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1. Introduction

Cosmological constant problem is a dark cloud hanging over the two well-established theories

Quantum Field Theory ⇐⇒ Einstein Gravity Theory.

I first explain my viewpoint onwhat is actually the problem.
Presently observed Dark EnergyΛ0 looks like a small Cosmological Constant (CC):

Present observed CC : 10−29gr/cm3 ∼ 10−47GeV4 ∼ (1meV)4 ≡ Λ0 . (1.1)

I do not try to explain this tiny CC now, since it will eventually be explained after our CC problem
is solved. However, we use it as the scale unitΛ0 of our discussion in this Introduction.

Now, from my viewpoint, the essential point of the CC problem is the following miraculous
fact; that is, there are several dynamical symmetry breakings in this world and they are all accom-
panied by vacuum condensation energies, ranging over wide and hierarchical scales. Nevertheless,
those vacuum condensation energies are almost completely canceled at each stage of those sponta-
neous symmetry breakings.

From the success of the Standard Model, in particular, we are confident of the existence ofat
least twosymmetry breakings:

Higgs Condensation :−VHiggs ∼ ( 200GeV)4 ∼ 109GeV4 ∼ 1056Λ0 ,

QCD Chiral Condensation⟨q̄q⟩4/3 : −VQCD ∼ ( 200MeV)4 ∼ 10−3GeV4 ∼ 1044Λ0 .

These are 1056 and 1044 times larger, respectively, than the present CC valueΛ0. Nevertheless,
the fact that our calm universe exists means that these surely existing vacuum energies are not
contributing to the CC at all! That is, Einstein gravity does not feel these condensation energies
at all. If these condensation energies are canceled by an initially prepared “bare cosmological
constant"c, then, even these two spontaneous breakings alone imply that the cancellation must
occur exactly over more than 56 digits. If we rephrase this fact more vividly, then, the Higgs
condensation energyVHiggs and chiral condensation energyVQCD are, respectively, canceled by the
bare CC valuec exactly by 12 digit and 44 digit of concrete numbers, respectively, as shown as
follows:

c(initially prepared CC)
= 654321,098765︸ ︷︷ ︸

12digits

4321,0987654321,0987654321,0987654321,0987654321×Λ0 ∼ 1056Λ0

c+VHiggs= 4321,0987654321,0987654321,0987654321,0987654321︸ ︷︷ ︸
44digits

×Λ0 ∼ 1044Λ0

c+VHiggs+VQCD = present Dark Energy: 1×Λ0 ∼ Λ0

Note that the vacuum energy is almost totally canceledat each stage of spontaneous symmetry
breakingas far as in the order of the relevant energy scale.

In this talk, I would like to propose theclassical scale invarianceas an essential ingredient
for solving the CC problem. Here the classical scale invariance means that the theory hasno
dimensionful parametersat all. Indeed in Section 2, I give an argument that the classical scale
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invariance is anecessary conditionfor the calculability of the vacuum energy. Otherwise the theory
must have a bare cosmological constant term as a free parameter UV counterterm, implying that
there is no hope to determine its renormalized value by calculation in the theory.

In later Sections 3 to 5, we will discuss how the scale invariance is sufficient to solve the CC
problem. In subsection 3.1, we discuss the problem in a classical field theory framework, namely
at tree level in quantum field theory. There I present a scale invariant model possessing a suitable
potentials, and show that the scale invariance gives a natural mechanism for realizing the miracle of
vanishing vacuum energies at every step of the successive spontaneous symmetry breakings. Then,
moving to quantum theory in subsections 3.2 and 3.3, I explain the Englert-Truffin-Gastmans’[1]
prescription to maintain the scale invariance in quantum field theory. In Section 4, we discuss
the quantum scale invariant renormalization explicitly for Schaposhnikov-Zenhausern’s model[2]
of two scalar fields, Higgs and dilaton fields, whose characteristic energy scales are 102GeVand
1018GeV, respectively. Based on the explicit computations by Ghilencea[15], we will see that the
hierarchy is maintained stable against the radiative corrections. However, I will point out that
we actually need superfine tuning of coupling constants to realize the vanishingly small vacuum
energy, implying reappearance of CC problem. The puzzle why the quantum scale invariance does
not automatically guarantees the vanishing vacuum energy is resolved in Section 5. In Section
6, we discuss in more detail and generally how the hierarchy problem is solved in quantum scale
invariant theory even including gravity loop corrections. Section 7 is devoted to conclusion.

2. Scale Invariance is a Necessary Condition

We show in this section that the classical scale invariance is a necessary condition for the CC
problem to be solvable. For preparation for it, we first have to clear up a possible confusion about
the vacuum energy.

2.1 quantum vacuum energy≃ potential energy

People may suspect that there are two distinct sources for the cosmological constant. One
is the vacuum energy in quantum field theory, zero-point oscillation energy for boson fields and
negative energy in the Dirac sea for fermions,

(Quantum) Vacuum Energy ∑
k,s

1
2

h̄ωk−∑
k,s

h̄Ek (2.1)

which is divergent in nature and usually simply discarded. Another is the potential in classical field
theory:

(Classical) Potential Energy V(φc) : potential (2.2)

which is finite in nature and gives the vacuum condensation energy in the case of spontaneous
symmetry breaking. These two are separately stored in our (or my, at least) memory, but actually,
almost the same object, as we now see.

