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1. Introduction

In the post-Higgs discovery era, the Large Hadron Collider (LHC) has not seen any sign of
new physics yet. Moreover, the LHC Higgs data has shown an affinity towards the Standard Model
(SM) values[1, 2]. This has already pushed the scale of many Beyond the Standard Model (BSM)
scenarios to higher values if not discarded at all. Therefore, BSMs that are able to attain an align-
ment limit[3, 4, 5, 6, 7, 8], where a SM-like Higgs can be recovered, hold the key for future survival.
The two-Higgs-doublet models (2HDM)[9, 10] extensions are among those. Besides providing an
alignment limit, 2HDMs also have the desirable property that the oblique electroweak ρ parame-
ter remains unity at the tree level. Interestingly, the scalar sector of the minimal supersymmetric
models (MSSM) [11, 12, 13, 14, 15, 16] are structured around two-Higgs doublets.

In this proceeding [17], we consider that the 2HDM is an effective low-energy manifestation of
some fundmental ultraviolet (UV) complete scenario with an enhanced symmetry at the high scale.
Therefore, the interesting question would be to know if the measurement of 2HDM parameters at
the low-energy scale can provide us any hint of its embedding UV scenario that has an inaccssible
mass scale. We show that by studying the renormalization group (RG) running of the 2HDM
parameters, we would be able to test. In particular, we consider the MSSM framework[18, 19,
20, 21, 22, 23, 24, 25, 26] as the UV completer scenario with considerable high SUSY breaking
scale. We follow a bottom-up approach and assume the 2HDM scalar masses and mixings at
the low energy scale beforehand. Then we run the Higgs quartic couplings using the 2HDM RG
equations [27, 28, 29] and check if they satisfy the SUSY boundary conditions at some higher
scale. Our approach is preferable as it is independent of the details of the underlying theory which
are hidden in the matching conditions at the high energy scale.

2. Effective two-Higgs-doublet model

The two-Higgs-doublet model is built upon two SU(2) doublet scalars (with hypercharge Y =

+1), φ1 and φ2, and the most general gauge-invariant scalar potential can can be written as [3]
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. (2.1)

These three bilinear mass parameters and 7 quartic couplings can be understood as the MS param-
eters that can arise at the EW scale from a more complete theory at higher energies. It is evident
that the potential has an additional U(1) global symmetry [30], If the parameters m12,λ5,λ6,λ7

are all zero while the U(1) is broken and there remains only an unbroken discrete Z2 symmetry If
m12,λ6,λ7 are zero. The Z2 symmetry is only softly broken if m12 remains non-zero. The Z2 charge
assignments in the fermion sector leads to four different variants of 2HDM. Consequently, when
φ1 coupled only to down-type fermions and φ2 only to up-type fermions, is named as the type II
2HDMs. This discrete symmetry is useful to avoid the large flavor changing neutral currents and
appears, as an approximate symmetry, in supersymmetric models.
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We assume all the parameters in the potential to be real. The physical basis is specified by
seven parameters which are obtained after the electroweak symmetry breaking. These are the
four physical scalar masses (mh, mH , mA and m+), the total vacuum expectation value (vev) v =√

v2
1 + v2

2, tanβ = v2/v1, and the alignment angle cos(β −α) (here α is the mixing angle in the
CP-even sector).

Practically, the complete spectrum of the 2HDMs can be determined from the knowledge of
the scalar quartic coupling. For example, if some symmetry principle fixes the qaurtic couplings
of Eq. (2.1), e.g. supersymmetry, at some scale ΛS, then the remaining three bilinear parameters
can be solved from the knowledge of v (= 246 GeV), mh (' 125 GeV) and tanβ (or alternatively
cos(β −α)). Defining the combination of λi and tanβ , as follows (see [23, 31] for details):

g11 = λ1 cos4
β +λ2 sin4

β +2(λ3 +λ4 +λ5)sin2
β cos2

β +4λ6 cos3
β sinβ +4λ7 sin3

β cosβ ,

(2.2a)

g12 = cosβ sinβ
(
λ2 sin2

β −λ1 cos2
β +(λ3 +λ4 +λ5)cos2β

)
+3(λ7−λ6)sin2

β cos2
β +λ6 cos4

β −λ7 sin4
β ,

(2.2b)

g22 = (λ1 +λ2)cos2
β sin2

β −2(λ3 +λ4)cos2
β sin2

β

+λ5(sin4
β + cos4

β )+(λ7−λ6)sin2β cos2β , (2.2c)

g+ =
1
2
(λ5−λ4) . (2.2d)

the diagonalization of the mass matrices determines the couplings in terms of the known mh and v.

g11v2 = m2
H cos2(β −α)+m2

h sin2(β −α) , (2.3a)

g22v2 = m2
H sin2(β −α)+m2

h cos2(β −α)−m2
A , (2.3b)

g12v2 =
(
m2

h−m2
H
)

cos(β −α)sin(β −α) , (2.3c)

g+v2 = m2
+−m2

A , (2.3d)

Therefore, once all the quartic couplings λis are known, the scalar masses and mixing angles can
be easily determined from the above relations.

