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1. Introduction

The reduction of couplings method [1–4] (see also [5–7]) seems a most promising method
which relates independent, in a first view, parameters to a single, “primary” coupling. The method
requires the original theory where is applied to be a renormalizable one, and the resulting relation
among the parameters to be valid in all energy scales, i.e. are Renormalization Group Invariant
(RGI).

The next (natural) step, after the introduction of a novel symmetry through a Grand Unified
Theory (GUT) [8–13]), in order to achieve reduction of free parameters of the SM is the relation of
the gauge to Yukawa sector (Gauge Yukawa Unification, GUY). This is the central characteristic
of the reduction of couplings approach. According to that approach, being in a GUT environment,
RGI relations are traced between the unification scale and the Planck one. One-loop uniqueness
can guarantee all-loop validity of those relations. Moreover, RGI relations can be found which
guarantee all order finiteness of a theory. The method has predicted the top quark mass in the finite
N = 1 SU(5) model [15,16] as well as in the minimal N = 1 SU(5) one [14] before its experimental
verification [17].

Since SuperSymmetry (SUSY) seems an essential ingredient for the reduction of couplings
method, the extension to dimension-1 and -2 couplings, or in other words to the supersymmetry
breaking sector (SSB), is unavoidable. The supergraph method and the spurion superfield technique
played an important role for the progress in that sector, leading to all-loop finite models predicting
the SUSY mass spectrum. The all-loop finite N = 1 SU(5) model [18] has given a prediction
for the Higgs mass compatible with the experimental results [19–22] and a consistent (with the
experimental non observation) heavy SUSY mass spectrum. Application of the method to the
MMSM, gives consistent results for the Higgs, bottom, top masses and a heavy SUSY spectrum.
The (new) FeynHiggs code [23–26] has been used for the calculation of the lightest Higgs.
Special reference is made to the sum rule for the soft scalar masses (an RGI all-loop relation),
which overcomes several phenomenological complications.

2. Theoretical Basis

Let us present the core idea of the reduction of couplings method. The target is to single
out a basic parameter (the one we shall call the primary one), where all other parameters can be
expressed in terms of this one through RGI relations. Such a relation has, in general, the form
Φ(g1, · · · ,gA) = const. which should satisfy the following partial differential equation (PDE)

µ
dΦ

dµ
= ~∇Φ ·~β =

A

∑
a=1

βa
∂Φ

∂ga
= 0 , (2.1)

where βa is the β -functions of ga. The above PDE is equivalent to the following set of ordinary
differential equations (ODEs), which are called Reduction Equations (REs) [2–4],

βg
dga

dg
= βa , a = 1, · · · ,A−1 , (2.2)

where now g is the primary coupling with its corresponding β -function. There are obviously A−1
relations in the form of Φ(g1, · · · ,gA) in order to express all other couplings in term of the primary
one.
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The crucial demand is that the above REs admit power series solutions

ga = ∑
n

ρ
(n)
a g2n+1 , (2.3)

which preserve perturbative renormalizability. Without this requirement, we just trade each “depen-
dent” coupling with an integration constant. The power series, which are a set of special solutions,
fix that constant. It is very important to point out that the uniqueness of such a solution can be
already decided at the one-loop level [2–4]. In supersymmetric theories, where the asymptotic
behaviour of several parameters are similar, the use of power series as solutions of the REs are
justified. But, usually, the reduction is not “complete”, which means that not all of the couplings
can be reduced in favor of the primary one, leading to the so called “partial reduction” [27, 28].

We proceed to the reduction scheme for massive parameters, which is far of being straightfor-
ward. A number of conditions is required (see for example [29]). Nevertheless, progress has been
achieved, starting from [30], and finally we can introduce mass parameters and couplings carrying
mass dimension [31, 32] in the same way as dimensionless couplings.

Concider the superpotential

W =
1
2

µ
i j

Φi Φ j +
1
6

Ci jk
Φi Φ j Φk , (2.4)

and the SSB sector Lagrangian

−LSSB =
1
6

hi jk
φiφ jφk +

1
2

bi j
φiφ j +

1
2
(m2) j

i φ
∗ i

φ j +
1
2

M λiλi +h.c., (2.5)

where φi’s are the scalar fields of the corresponding superfields Φi’s and M is the gaugino mass
which is described by λ .