We now show for the vacuum energies in the Standard Model (SM) that

quantum Vacuum Energy≃ Higgs Potential Energy. (2.3)
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To see this more explicitly, let us consider a simplified (analogue of) SM:

Lr = ψ̄
(
iγµ∂µ −yφ(x)

)
ψ(x)

+
1
2

(
∂ µφ(x)∂µφ(x)−m2φ2(x)

)
− λ

4!
φ4(x)−hm4.

Here,φ is a single component scalar field as an analogue of Higgs field, andψ is a Dirac fermion
as an analogue of quark/lepton fields whose mass comes solely from the non-vanishing vacuum
expectation value (VEV) of Higgs,⟨φ⟩ ̸= 0. The last term−hm4 is the vacuum energy (CC) term.

Effective action and effective potential are calculated prior to the vacuum choice (i.e., calcula-
ble independently of the choice of the vacuum). The effective potentialV(φ) at 1-loop level in this
simplified SM is given in the following well-known form :

V(φ ,m2) =Vtree+V1-loop+δV(1)
counterterms

Vtree=
1
2

m2φ2+
λ
4!

φ4+hm4

V1-loop=
1
2

∫
d4k

i(2π)4 ln(−k2+m2+
1
2

λφ 2︸ ︷︷ ︸
=M2

φ (φ)

)−2
∫

d4p
i(2π)4 ln(−p2+ y2φ2︸ ︷︷ ︸

=M2
ψ (φ)

) . (2.4)

The 1-loop integral is evaluated in the dimensional regularization. Using dimensional formula

1
2

µ4−n
∫

dnk
i(2π)n ln(−k2+M2) =

M4

64π2

(
−1

ε̄
+ ln

M2

µ2 − 3
2︸ ︷︷ ︸

Coleman-Weinberg potential

)
, (2.5)

and dropping the 1/ε̄ parts inMS renormalization scheme
(1

ε̄
=

1
ε
− γ + ln4π, ε = 2− n

2

)
, we

obtainfinitewell-known renormalized 1-loop effective potential:

V(φ ,m2) =
1
2

m2φ2+
λ
4!

φ4+hm4

+
(m2+ 1

2λφ2)2

64π2

(
ln

m2+ 1
2λφ2

µ2 − 3
2

)
−4

(yφ)4

64π2

(
ln

y2φ2

µ2 − 3
2

)
(2.6)

Note that the divergences∝ 1/ε̄ appear in the terms proportional to

M4
φ (φ) =

(
m2+

λ
2

φ2)2
= m4+λm2φ2+

λ 2

4
φ4 and to

M4
ψ(φ) =

(
yφ
)4

= y4 φ4 . (2.7)

These divergences proportional toφ4, m2φ2 andm4 are renormalized intoλ , m2 andh, respectively.
Here we should recall the fact that these 1-loop contributions of the boson and fermion loops are
just the same object as the quantum vacuum energies mentioned above in Eq. (2.1), namely, zero-
point oscillation energy for boson fields and negative energy in the Dirac sea for fermions. They are
divergent but are renormalized into the parametersλ , m2 andh. The main part of quantum vacuum
energies are already included in the classical potentialVtree(φ) with renormalized parametersλ , m2

andh, since the 1-loop parts (i.e., Coleman-Weinberg potential parts) are small corrections to the
renormalized tree level potential at energy scale around the renormalization pointφ ∼ µ.
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2.2 conclusions from these simple observations

From this simple observation, we can draw very interesting and important conclusions. As far
as the matter fields and gauge fields are concerned in the SM, we note that their masses solely come
from the Higgs condensation⟨φ⟩, so

the quantum vacuum energies coming from the matter and gauge fields are
calculableandfinitequantities in terms of the renormalizedλ parameters.

This is because their massesM are proportional to Higgs VEVφ , and the divergences of their
vacuum energies are proportional toφ4 (at 1-loop, at least.)

However, theHiggs field itself is an exception!The divergences of the Higgs vacuum energy
are not onlym2φ2 andφ4 but also the zero-point function proportional tom4. This comes from the
right diagram in Figure 1. The left diagram proportional tom2 vanishes as far as we use dimensional
regularization. In order to cancel that part, we have to prepare the bare vacuum energy (CC) termmm mm mm
Figure 1: Divergent vacuum energy diagrams coming from the Higgs loop, where the dotted line represents
the massless Higgs propagators.

h0m4
0 from the beginning to yield the counterterm:

h0m4
0 = ZhZ2

mhm4 = (1+F)hm4 → F(1)h=
1

64π2

1
ε̄
.

Then, the renormalized CC termhm4 becomes afree parameter. This implies thatthere is no
chance to explain the value of CC.

We thus reach an important conclusion:

For the calculability of CC, we should havem2 = 0, or equivalently
no dimensionful parameters in the theory⇒ (Classical) Scale-Invariance.