2.1 Supersymmetric Boundary Conditions

The MSSM Higgs sector relies upon a two higgs doublet structure. Assuming that all super-
symmetric particles are much heavier than the EW scale, the Higgs quartic couplings come from
the supersymmetric D-terms and, at tree level, are simple functions of the SU(2)W and U(1)Y

gauge couplings g and gY . The matching conditions thus turns out to be [12, 32]

λ1 = λ2 =
1
4
(
g2 +g2

Y
)
, λ3 =

1
4
(
g2−g2

Y
)
, λ4 =−

g2

2
, λ5 = λ6 = λ7 = 0 , (2.4)

All the mass terms are also generated at tree level. It is to be noted that the m12 term, which
breaks the discrete Z2 symmetry softly, is related to the bilinear Bµ term in the SUSY potential.
Therefore, at tree level, the MSSM leads to a type II 2HDM. The relations of Eq. (2.4) should be
understood to hold at a scale ΛS, where the general 2HDM is matched to the MSSM. Below ΛS,
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the RG evolution of the 2HDM parameters should be used to obtain the potential at the EW scale.
Since the boundary condition λ5 = λ6 = λ7 = 0 increases the symmetry of the quartic part of the
Lagrangian, these couplings will not be generated by the RG evolution and will still be zero at
lower energies.

It is worth mentioning that in the MSSM, the Z2 symmetry is broken by the µ-term in the
superpotential (µ being the Higgsino mass parameter), and this breaking affects the higher order
matching of all the λi at the scale ΛS. Specifically, λ5,6,7(ΛS) may arise at higher loops but will
always be proportional, at least, to µ/ΛS [33], which we can be safely considered as small. Further,
since RG evolution cannot generate them, it is reasonable to assume λ5 ' λ6 ' λ7 ' 0.

The above assumptions1 lead us to only four quartic couplings, that can be determined from
the scalar masses and mixings by inverting Eqs. (2.2a)–(2.2d) and using Eq. (2.3) as follows,

λ1 = g11 +g22 tan2
β −2g12 tanβ , (2.5a)

λ2 = g11 +g22 cot2 β +2g12 cotβ , (2.5b)

λ3 = g11−g22 +2g12 cot(2β )+2g+ , (2.5c)

λ4 = −2g+ . (2.5d)

Once these couplings are determined at the EW scale, including appropriate radiative corrections[22,
34], we can use the 2HDM RGE to check whether their values correspond to the MSSM boundary
conditions at a high scale.

3. Renormalization Group Running and SUSY scale

To obtain a qualitative understanding of the RG evolution, we can begin by simply using
the one loop RGE, checking the stability of these results under higher order corrections a pos-
teriori. At one loop, the RG evolution of the gauge couplings is very simple and can be easily
integrated. We will be interested here in the combination (g2 +g2

Y )/4 which, in a supersymmetric
framework, would fix the boundary values for λ1 and λ2. The RG evolution of this combination
at one loop is given by, D(g2 + g2

Y ) =
−3g4+7g4

Y
8π2 , where D ≡ d/d(logM). Using the EW values(

−3g4 +7g4
Y )/(8π2)

∣∣
Mz
' 0.003, i.e. this combination remains essentially constant at one loop.

On the other hand, the one loop RGE for the quartic couplings depend on the gauge as well as
Yukawa couplings [9].

In Fig. 1, we show the two-loop RG running of the quartic couplings λ1, λ2 and the coupling
combination −(λ3 +λ4) for which the boundary values at ΛS is fixed at (g2 +g2

Y )/4. The dashed
line in the figure shows this fixed value. As expected from the one loop RGE of the quartic cou-
plings, only λ2 deviates siginificanlty from its initial boundary value at the EW scale unlike the
other two. The significant contribution from top Yukawa coupling to λ2 at the low tanβ ∼ 1− 3
helps in large deviation of λ2 at EW scale.