Let us write down some well known relations:
(i) The β -function of the gauge coupling at one-loop level is given by [33–37]

β
(1)
g =

dg
dt

=
g3

16π2

[
∑

i
T (Ri)−3C2(G)

]
. (2.6)

(ii) The anomalous dimension γ(1) i
j, at a one-loop level, of a chiral superfield is

γ
(1) i

j =
1

32π2

[
Cikl C jkl−2g2C2(Ri)δ

i
j

]
. (2.7)

(iii) The β -functions of Ci jk’s, at one-loop level, following the N = 1 non-renormalization theorem
[38–40], are expressed in terms of the anomalous dimensions of the fields involved

β
i jk
C =

dCi jk

dt
= Ci jl γ

l
k +Cikl γ

l
j +C jkl γ

l
i . (2.8)

We proceed by assuming that the REs admit power series solutions:

Ci jk = g ∑
n=0

ρ
i jk
(n)g

2n . (2.9)
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Trying to obtain all-loop results we turn to relations among β -functions. The spurion technique
[40–44] gives all-loop relations among SSB β -functions [45–51]. Then, assuming that the reduc-
tion of Ci jk is possible to all orders

dCi jk

dg
=

β
i jk
C
βg

, (2.10)

as well as for hi jk

hi jk =−M
dC(g)i jk

d lng
, (2.11)

then it can be proven [52, 53] that the following relations are all-loop RGI

M = M0
βg

g
, (2.12)

hi jk =−M0 β
i jk
C , (2.13)

bi j =−M0 β
i j
µ , (2.14)

(m2)i
j =

1
2
|M0|2 µ

dγ i
j

dµ
, (2.15)

where M0 is an arbitrary reference mass scale to be specified (note that in both assumptions we do
not rely on specific solutions of these equations).
As a next step we substitute the last equation, Eq.(2.15), by a more general RGI sum rule that holds
to all orders [54]

m2
i +m2

j +m2
k = |M|2

{
1

1−g2C2(G)/(8π2)

d lnCi jk

d lng
+

1
2

d2 lnCi jk

d(lng)2

}
+∑

l

m2
l T (Rl)

C2(G)−8π2/g2
d lnCi jk

d lng
,

(2.16)

which leads to the following one-loop relation

m2
i +m2

j +m2
k = |M|2 . (2.17)

Finally, note that in the case of product gauge groups, Eq.(2.12) takes the form

Mi =
βgi

gi
M0 , (2.18)

where i denotes the group of the product. This will be used in the Reduced MSSM case.

3. Finiteness in N = 1 Supersymmetric Gauge Theories

Consider an N = 1 globally supersymmetric gauge theory, which is chiral and anomaly free,
where G is the gauge group and g the associated gauge coupling. The theory has the superpotential
of Eq.(2.4), while the one-loop gauge and Ci jks β -function are given by Eq.(2.6) and Eq.(2.8)
respectively and the one-loop anomalous dimensions of the chiral superfields by Eq.(2.7).
Demanding the vanishing of all one-loop β -functions, Eqs.(2.6,2.7) lead to the relations

∑
i

T (Ri) = 3C2(G) , (3.1)

CiklC jkl = 2δ
i
jg

2C2(Ri) . (3.2)
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The finiteness conditions for an N = 1 supersymmetric theory with SU(N) associated group is
found in [55] while discussion of the no-charge renormalization and anomaly free requiremnts can
be found in [56]. It should be noted that conditions (3.1) and (3.2) are necessary and sufficient to
ensure finiteness at the two-loop level [33–37].

The requirement of finiteness, at the one-loop level, in softly broken SUSY theories demands
additional constraints among the soft terms of the SSB sector [57], while, once more, these one-
loop requirements assure two-loop finiteness, too [58]. These conditions impose restrictions on
the irreducible representations Ri of the gauge group G as well as on the Yukawa couplings. For
example, since U(1)s are not compatible with condition (3.1), the MSSM is excluded. Therefore,
a GUT is initially required with the MSSM being its low energy theory. Also, since condition (3.2)
forbids the appearance of gauge singlets (C2(1) = 0), F-type spontaneous symmetry breaking [59]
are not compatible with finiteness. Finally, D-type spontaneous breaking [60] is also incompatible
since it requires a U(1) group.

The non trivial point is that the relations among couplings (gauge and Yukawa) which are
imposed by the conditions (3.1) and (3.2) should hold at any energy scale. The necessary and
sufficient condition is to require that such relations are solutions to the REs (see Eq. (2.10))

βg
dCi jk

dg
= βi jk (3.3)

holding at all orders. We note, once more, that the existence of one-loop level power series solution
guarantees the all-order series.

There exist the following theorem [61,62] which points down which are the the necessary and
sufficient conditions in order for an N = 1 SUSY theory to be all-loop finite. In refs [61–67] it was
shown that for an N = 1 SUSY Yang-Mills theory, based on a simple gauge group, if the following
four conditions are fulfilled:
(i) No gauge anomaly is present.
(ii) The β -function of the gauge coupling is zero at one-loop level

β
(1)
g = 0 = ∑

i
T (Ri)−3C2(G). (3.4)

(iii) The condition of vanishing for the one-loop anomalous dimensions of matter fields,

γ
(1)i

j = 0 =
1

32π2 [ Cikl C jkl−2 g2 C2(R)δ i
j], (3.5)

admits solution of the form
Ci jk = ρi jkg, ρi jk ∈ C . (3.6)

(iv) When considered as solutions of vanishing Yukawa β -functions (at one-loop order), i.e. βi jk =

0, the above solutions are isolated and non-degenerate.
Then, each of the solutions in Eq.(3.6) can be extended uniquely to a formal power series in g, and
the associated super Yang-Mills models depend on the single coupling constant g with a vanishing,
at all orders, β -function.