3. Scale Invariance may solve the CC Problem

Our world is almost scale invariant: that is, the SM Lagrangian is scale invariantexcept for
the Higgs mass term. So if the Higgs mass term comes from the spontaneous breaking of scale
invariance at higher energy scale physics, the total system can really be scale invariant (classically,
at least):

λ (h†h−m2)2 → λ (h†h− εΦ2)2. (3.1)

whereh is Higgs field andΦ is a certain scalar field relevant to the higher energy physics; for
instance,Φ may be a field appearing in front of the Einstein-Hilbert term as∫

d4x
√
−g Φ2R. (3.2)
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We call this fieldΦ dilaton henceforth since it becomes the Nambu-Goldstone boson for sponta-
neous breaking of scale (= dilatation) invariance by its non-vanishing VEV.

I will explain in this section how the classical scale invariance (SI) may solve the CC prob-
lem; in particular, it would give a natural mechanism why the vacuum energy remains vanishing
at every stage of hierarchical successive spontaneous symmetry breakings. Similar ideas have
been proposed so far by many authors including Shaposhnikov and Zenhausern[2], Antoniadis and
Tsamis[3], Tomboulis[4], Wetterich[5], and others[6, 7, 8, 9, 10]. My scenario is most similar to
Shaposhnikov and Zenhausern[2], but no one has ever pointed out that it gives a natural mecha-
nism for realizing vanishing vacuum energy at every stage of successive spontaneous symmetry
breakings.

Before explaining my scenario usingglobal SI, let me mention to the work by Antoniadis and
Tsamis[3] and Tomboulis[4], whose papers appear very early and actually contain almost all basic
ideas in this direction for solving the CC problem. Nevertheless those work uselocal SIwhich I
think has to be useless:

Local SI theory with dilaton (without Weyl gauge field) is meaningless.

The reason is the following. If the dilaton fieldΦ0(x) with dimension one is present,any
actioncan be cast into local SI form so that the local SI itself means nothing: Indeed, for any given
actionS[φ ] which may contain any mass terms, we can replace any fieldsφi with dimensiondi by
the scale invariant fields

φi → Φ−di
0 φi =: φ ′

i . (3.3)

Then the action becomes local scale invariant underφi(x)→ λ (x)di φi(x) andΦ0(x)→ λ (x)Φ0(x).
But this local symmetry isfakesince the system reduces to the original actionS[φ ] in the unitary
gaugeΦ0(x) = 1. q.e.d.

Essentially the same but more detailed discussion was given by Tsamis and Woodard[11] for
the conformal scalar-metric gravity theory. Note, however, that this argument applies only to the
local SI system in which Weyl gauge field is absent. If the Weyl gauge field exists in the system,
the gauge fixing cannot eliminate all four components of the Weyl gauge field [12, 13].

So, by SI henceforth, we always meanglobal scale invariance, or equivalently, the absence of
dimensionful parameters in this paper.

3.1 classical scale invariance: a possible scenario

Suppose that our world has no dimensionful parameters. Let the effective potentialV of the
total system look like

V(φ) = V0(Φ) + V1(Φ,h) + V2(Φ,h,ϕ)
↓ ↓ ↓
M ≫ µ ≫ m

We suppose thatV0(Φ),V1(Φ,h) andV2(Φ,h,ϕ) are relevant to the physics at three energy scales,
Planck scaleM, electroweak scaleµ and QCD scalem, respectively, although they contain no
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dimensionful parameters. We also suppose thath andϕ are Higgs field and chiralSU(2) sigma-
model field, respectively. Then, classically, it satisfies the scale invariance relation :

∑
i

φ i ∂
∂φ i V(φ) = 4V(φ), (3.4)

with φi representing all the relevant scalar fields collectively. This implies that the vacuum energy
vanishes at any stationary point⟨φi⟩= φ0

i :

V(φ0) = 0.

Important point is thatthis holds at every stage of spontaneous symmetry breakingsas far as the
potentialV0(Φ), V0(Φ)+V1(Φ,h) andV0(Φ)+V1(Φ,h)+V2(Φ,h,ϕ) are separately scale invariant
(i.e., of dimension 4). This should be so because, for instance, we can retain onlyV0(Φ) part when
discussing the physics at scaleM sinceh andϕ are expected to get much smaller VEVs of order
µ or lower. Then the scale invariance guaranteesV0(Φ0) = 0. This thus gives a very natural
mechanism for realizing themiracle that the vacuum energy remains vanishing at every step of
spontaneous symmetry breakings.

We can now write a toy model of potentials. First part is

V0(Φ) = 1
2λ0(Φ2

1− ε0Φ2
0)

2,

in terms of two real scalar fieldsΦ0 andΦ1, to realize VEVs

⟨Φ0⟩= M and ⟨Φ1⟩=
√

ε0M ≡ M1. (3.5)

This M is totally spontaneous and there is no meaning in its magnitude at this stage. Only mean-
ingful is whether it vanishes or not. We supposeM be Planck mass giving the Newton coupling
constant via the scale invariant Einstein-Hilbert term

Seff =
∫

d4x
√
−g
{

c1Φ2
0R+c2R2+c3RµνRµν + · · ·

}
.

