set an upper limit to the electron
antineutrino mass by examining the spectrum of electrons emitted from the Tritium decay) and
PTOLEMY (which aims to detect the relic neutrino background through a combination of a large
area surface-deposition tritium target) may help to make substantial progress towards resolving the
controversy.

Finally, we emphasize that the present formalism might be of some relevance for a deeper
understanding of how gravity influences decay processes and neutrino oscillations [21, 22, 23,
24, 25, 26, 27]. Although a more rigorous curved-spacetime calculation is required to address
these situations, the present study may provide a good approximation in the case of moderate
gravitational field, for which one can naively treat the decaying particle as being accelerated in flat
spacetime. This and other aspects will be investigated in more detail in future works.
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