While the validity of the above cannot be extended to non-SUSY theories, it should be noted
that reduction of couplings and finiteness are intimately related.
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4. The Reduction of Coupling Method in Phenomenological Models

In this section we apply the method to four interesting phenomenological models, namely
(i) the Minimal N = 1 Supersymmetric SU(5), (ii) the Finite N = 1 Supersymmetric SU(5), (iii)
the Finite SU(N)3 and (iv) the MSSM. Discussion on the predictions for quark masses, the light
Higgs boson mass, the SUSY breaking scale (defined as the geometric mean of stops), and the full
supersymmetric spectra are discussed in Sect. 6.

4.1 The Minimal N = 1 Supersymmetric SU(5) Model

We start with the partial reduction of the N = 1 SUSY SU(5) model [14, 30]. Our notation is
as follows: ΨI(10) and ΦI(5) refer to the three generations of lepton and quarks (I = 1,2,3), the
adjoint Σ(24) breaks SU(5) to SU(3)C×SU(2)L×U(1)Y and H(5) represent the two Higgs super-
fields for the electroweak symmetry breaking (ESB) [68, 69]. The choice of using only one set of
(5+ 5̄) for the ESB renders the model asymptoticaly free (i.e. βg < 0 ). The superpotential of the
model is described by

W =
gt

4
ε

αβγδτ
Ψ

(3)
αβ

Ψ
(3)
γδ

Hτ +
√

2gb Φ
(3)α

Ψ
(3)
αβ

Hβ
+

gλ

3
Σ

β

αΣ
γ

β
Σ

α
γ +g f Hα

Σ
β

αHβ

+
µΣ

2
Σ

γ

αΣ
α
γ +µH HαHα .

(4.1)

where only the third generation Yukawa couplings are taken into account. The indices α,β ,γ,δ ,τ

are SU(5) ones. A detailed presentation of the model can be found in [70] and in [71, 72].
Our primary coupling is the gauge one g. In this model the gauge-Yukawa unification can be

achieved through two sets of solutions which are asympotically free [70]:

a : gt =

√
2533
2605

g+O(g3) , gb =

√
1491
2605

g+O(g3) , gλ = 0 , g f =

√
560
521

g+O(g3) ,

b : gt =

√
89
65

g+O(g3) , gb =

√
63
65

g+O(g3) , gλ = 0 , g f = 0 .

(4.2)

where the higher order terms denote uniquely computable power series in g. Let us note that the
reduction of the dimensionless sector is independent of the dimensionful one. These solutions
describe the boundaries of a RGI surface in the parameter space which is AF and where g f and
gλ could be different from zero. Therefore, a partial reduction is possible where gλ and g f are
independent (non-vanishing) parameters without endangering AF. The proton decay constraints
favour solution a, therefore we choose this one for our discussion. 1

The SSB Lagrangian is

−Lsoft = m2
Hu

Ĥ∗αĤα +m2
Hd

Ĥ
∗
αĤ

α

+m2
ΣΣ̂

† α

β
Σ̂

β

α + ∑
I=1,2,3

[m2
ΦI Φ̂

∗ (I)
α Φ̂

(I)α

+ m2
ΨI Ψ̂

† (I)αβ
Ψ̂

(I)
βα

]+{ 1
2

Mλλ +BHĤ
α

Ĥα +BΣΣ̂
α

β
Σ̂

β

α +h f Ĥ
α

Σ̂
β

αĤβ

+
hλ

3
Σ̂

β

α Σ̂
γ

β
Σ̂

α
γ +

ht

4
ε

αβγδτ
Ψ̂

(3)
αβ

Ψ̂
(3)
γδ

Ĥτ +
√

2hb Φ̂
(3)α

Ψ̂
(3)
αβ

Ĥ
β

+h.c.} ,

(4.3)

1gλ = 0 is inconsistent, but gλ <∼ 0.005 is necessary in order for the proton decay constraint [73] to be satisfied.
A small gλ is expected not to affect the prediction of unification of SSB parameters.
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where the hat denotes the scalar components of the chiral superfields. The parameters M, µΣ and µH

are treated as independent ones, since they cannot be reduced in a suitable form. The lowest-order
reduction for the parameters of the SSB Lagrangian are given by:

BH =
1029
521

µHM , BΣ =−3100
521

µΣM , (4.4)

ht =−gt M , hb =−gb M , h f =−g f M , hλ = 0 ,

m2
Hu

=−569
521

M2 , m2
Hd

=−460
521

M2 , m2
Σ =

1550
521

M2 ,

m2
Φ3 =

436
521

M2 , m2
Φ1,2 =

8
5

M2 , m2
Ψ3 =

545
521

M2 , m2
Ψ1,2 =

12
5

M2 .