If the grand unified theory (GUT) stage exists,ε0 may be a constant as small as 10−4 and then
Φ1 gives the scalar field which breaks GUT symmetry; e.g.,Φ1 : 24 causingSU(5) → SU(3)×
SU(2)×U(1).

V1(Φ,h) part causes the electroweak symmetry breaking:

V1(Φ,h) = 1
2λ1
(
h†h− ε1Φ2

1

)2

with very small parameterε1 ≃ (102GeV/1016GeV)2 ≃ 10−28. This reproduces the Higgs poten-
tial whenh is the Higgs doublet field andε1Φ2

1 term is replaced by the VEVε1M2
1 = µ2/λ1 ∼

(102GeV)2.
V2(Φ,h,ϕ) part causes the chiral symmetry breaking, e.g., SU(2)L×SU(2)R → SU(2)V . Us-

ing the 2×2 matrix scalar fieldϕ = σ + iτ ·π (chiral sigma-model field), we may similarly write
the potential

V2(Φ,h,ϕ) = 1
4λ2
(
tr(ϕ†ϕ)− ε2Φ2

1

)2
+Vbreak(Φ,h,ϕ)

6
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with another small parameterε2 ≃ 10−34. The first term reproduces the linearσ -model potential
invariant under the chiral SU(2)L×SU(2)R transformationϕ → gLϕgR whenε2Φ2

1 is replaced by
the VEV ε2M2

1 = m2/λ2. The last termVbreakstands for the chiral symmetry breaking term which
is caused by the explicit quark mass terms appearing as the result of tiny Yukawa couplings ofu,d
quarks,yu,yd, to the Higgs doubleth; e.g.,

Vbreak(Φ,h,ϕ) =
1
2

ε3Φ2
1 tr
[
ϕ†
(

yuh̃ ydh
)
+h.c.

]
with ε3 ∼ 4πε2 andh̃≡ iσ2h∗.

3.2 quantum mechanically

As soon as we come to quantum field theory, we are confronted with the SI anomaly:

Scale invariance suffers from an Anomaly.

Usual wisdom tells us so. Owing to the UV divergence in quantum field theory, it is necessary to
introduce a (dimensionful) renormalization pointµ, which necessarily break the classical SI. If we
also take the renormalization pointµ into account, the dimension counting identity comes to read(

µ
∂

∂ µ
+∑

i

φi
∂

∂φi

)
V(φ) = 4V(φ). (3.6)

The anomalyµ(∂/∂ µ)V term may be eliminated by using renormalization group equation (RGE):(
µ

∂
∂ µ

+∑
a

βa(λ )
∂

∂λa
+∑

i

γi(λ )φi
∂

∂φi

)
V(φ) = 0.

Then, we obtain (
∑

i

(1− γi(λ ))φi
∂

∂φi
−∑

a
βa(λ )

∂
∂λa

)
V(φ) = 4V(φ), (3.7)

which replaces the above naive dimension counting equation∑i φi(∂/∂φi)V(φ) = 4V(φ). With
either Eq. (3.6) or Eq. (3.7), we cannot conclude the vanishing potential valueV(φ0) = 0 at the
stationary pointφ0. Eq. (3.7) shows that the anomalous dimensionγi(λ ) is not the problem, but
βa(λ ) terms may be problematic.

Still, if we assume the existence ofInfrared Fixed Pointsβa(λIR) = 0 and that the theory on top
of that pointλIR is well-defined, then, I can prove that the potential valueV(φ0) at the stationary
point φ = φ0 is zero at any finiteµ (not necessarily in the IR limitµ → 0). That is,the vanishing
property of the stationary potential value V(φ) is not injuredby the scale-invariance anomaly[14].

Even then, however, we will meet the same difficulty – flat direction problem – as that we
will encounter also in the next approach which we discuss from now on. So we do not discuss this
approach assuming the IR fixed point anymore here.

7
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3.3 quantum scale invariant renormalization

Shaposhnikov and Zenhausern[2] proposed a new approach to this anomaly obstacle for the
scale invariance scenario. Their proposal is based on a very simple observation thatSI can be
maintained even in quantum field theory if we have a dilaton fieldΦ in the system. Generally, if a
regularization method exists which keeps a symmetry, then it implies the absence of anomaly for
the symmetry. In this case of SI, the extension ton-dimension is shown possible keeping SI if a
dilaton fieldΦ is used, as we explain shortly.

This way of quantum SI renormalization is, however, not new, but actually has long been
known since the original proposal by Englert, Truffin and Gastmans[1]. It was also used in the
prior scale invariant approaches to the CC problem[3, 4].

