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Scale Invariance for solving Cosmological Constant Problem Taichiro Kugo

1. Introduction
Cosmological constant problem is a dark cloud hanging over the two well-established theories
Quantum Field Theory <  Einstein Gravity Theory

| first explain my viewpoint orwhat is actually the problem
Presently observed Dark Enerfyy looks like a small Cosmological Constant (CC):

Present observed CC: 1%¥gr/cm® ~ 10 4'GeV* ~ (1meV)* = Ao. (1.1)

| do not try to explain this tiny CC now, since it will eventually be explained after our CC problem
is solved. However, we use it as the scale ¥ibf our discussion in this Introduction.

Now, from my viewpoint, the essential point of the CC problem is the following miraculous
fact; that is, there are several dynamical symmetry breakings in this world and they are all accom-
panied by vacuum condensation energies, ranging over wide and hierarchical scales. Nevertheless,
those vacuum condensation energies are almost completely canceled at each stage of those sponta=
neous symmetry breakings.

From the success of the Standard Model, in particular, we are confident of the existance of
least twosymmetry breakings:

Higgs Condensation Viiggs ~ ( 200GeV)* ~ 10°GeV* ~ 10°°A,,
QCD Chiral Condensatiofgig)”® : —Vocp ~ (200MeV)* ~ 10 3GeV* ~ 10*A,.

These are 1% and 1d* times larger, respectively, than the present CC valge Nevertheless,

the fact that our calm universe exists means that these surely existing vacuum energies are not
contributing to the CC at alll That is, Einstein gravity does not feel these condensation energies
at all. If these condensation energies are canceled by an initially prepared “bare cosmological
constant'c, then, even these two spontaneous breakings alone imply that the cancellation must
occur exactly over more than 56 digits. If we rephrase this fact more vividly, then, the Higgs
condensation energ¥,iggs and chiral condensation enerdycp are, respectively, canceled by the

bare CC value exactly by 12 digit and 44 digit of concrete numbers, respectively, as shown as
follows:

c(initially prepared CQ
= 6543210987654321 0987654321098765432109876543210987654321 Ao ~ 10°°/A\g
N——’
12digits
C+ Vhiggs = 4321,0987654321098765432109876543210987654321x \g ~ 10*Ag
44 digits
C+ VHiggs+Vocp = present Dark Energy: £ Ag ~ g

Note that the vacuum energy is almost totally canceledach stage of spontaneous symmetry
breakingas far as in the order of the relevant energy scale.

In this talk, | would like to propose thelassical scale invariancas an essential ingredient
for solving the CC problem. Here the classical scale invariance means that the theary has
dimensionful parameterat all. Indeed in Section 2, | give an argument that the classical scale
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invariance is anecessary conditiofor the calculability of the vacuum energy. Otherwise the theory
must have a bare cosmological constant term as a free parameter UV counterterm, implying that
there is no hope to determine its renormalized value by calculation in the theory.

In later Sections 3 to 5, we will discuss how the scale invariance is sufficient to solve the CC
problem. In subsection 3.1, we discuss the problem in a classical field theory framework, namely
at tree level in quantum field theory. There | present a scale invariant model possessing a suitable
potentials, and show that the scale invariance gives a natural mechanism for realizing the miracle of
vanishing vacuum energies at every step of the successive spontaneous symmetry breakings. Then,
moving to quantum theory in subsections 3.2 and 3.3, | explain the Englert-Truffin-Gasfijans’[
prescription to maintain the scale invariance in quantum field theory. In Section 4, we discuss
the quantum scale invariant renormalization explicitly for Schaposhnikov-Zenhausern's[Zhodel[
of two scalar fields, Higgs and dilaton fields, whose characteristic energy scales’@eVand
10'8GeV, respectively. Based on the explicit computations by Ghilefiajve will see that the
hierarchy is maintained stable against the radiative corrections. However, | will point out that
we actually need superfine tuning of coupling constants to realize the vanishingly small vacuum
energy, implying reappearance of CC problem. The puzzle why the quantum scale invariance does
not automatically guarantees the vanishing vacuum energy is resolved in Section 5. In Section
6, we discuss in more detail and generally how the hierarchy problem is solved in quantum scale
invariant theory even including gravity loop corrections. Section 7 is devoted to conclusion.

2. Scale Invariance is a Necessary Condition

We show in this section that the classical scale invariance is a necessary condition for the CC
problem to be solvable. For preparation for it, we first have to clear up a possible confusion about
the vacuum energy.

2.1 guantum vacuum energy~ potential energy

People may suspect that there are two distinct sources for the cosmological constant. One
is the vacuum energy in quantum field theory, zero-point oscillation energy for boson fields and
negative energy in the Dirac sea for fermions,

| (Quantum) Vacuum Enerdy Z;h_wk - ZﬁEk (2.1)

which is divergent in nature and usually simply discarded. Another is the potential in classical field
theory:

|(Classical) Potential Enerdy V() : potential (2.2)

which is finite in nature and gives the vacuum condensation energy in the case of spontaneous
symmetry breaking. These two are separately stored in our (or my, at least) memory, but actually,
almost the same object, as we now see.