(4.5)

We choose the gaugino mass M for characterizing the SUSY breaking scale. Finally, we note
that (i) BΣ and BH are treated as independent parameters without spoiling the one-loop reduction
solution of Eq.(4.5) and (ii) the sum rule still holds despite the specific relations among the gaugino
mass and the soft scalar masses.

4.2 The Finite N = 1 Supersymmetric SU(5) Model

We proceed now to the finite to all-orders SU(5) gauge theory, where the reduction of cou-
plings is restricted to the third generation. This specific Finite Unified Theory (FUT) was in agree-
ment with the experimental constraints at the time [18] and has predicted, almost five years before
its discovery, the light Higgs mass in the range of 121–126 GeV. 2 The particle content of the model
has three (5+10) supermultiplets for the three generations of leptons and quarks, while the Higgs
sector consists of four supermultiplets (5+ 5) and one 24. The finite SU(5) group is broken to
MSSM, which of course in no longer a finite theory [14–16, 74–76].

In order for this finite to all-orders SU(5) model to achieve Gauge Yukawa Unification (GYU)
should have the following characteristics:
(i) The one-loop anomalous dimensions are diagonal i.e., γ

(1) j
i ∝ δ

j
i .

(ii) The fermions of the 5i and 10i (i = 1,2,3) are not coupled to the 24.
(iii) The pair of the MSSM Higgs doublets are mostly consisted from the 5 and 5̄ Higgs and couple
to the third generation

The superpotential of the model, with an enhanced symmetry due to the reduction of couplings,
is given by [77, 78]:

W =
3

∑
i=1

[
1
2

gu
i 10i10iHi +gd

i 10i5i H i ]+gu
23 102103H4 (4.6)

+gd
23 10253 H4 +gd

32 10352 H4 +g f
2 H2 24H2 +g f

3 H3 24H3 +
gλ

3
(24)3 .

2Improved Higgs mass calculations would yield a different interval, still compatible with current experimental data
(see below).

6



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
6
6

New Results in Theories with Reduced Couplings Gregory Patellis

Discussion of the model with a more detailed description can be found in [14–16]. The non-
degenerate and isolated solutions to the vanishing of γ

(1)
i are:

(gu
1)

2 =
8
5

g2 , (gd
1)

2 =
6
5

g2 , (gu
2)

2 = (gu
3)

2 =
4
5

g2 ,

(gd
2)

2 = (gd
3)

2 =
3
5

g2 , (gu
23)

2 =
4
5

g2 , (gd
23)

2 = (gd
32)

2 =
3
5

g2 ,

(gλ )2 =
15
7

g2 , (g f
2)

2 = (g f
3)

2 =
1
2

g2 , (g f
1)

2 = 0 , (g f
4)

2 = 0 .

(4.7)

We have also the relation h =−MC, while the sum rules lead to:

m2
Hu

+2m2
10 = M2 , m2

Hd
−2m2

10 =−
M2

3
, m2

5 +3m2
10 =

4M2

3
. (4.8)

Therefore, we only have two free parameters, namely m10 and M in the dimensionful sector.
When SU(5) breaks down to the MSSM, a suitable rotation in the Higgs sector [15, 16, 79–

82], permits only a pair of Higgs doublets (coupled mostly to the third family) to remain light
and acquire vev’s. Avoiding fast proton decay is achieved with the usual doublet-triplet splitting,
although different from the one applied to the minimal SU(5) due to the extended Higgs sector of
the finite model. Therefore, below the GUT scale we get the MSSM where the third generation is
given by the finiteness conditions while the first two remain unrestricted.