In Fig. 2, we take the bottom-up approach and show the running of λ1 starting from boundary
values set at the EW scale and then evolving upto high scale. This helps to understand how large
can λ1 be at the EW scale to match with the boundary value (g2 + g2

Y )/4 at the high scale. In the

1The correction from the full SUSY spectrum will always be inversely proportional to the high SUSY scale ΛS and
thus can be safely ignored.
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Figure 1: Two-loop RG evolution of λ1, λ2 &
−(λ3 +λ4) starting from boundary values at ΛS =

1010 GeV with tanβ = 1.7, as compared to the evo-
lution of (g2 +g2

Y )/4 (dashed line) [17].
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Figure 2: Evolution of λ1 for different initial val-
ues (from bottom to top, λ1 = 0.10,0.25,0.40,0.55),
as compared with (g2 + g2

Y )/4 (dashed line), for
tanβ = 1.7 [17].

figure, initial EW values of the other quartics are set at λ2 = 0.56, λ3 = 0.015 and λ4 = −0.16.
One should note that the evolution of λ1 is independent of λ2 at one loop. We can see that, indeed,
λ1 evolves very little for small values of λ1 at the EW scale until λ1 ≤ 0.40. This conclusion
is, in practice, independent of tanβ for tanβ ≤ 10. However, since λ1 grows with the scale, we
should expect its value to be slightly smaller than (g2 +g2

Y )/4' 0.15 at the EW scale, if it is to be
determined by gauge couplings at the high scale.

Hence, in summary, the following features need to be satisfied in the Higgs quartic measure-
ment at the low scale to have MSSM as the favoured high scale scenario.

• The values of λ1 and −(λ3 +λ4), at the EW scale, are in the vicinity of (g2 +g2
Y )/4' 0.14

and must be below ∼ 0.4.

• The value of λ2 should then be significantly larger than (g2+g2
Y )/4, due to the large negative

contribution to the RGE from the top Yukawa coupling.

• We can get a qualitative estimate of the SUSY scale, ΛS, as the scale where λ2 reaches its
high scale boundary value, (g2 +g2

Y )/4.

4. SUSY scale determination: Uncertainties and Constraints

For further illustration of our remarks in the last section, we perform a numerical study of
the available parameter space at low energy, provided the quartic couplings have been fixed by the
supersymmetric boundary conditions at ΛS. In Fig. 3, we display the solution regions in terms of
physical parameters (mass and mixing angles) for two different choices of ΛS, 1010 and 1016 GeV.
We only concentrate in the tanβ > 1 region for possible interesting phenomenology following
the flavor constraints on type II 2HDM as flavor data discard tanβ < 1 [35, 36]. The thickness
in the allowed parameter region from this analysis, shaded as red, comes from the experimental
uncertainties in the Higgs mass mh = 125.0±0.6 GeV and top pole mass mt = 173±1 GeV. The
central continuous line corresponds to their central values. The values of tanβ disfavored from

4
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Figure 3: Solution curves in different planes for two different choices of ΛS [17]. The widths of the solution
regions (in red) arise from 2σ experimental uncertainties in mt and mh. The regions disallowed from absolute
stability (from MZ all the way to ΛS) have been shaded in blue, while the hatched regions are disfavored from
BR(b→ sγ) at 95% C.L. The shaded regions in gray are ruled out from the LHC Higgs data.

absolute stability (from MZ to ΛS) of the scalar potential has been shaded in blue. The hatched
region in the middle and right panels of Fig. 3 is disfavored at 95% C.L. from BR(b→ sγ) [37].
The gray shaded region in the left panel is forbidden by the Higgs data at 95% C.L. [38]. The gray
region in the right panel, however, represents a disallowed region using a conservative bound on
cos(β −α) from the Higgs data[38, 39].

The important features that emerge from our analysis are the following:

• For a large supersymmetric scale, only low tanβ values can reproduce the observed Higgs
mass. For example, 1.2≤ tanβ ≤ 2.2 for ΛS = 1010 GeV.

• For large ΛS, an upper limit on tanβ is imposed by the requirement of absolute stability,
in addition to a lower limit that stability usually offers in a generic 2HDM where the top
Yukawa is proportional to mt/(vsinβ ) [7].

• The cos(β −α) vs m+ plot shows a strong correlation irrespective of the SUSY scale. This
is easily understood as this mixing comes from the diagonalization of the neutral Higgs
mass matrix in the Higgs basis, with offdiagonal elements O(v2) and a large diagonal entry
O(m2

+).