Recall the way how the scalar quartic couplingλ and Yukawa couplingy are kept dimension-
less inn dimension in the usual dimensional regularization. It is realized by introducing renormal-
ization scaleµ as follows:

Usual dimensional regularization

λ (h†(x)h(x))2 → λ µ4−n(h†(x)h(x))2 [h] =
n−2

2

yψ̄(x)ψ(x)h(x) → yµ
4−n

2 ψ̄(x)ψ(x)h(x) [ψ] =
n−1

2
(3.8)

To avoid the introduction of explicit dimensionful parameterµ violating the SI, we can replaceµ
by a power of the dynamical dilaton fieldΦ(x), Φ

2
n−2 (x), of dimension 1 as

SI prescription

λ (h†(x)h(x))2 → λ [Φ(x)
2

n−2 ]4−n(h†(x)h(x))2

yψ̄(x)ψ(x)h(x) → y[Φ(x)
2

n−2 ]
4−n

2 ψ̄(x)ψ(x)h(x) . (3.9)

Since no dimensionful parameter is introduced, this prescription really keeps SI in any dimension
n. But the price we have to pay is the non-renormalizable interaction terms; that is, on the vacuum
in which the dilaton field develops the VEV⟨Φ(x)⟩= M, the introduced fractional power ofΦ(x)
yieldsnon-polynomial “evanescent" interactions∝ 2ε = 4−n:

Φ(x) = M+φ(x) → [Φ(x)]
4−n
n−2 = M

ε
1−ε

(
1+

ε
1− ε

φ(x)
M

++
1
2

ε(2ε −1)
(1− ε)2

φ(x)2

M2 + · · ·
)
.

This prescription gives quantum scale invariant theory, which might realize the vanishing CC. So
let us examine this theory in more detail.

4. Quantum Scale-Invariant Renormalization: 2-scalar model

Explicit calculations were performed by Ghilencea and his collaborators[15, 16, 17] in a sim-
ple 2-scalar model; following Ref. [15], we henceforth use notationsφ(x) andσ(x) to denote our
Higgs fieldh(x) and dilaton fieldΦ(x) (h → φ , Φ → σ ). Then the Lagrangian reads

L =
1
2

∂µφ ·∂ µφ +
1
2

∂µσ ·∂ µσ −V(φ ,σ) (4.1)

8
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with scale-invariant potential inn dimension:

V(φ ,σ) = µ(σ)4−n
(

λφ

4
φ4− λm

2
φ2σ2+

λσ

4
σ4
)

(4.2)

with
µ(σ) = zσ

2
n−2 . (4.3)

Herez is a renormalization point parameter introduced by Tamarit[18] to discuss renormalization
group equation (RGE) in this quantum SI theory, but we can takez= 1 if we do not care about
RGE. At tree level,λ 2

m = λφ λσ is assumed so that the potential becomes a complete square form:

V(φ ,σ) = µ(σ)4−n λφ

4

(
φ2− εσ2)2

,

with λm = ελφ , λσ = ε2λφ . (4.4)

Note: If the dilatonσ and the Higgsφ are supposed to get the VEVs of order of the Planck
scale massM ∼ 1018GeVand the electroweak massµ ∼ 102GeV, respectively, then the parameter
ε = ⟨φ⟩2/⟨σ⟩2 is very tiny∼ 10−32. We know that Higgs quartic couplingλ = 2λφ ∼ 1/4 so that
λm andλσ are very tiny ofO(ε) andO(ε2), respectively.

Ghilencea has shown the following for this quantum scale invariant theory:

1. Non-renormalizability: higher and higher order non-polynomial interaction terms of the form

φ4+2p

σ2p (p= 1,2,3, · · ·) (4.5)

are induced by theevanescent interactionsat higher loop level (up top≤ ℓ at ℓ loop level),
and they must also be included as counterterms. These terms, however, can be neglected in
the low-energy region below Planck scaleE < ⟨σ⟩ ∼ M. So the usual renormalizable theory
is an effective low energy theory valid below Planck energy, irrespectively of whether the
gravity is quantized or not.

2. Mass hierarchy is stable: If we put

λφ = λ̄φ , λm = ελ̄m, λσ = ε2λ̄σ (4.6)

with O(1) coupling constants̄λi (i = φ ,m,σ) and very tinyε = 10−32, then,λ̄i ’s remain of
O(1) stably against radiative corrections. This is essentially becauseσ2φ2 term comes only
through theλmφ2σ2 interaction.

Explicit form of the one-loop potential atn= 4 is actually given in theScale Invariantform:

V(φ , σ) =
λφ

4
φ4− λm

2
φ2σ2+

λσ

4
σ4

+
h̄

64π2

{
M4

1

(
ln

M2
1

z2σ2 −
3
2

)
+M4

2

(
ln

M2
2

z2σ2 −
3
2

)
+∆V

}
, (4.7)

∆V =−λφ λm
φ6

σ2 +(16λφ λm−6λ 2
m+3λφ λσ )φ4

+(−16λm+25λσ )λmφ2σ2−21λ 2
σ σ4. (4.8)
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whereM2
i (i = 1,2) are two mass-square eigenvalues for two scalar fields around the VEVsφ and

σ , soM2
i /σ2 are dimensionless functions of dimensionless variableφ2/σ2. The∆V potential is

the finite part which comes from theO(ε) evanescent interaction terms multiplied by the one-loop
divergence 1/ε.