4.3 The Finite SU(N)3 Model

We proceed now to construct a FUT based on a product gauge group. Concider an N = 1 SUSY
theory with SU(N)1×SU(N)2×·· ·×SU(N)k having n f families transforming as (N,N∗,1, . . . ,1)+
(1,N,N∗, . . . ,1)+ · · ·+(N∗,1,1, . . . ,N). Then, the first order coefficient of the β -function, for each
SU(N) group is:

b =

(
−11

3
+

2
3

)
N +n f

(
2
3
+

1
3

)(
1
2

)
2N =−3N +n f N . (4.9)

Demanding finiteness, i.e. b = 0, we are led to the choice n f = 3. Phenomenological reasons lead
to the choice of the SU(3)C × SU(3)L× SU(3)R model, discussed in Ref. [83], while a detailed
discussion of the general well known example can be found in Ref. [84–87]. The leptons and
quarks transform as:

q =

d u h
d u h
d u h

∼ (3,3∗,1), qc =

dc dc dc

uc uc uc

hc hc hc

∼ (3∗,1,3), λ =

N Ec ν

E Nc e
νc ec S

∼ (1,3,3∗)

(4.10)
where h are down-type quarks acquiring masses close to MGUT . A cyclic Z3 symmetry is imposed
on the multiplets to achieve equal gauge couplings at the GUT scale and in that case the vanishing
of the first-order β -function is satisfied. Continuing to the vanishing of the anomalous dimension of
all the fields (see Eq.(3.2)), we note that there are two trilinear invariant terms in the superpotential,
namely:

f Tr(λqcq)+
1
6

f ′ εi jkεabc(λiaλ jbλkc +qc
iaqc

jbqc
kc +qiaq jbqkc), (4.11)

7
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with f and f ′ the corresponding Yukawa couplings. The superfields (Ñ, Ñc) obtain vev’s and
provide masses to leptons and quarks

md = f 〈Ñ〉, mu = f 〈Ñc〉, me = f ′〈Ñ〉, mν = f ′〈Ñc〉. (4.12)

Having three families, 11 f couplings and 10 f ′ couplings are present in the most general superpo-
tential. Demanding the vanishing of all superfield anomalous dimensions, 9 conditions are imposed

∑
j,k

fi jk( fl jk)
∗+

2
3 ∑

j,k
f ′i jk( f ′l jk)

∗ =
16
9

g2
δil , (4.13)

where
fi jk = f jki = fki j, f ′i jk = f ′jki = f ′ki j = f ′ik j = f ′k ji = f ′jik . (4.14)

The masses of leptons and quarks are acquired from the vev’s of the scalar parts of the superfields
Ñ1,2,3 and Ñc

1,2,3.
At MGUT the SU(3)3 FUT breaks3 to MSSM, where as was already mentioned, both Higgs

doublets couple mostly to the third generation. The FUT breaking leaves its mark in the form of
Eq.(4.13), i.e. boundary conditions on the gauge and Yukawa couplings, the relation h =−M f and
finally the soft scalar mass sum rule at MGUT. In this specific model this rule takes the form:

m2
Hu

+m2
t̃c +m2

q̃ = M2 = m2
Hd

+m2
b̃c +m2

q̃ . (4.15)

The model is finite to all-orders if the solution of Eq.(4.13) is both isolated and unique. Then,
f ′ = 0 and we have the relations

f 2 = f 2
111 = f 2

222 = f 2
333 =

16
9

g2 . (4.16)

Since all f ′ vanish, in one-loop order, the lepton masses vanish. Since these masses, even radia-
tively, cannot be produced because of the finiteness conditions, we are faced with a problem which
needs further study. If the solution of Eq.(4.13) is unique but not isolated (i.e. parametric), we can
have non zero f ′ leading to non-vanishing lepton masses and at the same time achieving two-loop
finiteness. In that case the set of conditions restricting the Yukawa couplings read:

f 2 = r
(

16
9

)
g2 , f ′2 = (1− r)

(
8
3

)
g2 , (4.17)

where r parametrises the different solutions and as such is a free parameter. It should be noted that
we use the sum rule as boundary condition for the soft scalar masses.

4.4 The Reduced MSSM

We end up with the application of the method of coupling reduction to a version of the MSSM,
where a covering GUT is assumed. The original partial reduction can be found in ref. [90,91] where
only the third fermionic generation is considered. Following this restriction, the superpotential
reads:

W = YtH2Qtc +YbH1Qbc +YτH1Lτ
c +µH1H2 , (4.18)

3 [88, 89] and refs therein discuss in detail the spontaneous breaking of SU(3)3.
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where Yt,b,τ and ht,b,τ refer only to the third family, and the SSB Lagrangian is given by

−LSSB = ∑
φ

m2
φ φ̂ ∗φ̂ +

[
m2

3Ĥ1Ĥ2 +
3

∑
i=1

1
2

Miλiλi +h.c

]
+
[
htĤ2Q̂t̂c +hbĤ1Q̂b̂c +hτĤ1L̂τ̂c +h.c.

]
,

(4.19)

We start with the dimensionless sector and consider initially the top and bottom Yuakwa cou-
plings and the strong gauge one. The rest of the couplings will be treated as corrections. Their
running behaviour, as corrections to the strong coupling, is understood [27]. If Y 2

(t,b)/(4π)≡ α(t,b),
the REs and the Yukawa RGEs give

αi = G2
i α3, where G2

i =
1
3
, i = t,b.