4.1 Sensitivity on tanβ and mt

As mentioned earlier, λ2 shows most significant growth than other quartic couplings, if we
start from small boundary values at high energy. Hence, λ2 is our best bet to determine the scale

5
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Figure 4: Evolution of λ2 (low to high scale) as a function of the scale M, for different initial values (from
bottom to top, λ2 = 0.54,0.55,0.56,0.57), as compared with (g2 + g2

Y )/4 (dashed line) for different tanβ

values [17].

ΛS at which it reaches the boundary value (g2 +g2
Y )/4. However, the evolution is highly sensitive

to the values of top pole mass mt and tanβ at the EW scale, as well as to the initial λ2 value.
In Fig. 4, we plot the evolution of λ2 for two close values of tanβ and several closely spaced

EW values of λ2 consistent with the observed Higgs mass. It is worth mentioning, that in producing
this figure, we choose mt = 173 GeV; however, the intrinsic top mass error of about 1 GeV can
always be reproduced by a shift in tanβ . Therefore, the main effect of these uncertainties is a
change in the top Yukawa coupling. One can translate both uncertainties as ∆ tanβ = tanβ (1+
tan2 β )(∆mt/mt), which shows that ∆mt = 1 GeV corresponds to ∆ tanβ ∼ 0.01 for tanβ = 1 and
∆ tanβ ∼ 0.06 for tanβ = 2.

It is possible to get an a posteriori explanation for the obtained values of λ2 and tanβ at the
EW scale. Under the assumptions of sub-TeV nonstandard scalars and very small cos(β −α), Eq.
(2.3) gives g11v2 ' m2

h. To a good approximation, we can also write

λ1(MZ)' λ1(ΛS) = λ2(ΛS) =
(g2 +g2

Y )

4
=−{λ3(ΛS)+λ4(ΛS)} ' −{λ3(MZ)+λ4(MZ)} .(4.1)

Now, using Eq. (2.2a), we obtain

m2
h = M2

Z cos2(2β )+∆λ2v2 tan4 β

(1+ tan2 β )
2 = M2

Z

(
tan2 β −1
tan2 β +1

)2

+∆λ2v2
(

tan2 β

1+ tan2 β

)2

, (4.2)

where, ∆λ2 = λ2(MZ)−λ2(ΛS). Eq. (4.2) can easily be recognized as the usual expression for the
radiatively improved Higgs mass in the MSSM. This implies that the mass of the observed Higgs
boson is essentially determined by the RG evolution of λ2 and the value of tanβ . For a fixed value
of tanβ , the low energy value of λ2 is uniquely determined by mh. The larger the gap between ΛS

and MZ , the more room λ2 gets to grow under RG evolution, thereby requiring a smaller tanβ to
reproduce the observed Higgs mass.

Our analysis shows that an estimate of the SUSY scale is very sensitive to the precise values
of the input parameters, especially tanβ , and as shown in Fig. 4. We would need to determine tanβ

at a few percent level to fix ΛS precisely. The ambiguity in the determination of the SUSY scale
may partly be attributed to a common solution region for ΛS in a large range. On the other hand,
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if tanβ turns out to be close to 2.2 (say), then one can, for example, make a definitive conclusion
that ΛS ≤ 1010 GeV. Such a precise measurement of tanβ would, perhaps, require us to wait for the
future linear colliders. Nonetheless, the analysis presented in this work is good enough to provide
an initial hint for the location of the scale where SUSY is expected to appear.

5. Conclusions

We explored an effective 2HDM arising from a more fundamental theory at a high scale, ΛS,
which fixes the parameters of the Higgs potential. In particular, we have focused on the high-scale
MSSM as an example, where the Higgs quartic couplings are determined by the supersymmetry
breaking D-terms as functions of the gauge couplings. We have found that very high-scale MSSM
scenarios are still compatible with the observed Higgs mass for tanβ ∼ O (1). We emphasize that
our methodology is quite general and can be applied not only to SUSY but to a wide variety of
UV scenarios in which all the quartic couplings of the 2HDM potential of Eq. (2.1) are fixed at a
high scale, ΛS. We show that the possibility of determining the supersymmetric scale, ΛS can be
counted on the RG evolution of λ2 as the scale where it reaches its boundary value, (g2 + g2

Y )/4.
However, this strategy crucially depends on whether tanβ can be determined with a percent level
precision in order to make a reasonable prediction for the MSSM scale; a linear collider would be
essential to make further inroads.
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