We now show for the vacuum energies in the Standard Model (SM) that

guantum Vacuum Energy Higgs Potential Energy (2.3)
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To see this more explicitly, let us consider a simplified (analogue of) SM:
= P(iy"ou —yo(x) w(x)
1
+§(0“(p( )Au®(X) — MP?(x )——(p (x) — hnf".

Here, is a single component scalar field as an analogue of Higgs fieldydaé Dirac fermion

as an analogue of quark/lepton fields whose mass comes solely from the non-vanishing vacuum

expectation value (VEV) of Higgggp) # 0. The last term-hnt is the vacuum energy (CC) term.
Effective action and effective potential are calculated prior to the vacuum choice (i.e., calcula-

ble independently of the choice of the vacuum). The effective poténtip) at 1-loop level in this

simplified SM is given in the following well-known form :

1
V(e mz) = Viree+ Vi-loop+ 6V(:(Ol)mterterms

1 A
Viree = émz(oz—l- m(p4+hm4

. 4 S 4
V1_|oop—1/.dkIn(—k2+rT12+lA(p2)—2/ P L ). (24)
2J) i(2m* 2 i(2m)* —
p =Mg(9)

=MZ(9)

The 1-loop integral is evaluated in the dimensional regularization. Using dimensional formula
1 40 dk ) M4 1 M2 3
= . In(—k?+M? —= In— — -

2H /u(zn)n (kM) = 64n2( e TNz ):

RN .
Coleman-Weinberg potential

(2.5)

. — — L 1 1 n
and dropping the /s parts inMS renormalization schemé= =" y+Indm e =2— E)’ we
obtainfinite well-known renormalized 1-loop effective potential:

V(p,m?) = %mcher %(p4+hm4

(P4 30 (Inmz+§/\cp2 3>

64112 22

(7€ 3) o

647T2 g

Note that the divergencés1/e appear in the terms proportional to
4 e A 502 e A2 4
Mg(@) = (P +5¢7)" =t + ¢2+qu and to
My (9) = (vo)' =y ¢". 2.7)

These divergences proportionalgt, m?¢? andm® are renormalized intd, m? andh, respectively.

Here we should recall the fact that these 1-loop contributions of the boson and fermion loops are
just the same object as the quantum vacuum energies mentioned aboveZdlE qamely, zero-

point oscillation energy for boson fields and negative energy in the Dirac sea for fermions. They are
divergent but are renormalized into the parametens? andh. The main part of quantum vacuum
energies are already included in the classical potevtia( @) with renormalized parameteds n?

andh, since the 1-loop parts (i.e., Coleman-Weinberg potential parts) are small corrections to the
renormalized tree level potential at energy scale around the renormalizatiorppoint
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2.2 conclusions from these simple observations

From this simple observation, we can draw very interesting and important conclusions. As far
as the matter fields and gauge fields are concerned in the SM, we note that their masses solely come
from the Higgs condensatigp), so

the quantum vacuum energies coming from the matter and gauge fields are
calculableandfinite quantities in terms of the renormalizadparameters.

This is because their massikkare proportional to Higgs VE\p, and the divergences of their
vacuum energies are proportionalgd (at 1-loop, at least.)

However, theHiggs field itself is an exceptioriThe divergences of the Higgs vacuum energy
are not onlym?@? and¢* but also the zero-point function proportionaltf. This comes from the
right diagram in Figure 1. The left diagram proportionaftfovanishes as far as we use dimensional
regularization. In order to cancel that part, we have to prepare the bare vacuum energy (CC) term

/ h m 7 A

Figure 1: Divergent vacuum energy diagrams coming from the Higgs loop, where the dotted line represents
the massless Higgs propagators.

homé‘, from the beginning to yield the counterterm:

__11

G4

Then, the renormalized CC ternmt becomes d&ree parameter This implies thathere is no

chance to explain the value of CC
We thus reach an important conclusion:

hom§ = Z,Z2hnt' = (1+F)hnt  —  FWh

For the calculability of CC, we should have? =0, or equivalently
no dimensionful parameters in the theory (Classical) Scale-Invariance

3. Scale Invariance may solve the CC Problem

Our world is almost scale invariant: that is, the SM Lagrangian is scale invarkaept for
the Higgs mass termSo if the Higgs mass term comes from the spontaneous breaking of scale
invariance at higher energy scale physics, the total system can really be scale invariant (classically,
at least):
A(hTh—nm?)2 = A(hTh—ed?)2 (3.1)

whereh is Higgs field and® is a certain scalar field relevant to the higher energy physics; for
instance® may be a field appearing in front of the Einstein-Hilbert term as