If the tau Yukawa is included in the reduction, the corresponding G2 coefficient for tau turns nega-
tive [92], explaining why this coupling is treated also as a correction.

We assume that the ratios of the top and bottom Yukawa to the strong coupling are constant on
the GUT scale, i.e. they have negligible scale dependence,

d
dg3

(
Y 2

t,b

g2
3

)
= 0,

Then, including the corrections from the SU(2), U(1) and tau couplings, at the GUT scale, the
coefficients G2

t,b become:

G2
t =

1
3
+

71
525

ρ1 +
3
7

ρ2 +
1
35

ρτ , G2
b =

1
3
+

29
525

ρ1 +
3
7

ρ2−
6
35

ρτ (4.20)

where

ρ1,2 =
g2

1,2

g2
3

=
α1,2

α3
, ρτ =

g2
τ

g2
3
=

Y 2
τ

4π

α3
(4.21)

We shall treat Eqs.(4.20) as boundary conditions at the GUT scale.
Going to the two-loop level, we assume that the corrections take the following form:

αi = G2
i α3 + J2

i α
2
3 , i = t,b .

Then, the two-loop coefficients, Ji, including the corrections from the gauge and the tau Yukawa
couplings, are:

J2
t =

1
4π

Nt

D
, J2

b =
1

4π

Nb

5D
,

where D, Nt and Nb are known quantities which can be found in ref. [93].
Proceeding to the the SSB Lagrangian, Eq.(4.19), and the dimension-one parameters, i.e the

trilinear couplings ht,b,τ , we first reduce ht,b and we get

hi = ciYiM3 = ciGiM3g3, where ci =−1 i = t,b,

9
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and M3 is the gluino mass. Adding the corrections from the gauge and the tau couplings we have

ct =−
AAAbb +AtbBB

AbtAtb−AbbAtt
, cb =−

AAAbt +AttBB

AbtAtb−AbbAtt
.

Again, Att , Abb and Atb can be found in ref. [93].
We end up with the soft scalar masses m2

φ
of the SSB Lagrangian. Assuming the relations

m2
i = ciM2

3 (i = Q,u,d,Hu,Hd), and adding the corrections from the gauge, the tau couplings and
hτ , we get

cQ =−cQNum

Dm
, cu =−

1
3

cuNum

Dm
, cd =−cdNum

Dm
, cHu =−

2
3

cHuNum

Dm
, cHd =−

cHdNum

Dm
,

where Dm, cQNum, cuNum, cdNum, cHuNum, cHdNum and the complete analysis are again given in
ref. [93].

If only the reduced system were used, i.e. the strong, top and bottom Yukawa couplings as
well as the ht and hb, the coefficients turn to be

cQ = cu = cd =
2
3
, cHu = cHd =−1/3,

which clearly obey the sum rules

m2
Q +m2

u +m2
Hu

M2
3

= cQ + cu + cHu = 1,
m2

Q +m2
d +m2

Hd

M2
3

= cQ + cd + cHd = 1.

We finish this section with an essential point for the gaugino masses. The application of the
Hisano-Shiftman relation, Eq.(2.12), is made for each gaugino mass as a boundary condition with
unified gauge coupling at MGUT scale. Then, at one-loop level, the gaugino mass depends on the
one-loop coefficient of the corresponding β -function and an arbitrary M0, Mi = biM0. This fact
permits, with a suitable choice of M0, to have the gluino mass equal to the unified gaugino mass,
while the gauginos masses of the other two gauge groups are given by the gluino mass multiplied
by the ratio of the appropriate one-loop β coefficient.

5. Phenomenological Constraints

In this section we shall briefly review several experimental constraints that were applied to our
phenomenological analysis. The used values do not correspond to the latest experimental results.
However, this has a negligible impact on our analysis.

In our models we evaluate the pole mass of the top quark while the bottom quark mass is
evaluated at the MZ scale (to avoid uncertainties to its pole mass). The experimental values, taken
from ref. [94] are:

mexp
t = (173.1±0.9) GeV , mb(MZ) = 2.83±0.10 GeV . (5.1)

We interpret the Higgs-like particle discovered in July 2012 by ATLAS and CMS [19, 95] as the
light C P-even Higgs boson of the MSSM [96–98]. The (SM) Higgs boson experimental average
mass is [94] 4

Mexp
H = 125.10±0.14 GeV . (5.2)

4This is the latest available LHC combination. More recent measurements confirm this value.
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The theoretical uncertainty [23,24], however, for the prediction of Mh in the MSSM dominates the
total uncertainty, since it is much larger than the experimental one. In our follwing analyses we shall
use the new FeynHiggs code [23–25] (Version 2.16.0) to predict the Higgs mass. FeynHiggs
evaluates the Higgs masses based on a combination of fixed order diagrammatic calculations and
resummation of the (sub)leading logarithmic contributions at all orders. This provides a reliable Mh

even for a large SUSY scale. This new version gives a downward shift on the Higgs mass Mh of the
order of O(2 GeV) for large SUSY masses, while computes the Higgs mass uncertainty point by
point. The theoretical uncertainty calculated is added linearly to the experimental error in Eq.(5.2).