However, there is a problem to which Ghilencea has not mentioned:

3. Vanishing CC again requires fine tuning! owing to quantum corrections.

This is the most important point in this paper, so let us now explain it in detail. SinceV(φ ,σ) is a
dimension-4 function inσ andφ , it takes the form

V(φ ,σ) = σ4W(x) with x≡ φ2/σ2. (4.9)

Since the stationarity conditions
φ

∂
∂φ

V = σ4W′(x) ·2x = 0

σ
∂

∂σ
V = σ4

(
4W(x)+W′(x) · (−2x)

)
= 0

(4.10)

requires both

W′(x) = 0 and W(x) = 0 are satisfied, unlessσ = φ = 0. (4.11)

Let us examine these conditions with the above 1-loop potential (4.7):

W(x) =
λφ

4
x2− λm

2
x+

λσ

4

+
h̄

64π2

{
M4

1

σ4

(
ln

M2
1

z2σ2 −
3
2

)
+

M4
2

σ4

(
ln

M2
2

z2σ2 −
3
2

)
−λφ λmx3+(16λφ λm−6λ 2

m+3λφ λσ )x
2+(−16λm+25λσ )λmx−21λ 2

σ

}
.

First consider these conditions at tree level; the stationary pointx= x0 should satisfy
W′(x0) =

λφ

2
x0−

λm

2
= 0 → x0 =

λm

λφ
,

W(x0) =
λφ

4
x2

0−
λm

2
x0+

λσ

4
= 0 → λσ =

λ 2
m

λφ
.

(4.12)

Note here that the stationary pointx0 =
⟨φ⟩2

⟨σ⟩2 is already determined by the first conditionW′(x0) = 0

alone, while the second oneW(x) = 0 imposes aconstraint on the coupling constantsλi ’s. This
constraintλσ λφ = λ 2

m at this stage is the condition we have initially imposed on the tree potential
in Eq. (4.4).

At one-loop level, next, the stationary point may be shifted and the coupling constants may be
adjusted:

x= x0+ h̄x1, λi ⇒ λi + h̄δλi (i = φ ,m,σ) . (4.13)
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The first conditionW′(x) = 0 requires, forO(h̄) parts,

W′(x)
∣∣∣
O(h̄)

=
λφ

2
x1+

δλφ

2
x0+

δλm

2

+
1

64π2

[
4λφ λm(3+2x0−x2

0)

(
ln

2λm(1+x0)

z2 −1

)
+16λ 2

m(1+x0)

]
. (4.14)

This determines, as at tree level, the VEV’s shift at 1-loop levelh̄x1. We may or may not adjust the
coupling constants at this stage. But important is the point that this condition (4.14) is consistent
with the VEV (mass) hierarchy; that is, no fine tuning of the coupling constants is necessary to
maintain the tiny ratio of field VEVsx= ⟨φ⟩2/⟨σ⟩2 at tree level,x0 = λm/λφ = ε ∼ 10−32. Indeed,
every term in Eq. (4.14) is O(ε) simply by keeping the order of magnitude of the coupling constants
as in Eq. (4.6); namely, the barred coupling constants are all kept of order 1,λ̄i ∼ δ λ̄i ∼ O(1), and
then the VEV ratiox0+ h̄x1 consistently remains ofO(ε):

λm,δλm ∼ O(ε), λφ ,δλφ ∼ O(1) → x0, x1 ∼ O(ε) → x=
⟨φ⟩2

⟨σ⟩2 = x0+h̄x1 ∼ O(ε). (4.15)

Next is the second condition:

W(x)
∣∣∣
O(h̄)

=
δλφ

4
x2

0+
δλm

2
x0+

δλσ

4
+

1
64π2

[
4λ 2

m(1+x0)
2
(

ln
2λm(1+x0)

z2 − 3
2

)]
. (4.16)

Again, this gives a constraint on the coupling constants. Here again all the terms areconsistently
of O(ε2), so thatW(x) = 0 can be realized up too(ε2) by O(1) tuning of the barred coupling
constants̄λφ , λ̄m, λ̄σ . However, althoughW(x) at the stationary point can be made vanish very
precisely in the order as tiny asε2 ∼ 10−64, theVacuum Energy V= σ4W(x) itself vanishes only
in the sense ofO(ε2)×σ4 = O((100GeV)4). This is because the Planck energy is so huge;⟨σ⟩4 =

(1018GeV)4 = 1064× (100GeV)4. If we require the vanishingness up to the order of presently
observed vacuum energyΛ0 ∼ (1meV)4 ∼ 10−56× (100GeV)4, then, we have still to tune the
barred coupling constants̄λφ , λ̄m, λ̄σ in 56 digits! We still needsuperfine tuningeven in quantum
scale-invariant theory. This is nothing but reappearance of the original CC problem! We have to
conclude:

Quantum SI is not enough to solve the CC problem. (4.17)

Shaposhnikov and Zenhausern[2] noted that there are degrees of freedom of coupling constants to
realize the conditionW(x) = 0, but they did not recognize that it requires the superfine tuning of the
coupling constants which is essentially the same problem as the CC problem we originally wanted
to solve.