We also consider the following four flavour observables where SUSY has non-negligible im-
pact. For the branching ratio BR(b→ sγ) we take a value from [99, 100], while for the branch-
ing ratio BR(Bs→ µ+µ−) we use a combination of [101–105]:

BR(b→ sγ)exp

BR(b→ sγ)SM = 1.089±0.27 , BR(Bs→ µ
+

µ
−) = (2.9±1.4)×10−9 . (5.3)

For the Bu decay to τν we use [100, 106, 107] and for∆MBs we use [108, 109]:

BR(Bu→ τν)exp

BR(Bu→ τν)SM = 1.39±0.69 ,
∆Mexp

Bs

∆MSM
Bs

= 0.97±0.2 . (5.4)

6. Numerical Analysis

In this section we review the results of the phenomenological analysis of the models reviewed
above. The full analysis can be found in our recent work [110], where it was shown - among others
- that for the Minimal SU(5) model the bottom mass is in agreement with the experimental results
only at the 4σ level. Furthermore, no model fulfills the current Cold Dark Matter (CDM) bounds,
since the relic abundance is either too high (in all three GUTs) or too low (Reduced MSSM).
Alternative ways are proposed for the two SU(5) models in [110], while a similar R-parity violation
should be considered for the other two as well.

6.1 Finite N = 1 SU(5)

As discussed in Subsection 4.2, we present the full particle spectrum predicted in the Fi-
nite N = 1 supersymmetric SU(5) model. Conditions set by finiteness do not restrict the renor-
malization properties at low energies, so we are left with boundary conditions on the gauge and
Yukawa couplings (4.7), the h = −MC relation and the soft scalar-mass sum rule at MGUT. In
Fig. 1, mb(MZ) and mt are shown as functions of the unified gaugino mass M. The orange (blue)
lines denote the 2σ (3σ ) experimental uncertainties. The only phenomenologically viable option
is to consider µ < 0 (as shown in [110–117].
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Figure 1: mb(MZ) (left) and mt (right) as a function of M for the Finite N = 1 SU(5). Green points satisfy
the B-physics constraints.

The light Higgs boson mass is given in Fig. 2 (left), while its theory uncertainty [26] is given
in Fig. 2 (right). This point-by-point uncertainty (calculated with FeynHiggs) drops significantly
(wrt past analyses) to 0.65−0.70 GeV .

Figure 2: Left: Mh as a function of M. Green points comply with B-physics constraints. Right: The lightest
Higgs mass theoretical uncertainty calculated with FeynHiggs 2.16.0 [26].

Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 124.4 5513 5513 5510 5940 6617 5888 6617 8819

heaviest 125.8 28121 28121 28120 10486 11699 10318 11686 15509

mτ̃1 mτ̃2 m
χ̃
±
1

m
χ̃
±
2

m
χ̃0

1
m

χ̃0
2

m
χ̃0

3
m

χ̃0
4

tanβ

lightest 2225 3123 3819 4801 2120 3811 4820 4811 50

heaviest 4215 5788 7108 8200 4019 7108 8227 8227 51

Table 1: Spectra of the Finite N = 1 SU(5) . Masses are in GeV and rounded to 1 (0.1) GeV (for the light
Higgs mass).

In Tab. 1 we give the lightest and the heaviest spectrum. Compared to our previous analy-
ses [110–117,120–122], the improved evaluation of Mh and its uncertainty prefers a heavier (Higgs)
spectrum and thus allows only a heavy supersymmetric spectrum. Very heavy coloured SUSY
particles are favoured (nearly independent of the Mh uncertainty), in agreement with the non-
observation of those particles at the LHC [118]. Overall, the allowed coloured SUSY masses would
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remain unobservable at the (HL-)LHC, the ILC or CLIC. However, the coloured spectrum would
be accessible at the FCC-hh [119], as could the full heavy Higgs boson spectrum.

The model has a high relic abundance for CDM. The CDM alternatives proposed for the Min-
imal SU(5) model in [110] can also be applied here.

6.2 Two-Loop Finite N = 1 SU(3)⊗SU(3)⊗SU(3)

We continue our analysis with the two-loop finite N = 1 supersymmetric SU(3)⊗ SU(3)⊗
SU(3) model, where again below MGUT we get the MSSM. We take into account two new thresh-
olds for the masses of the new particles at ∼ 1013 GeV and ∼ 1014 GeV resulting in a wider
phenomenologically viable parameter space [123].