Note also, however, that this is in fact theproblem beyond the perturbation theory. We are
discussing the vacuum energy in much finer precision than the perturbation (loop) expansion pa-
rameter̄h/16π2 ∼ 1/158.

5. What happens?

If the theory is quantum scale-invariant, then we have the dimension counting equation

∑
i

φi
∂

∂φi
V(φ) = 4V(φ) (5.1)
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which impliesV(φ0
i ) = 0 at any stationary pointφ0

i , and any point in that direction,ρφ0
i with

∀ρ ∈ R also realizes the vanishing energyV(ρφ0
i ) = ρ4V(φ0

i ) = 0 (flat direction). Conversely
speaking, therefore, ifV(φ) ̸= 0 at∃φ , then the potential is not stationary at thatφ .

In the above:V(φ ,σ) = σ4W(x) was flat in the directionφ2/σ2 = x0 at tree level,W(x0)=0,
but, at one-loop, the potential did not exactly satisfyW(x0 + h̄x1) = 0 at the ‘stationary point’
realizingW′(x0+ h̄x1) = 0 exactly, unless the coupling constants were superfine-tuned. The value
W(x0+ h̄x1) is just as tiny asε2 ∼ 10−64 but not exactly zero.

This means from the above Eq. (4.10) that the pointx0 + h̄x1 realizes the stationarity with
respect toφ but not necessarily toσ . “W(x0+ h̄x1) ̸= exactly 0" means that the potential has atiny
gradientσ(∂/∂σ)V = 4σ4W(x) = σ4O(ε2) ̸= 0 in theσ -direction (or, more precisely,φ2/σ2 =

x0+ h̄x1 direction) and that the potential is actually stationaryonly at the originσ = 0! That is,

The flat direction islifted by the radiative correction. (5.2)

Quantum scale invariance alone does not protect the flat direction, automatically. Artificial su-
perfine tuning of the coupling constants was required to keep the flat direction.

Tomboulis[4] however proposed an interesting mechanism with which the conditionW(x) = 0
may automatically be satisfied without any fine tuning of the coupling constants. Let us explain his
arguments. Recall that the stationarityδV

δφ = 0 andδV
δσ = 0 required, forV = σ4W, respectively,

(1) W′(x;λ )
∣∣∣
x=x0(λ )

= 0 ⇒ (2) W
(
x0(λ );λ

)
= 0 (5.3)

determines the VEV ratiox=
φ2

σ2 = x0(λ ) demands super fine tuning ofλ ’s.

Tomboulis introduced a renormalization pointµ in addition to the dilaton fieldσ and consider the
running of coupling constant:1

λ̄ (z), z≡ µ
σ

: renormalization point parameter. (5.4)

Then, he claims that, the second condition in Eq. (5.3), now reading

W(x0(λ̄ (z)); λ̄ (z)) = 0, (5.5)

is simply an equation determining the renormalization pointz0 = µ0/σ0 and so is automatically
satisfied without any fine tuning.

This interesting idea, however, does not work unfortunately, since

d
dz

W(x0(λ̄ (z)); λ̄ (z)) = 0. (5.6)

Changing the renormalization pointz= µ/σ cannot change the value ofW(x0(λ̄ (z)); λ̄ (z)) since
it is a physical quantity independent of the choice of renormalization point.

1The coupling constants run even in quantum scale invariant theory despite the fact that the usual beta functions
βa(λ ) represent the anomaly for the scale invariance. Tomboulis as well as Shaposhnikov-Zenhausern did know this
fact, but it was fully clarified by Tamarit[18] and properly used by Ghilencea[15]. Here we use the letterz following
Ghilencea[15] to denote the renormalization point parameterξ of Tamarit’s[18].
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We thus have no mechanism which can preserve the flat direction against quantum radiative
corrections. We still need another symmetry to realize the flat direction.Supersymmetry(SUSY)
would be an immediate candidate for it. But it will also introduce another problem how to break it
spontaneously. Depending on the way of breaking, the superfine tuning problem may reappear.

6. Discussions: hierarchy problem

Although the quantum scale invariance is not yet sufficient for solving the CC problem, it
should be emphasized that it already almost solved the hierarchy problem.

There are two aspects of the hierarchy problem:

1. Origin: to explain the origin why the hierarchy exist.

2. Stability: to explain its stability against radiative corrections, once it exists anyway.

6.1 stability against radiative corrections

As for the stability against the radiative correction, it is guaranteed, for instance, by SUSY as
a well-known example. If the system has scale invariance, there exist only the logarithmic diver-
gences but no quadratic divergences, so that the stability is automatic in the SM, as was emphasized
by Bardeen[19] in 1980’s. In the present two scalar model, however, if theφ2σ2 term is radiatively
induced withO(1) coefficient, the (mass) hierarchy is immediately broken since⟨σ⟩ = M is of
Planck or GUT energy scale. We have observed based on Ghilencea’s explicit computation that
the coupling constantλm of theφ2σ2 term remains of orderO(ε) at one-loop. The general reason
for it is that the coupling betweenφ2 andσ2 totally disappears in the 2-scalar model ifλm = ελ̄m

vanishes at tree level, so it must be proportional toε at any loop level[2].
If the gravity interaction is taken into account, we need additional reasoning, sinceφ2 andσ2

can couple through gravity without factorλm. The point is thatσ2 can couple to the gravity loop
directly via