Figure 3: Bottom and top quark masses for the Finite N = 1 SU(3)⊗SU(3)⊗SU(3) model, with µ < 0, as
functions of r. The black horizontal line is the experimental central value, and the dashed orange ones are
the 2σ limits. Green points satisfy B-physics constraints.

Looking for the values of the parameter r (see Subsection 4.3) which comply with the experi-
mental limits, we find (see Fig. 3) that both masses are in the experimental range for the same value
of r between 0.65 and 0.80 (we singled out the µ < 0 case as the most promising). The inclusion of
the abovementioned thresholds gives an important improvement on the top mass from past versions
of the model [83, 124–126].

Figure 4: Left: Mh as a function of M for the Finite N = 1 SU(3)⊗SU(3)⊗SU(3). Right: The Higgs mass
theoretical uncertainty [26].

In Fig. 4 (left) we show the light Higgs boson mass, while the point-by-point calculated the-
oretical uncertainty is presented in Fig. 4 (right). Tab. 2 gives the lightest and heaviest spectrum.
All constraints regarding quark masses, the light Higgs boson mass and B-physics are satisfied,
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Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 124.2 1918 1918 1917 4703 5480 4671 6013 6329

heaviest 125.9 12053 12053 12050 10426 10631 10426 11193 14550

mτ̃1 mτ̃2 m
χ̃
±
1

m
χ̃
±
2

m
χ̃0

1
m

χ̃0
2

m
χ̃0

3
m

χ̃0
4

tanβ

lightest 1774 2694 2736 5469 1517 2736 5480 5481 44

heaviest 5999 7113 6713 10522 3767 6703 10522 10523 53

Table 2: Spectra of the Finite N = 1 SU(3)⊗ SU(3)⊗ SU(3) . Masses are in GeV and rounded to 1
(0.1) GeV (for the light Higgs mass).

rendering making the model very successful. The accessibility of the heavier (coloured) spectrum
will be subject to future colliders.

6.3 Reduced MSSM

For the analysis of our final model we choose the unification scale to apply the corrections to
all these RGI relations. The full discussion on the selection of the free parameters of the model can
be found in [110]. In total, we vary ρτ , ρhτ

, M and µ .
In Fig. 5 we see the model’s predictions for the bottom and top mass respectively. The hor-

izontal lines denote the 2σ level uncertainty. Next, Mh is shown in Fig. 6 (left),while the theory
uncertainty given in Fig. 6 (right) has dropped below 1 GeV . The Higgs mass predicted by the
model lies within the LHC range.

Figure 5: The left (right) plot shows the bottom (top) quark mass for the Reduced MSSM.

The Mh limits set a limit on the low-energy supersymmetric masses, rendering the Reduced
MSSM highly predictive and testable. In Tab. 3 we show the lightest and heaviest value of
each parameter of the supersymmetric spectrum. The HL-LHC [127] will be able to test the full
Higgs spectrum. The lighter supersymmetric particles, which are given by the electroweak spec-
trum, will mostly remain unobservable at the LHC and at future e+e− colliders such as the ILC or
CLIC. An exception are the lightest neutralino and chargino masses, which could be covered by
CLIC3TeV. The coloured mass spectrum will remain unobservable at the (HL-)LHC, but could be
accessible at the FCC-hh [119].
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Figure 6: Left: The lightest Higgs boson mass, Mh in the Reduced MSSM. The green points is the full model
prediction. Right: the lightest Higgs mass theoretical uncertainty [26].

Mh MH MA MH± mt̃1 mt̃2 mb̃1
mb̃2

mg̃

lightest 124.5 1305 1305 1297 3851 4029 3699 4007 5126

heaviest 125.8 1801 1801 1780 5275 5564 5076 5502 7017

mτ̃1 mτ̃2 m
χ̃
±
1

m
χ̃
±
2

m
χ̃0

1
m

χ̃0
2

m
χ̃0

3
m

χ̃0
4

tanβ

lightest 1705 2536 843 1875 711 2579 3516 3517 40

heaviest 4288 6008 1004 2195 1001 3666 4814 4815 45

Table 3: Spectra of the Reduced MSSM. All masses are in GeV and rounded to 1 (0.1) GeV (for the
light Higgs mass).

7. Conclusions

We briefly reviewed the ideas concerning the reduction of couplings, then new results were
given for three specific models, namely the Finite N = 1 SU(5), the Two-Loop Finite N = 1
SU(3)⊗SU(3)⊗SU(3) and the Reduced MSSM. The three models are in natural agreement with
all LHC measurements and searches and they predict relatively heavy spectra which evade detec-
tion in present and near-future colliders. An exception is the lighter part of the Reduced MSSM
spectrum which could be covered by CLIC3TeV. FCC-hh will be able to test the predicted param-
eter spaces of all models.
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