√
−gσ2R whereasφ2 can couple to it only through the kinetic term

√
−ggµν∂µφ∂νφ

unless we use theO(ε) λm interaction
√
−gλmφ2σ2. If we use the kinetic term interaction vertex

in which φ is accompanied by a derivative, the gravity loop graph will induce the term of the form√
−gσ2∂µφ∂ µφ . It is of dimension 6 and should be divided by a mass dimension-2 quantityM2.

But we have no such a dimensionful parameter in this quantum scale invariant theory and only
field that can appear in the denominator is the dilaton fieldσ2, so it eventually gives just the Higgs
kinetic term.

Another worry is whether the gravity loop might induce theσ4 term withO(1) or evenO(ε)
or not. The worry is only the gravity loops and only the term

√
−gσ2R is relevant. Thenσ2 plays

the role of an overall factor in front of the action just like inverse of the Planck constant, 1/h̄. So
theL-loop gravity graphs can produce only the term proportional to(σ2)1−L, and hence no positive
power ofσ2 terms are induced by gravity loops.

6.2 origin of the hierarchy

In the above wishful scenario in Section 3.1, we have “realized"large gauge hierarchiessim-
ply by assumingtiny parametersε1 ≃ 10−28 andε2 ≃ 10−34:

V1 =
1
2

λ2
(
h†h− ε1Φ2

1

)2
and V2 ⊃

1
4

λ2
(
tr(ϕ†ϕ)− ε2Φ2

1

)2
.
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However, the chiral symmetry breaking scaleε2⟨Φ1⟩, for instance, can usually be explained
by the running coupling as follows; if GUT is assumed, the SU(3) gauge couplingα3 = g2

3/4π
at scale

√
ε0M ≡ M1 evolves asα3(µ) a la RGE as the scaleµ changes, and reaches to theO(1)

critical couplingαcr
3 ≃ 1 at scaleµ ≃ ΛQCD to break the chiral symmetry, so that

√
ε2M1 ≃ ΛQCD.

Thus the relation between the GUT scaleM1 and QCD scaleΛQCD is fixed by the running gauge
coupling constantα3(M1) at scaleM1 as

µ
d

dµ
α3(µ) = 2b3 α2

3(µ) → 1
α3(µ)

=
1

α3(M1)
−b3 ln

µ2

M2
1

→ 1
αcr

3
=

1
α3(M1)

−b3 ln
Λ2

QCD

M2
1

,

whereαcr
3 = O(1) quantity likeπ/3, so explains the huge hierarchy:

ε2 =
Λ2

QCD

M2
1

= exp
1
b3

( 1
α3(M1)

− 1
αcr

3

)
. (6.1)

This is the usual explanation.

In quantum SI theory, α3(M1) here, probably, should be replaced byM1-independent initial
gauge couplingα init

3 , while the initial scaleM2
1 should be replaced by the dilaton field VEV⟨σ⟩2.

Then
1

αcr
3
− 1

α init
3

=−b3 ln
Λ2

QCD

⟨σ⟩2 (6.2)

so that the QCD scaleΛQCD is always scaled with the dilaton VEV⟨σ⟩.
This hierarchy should show up in the effective potential. SinceΛ2

QCD here should stand for the
VEV ϕ†ϕ of the chiral sigma model scalar fieldϕ, we suspect that we should be able to derive an
effective potential of quasi Coleman-Weinberg type like

V(σ ,ϕ) =
(ϕ†ϕ)2

64π2

(
−b3 ln

ϕ†ϕ
σ2 +

1

α init
3

− 1
αcr

3

)2

. (6.3)

Note that this form of SI potential is devised such that it has a non-vanishing field stationary point
at ⟨ϕ⟩†⟨ϕ⟩/⟨σ⟩2 = x0 satisfyingb3 lnx0 = (α init

3 )−1− (αcr
3 )−1.

7. Conclusion

I have shown in this talk that the scale invariance gives a natural mechanism for guarantee-
ing the vanishing vacuum energy at each step of hierarchical successive spontaneous symmetry
breakings, at least in the classical field theory. I also explained the Englert-Truffin-Gastmans pre-
scription which, I called quantum scale-invariant renormalization, preserves the scale-invariance
also in quantum field theory. Even with such a prescription, however, the radiative corrections lift
the flat directions of the potential and leave only the originφi = 0 in field space as the stationary
point, unless the superfine tuning of the coupling constants is made. Therefore, the scale-invariance
alone is not sufficient for realizing the vanishing vacuum energy.
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I believe that the scale invariance is the right direction for solving the CC problem, but some-
thing is still missing. We need yet anothersymmetryor amechanismto realize

Spontaneous SI breaking= Non-vanishing field VEV

= ∃ flat direction ofV(φ) .
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