/ d*xy/—g P?R. (3.2)
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We call this field® dilaton henceforth since it becomes the Nambu-Goldstone boson for sponta-
neous breaking of scale=(dilatation) invariance by its non-vanishing VEV.

| will explain in this section how the classical scale invariance (SI) may solve the CC prob-
lem; in particular, it would give a natural mechanism why the vacuum energy remains vanishing
at every stage of hierarchical successive spontaneous symmetry breakings. Similar ideas have
been proposed so far by many authors including Shaposhnikov and Zenhajgertgniadis and
TsamidB], Tomboulisf], WetterichE], and otherd, [4 [8 [@ [IJ. My scenario is most similar to
Shaposhnikov and Zenhaus@jh[but no one has ever pointed out that it gives a natural mecha-
nism for realizing vanishing vacuum energy at every stage of successive spontaneous symmetry
breakings.

Before explaining my scenario usigdpbal S| let me mention to the work by Antoniadis and
TsamidB] and Tomboulidf], whose papers appear very early and actually contain almost all basic
ideas in this direction for solving the CC problem. Nevertheless those worlocskeSIwhich |
think has to be useless:

’ Local Sl theory with dilaton (without Weyl gauge field) is meaningl#ss.

The reason is the following. If the dilaton fielfp(x) with dimension one is preserdny
actioncan be cast into local SI form so that the local Sl itself means nothing: Indeed, for any given
actionS¢] which may contain any mass terms, we can replace any fighd#h dimensiond; by
the scale invariant fields

a— O%a=¢. (3.3)

Then the action becomes local scale invariant urgles) — A (x)% @ (x) and®g(x) — A (X)Po(X).
But this local symmetry i¢akesince the system reduces to the original ac&ppj in the unitary
gaugedy(x) = 1. g.e.d.

Essentially the same but more detailed discussion was given by Tsamis and Wddferd][
the conformal scalar-metric gravity theory. Note, however, that this argument applies only to the
local SI system in which Weyl gauge field is absent. If the Weyl gauge field exists in the system,
the gauge fixing cannot eliminate all four components of the Weyl gauge[f2IdF.

So, by Sl henceforth, we always meglobal scale invarianceor equivalently, the absence of
dimensionful parameters in this paper.

3.1 classical scale invariance: a possible scenario

Suppose that our world has no dimensionful parameters. Let the effective potenfidhe
total system look like

\: \: \:
M > u > m

We suppose thaly(®),Vi (P, h) andVa(P, h, ¢) are relevant to the physics at three energy scales,
Planck scaleM, electroweak scal@ and QCD scalen, respectively, although they contain no
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dimensionful parameters. We also suppose thand ¢ are Higgs field and chiréU(2) sigma-
model field, respectively. Then, classically, it satisfies the scale invariance relation :

Zcp‘f@v(rp) =4V(9), (3.4)

with @ representing all the relevant scalar fields collectively. This implies that the vacuum energy
vanishes at any stationary poif) = @°:

V(¢°) =0.

Important point is thathis holds at every stage of spontaneous symmetry breakgg as the
potentiaMp(®P), Vo(P)+Vi(P,h) andVo(P) +Vi(P,h) +Vo(P, h, @) are separately scale invariant
(i.e., of dimension 4). This should be so because, for instance, we can retawy@hlypart when
discussing the physics at scéfesinceh and¢ are expected to get much smaller VEVs of order
u or lower. Then the scale invariance guarantégsPo) = 0. This thus gives a very natural
mechanism for realizing thmiracle that the vacuum energy remains vanishing at every step of
spontaneous symmetry breakings.

We can now write a toy model of potentials. First part is

Vo(®) = SA0(D? — £,P3)?,

in terms of two real scalar fieldbg and®4, to realize VEVs
(CD()> =M and <q31> = \/?oM = |V|1. (3.5)

This M is totally spontaneous and there is no meaning in its magnitude at this stage. Only mean-
ingful is whether it vanishes or not. We suppddebe Planck mass giving the Newton coupling
constant via the scale invariant Einstein-Hilbert term

Sett = /d4x\/—g{c1qa§R+c2R2+C3RuvRuv+...}.

If the grand unified theory (GUT) stage existg,may be a constant as small as~t@nd then
®; gives the scalar field which breaks GUT symmetry; ed., 24 causingSU(5) — SU(3) x
SU(2) xU(1).

Vi (P, h) part causes the electroweak symmetry breaking:

Vi(®,h) = 11 (hTh— g1 92)°

with very small parametes; ~ (10°GeV/10'%GeV)? ~ 1028, This reproduces the Higgs poten-
tial whenh is the Higgs doublet field angy®? term is replaced by the VE¥,M? = p2/A; ~
(10°GeV)2.

Vo(®, h, ¢) part causes the chiral symmetry breaking, e.g., S(&U(2r — SU(2),. Us-
ing the 2x 2 matrix scalar fieldh = o + it - T (chiral sigma-model field), we may similarly write
the potential

Va(®,h,¢) = 1, (tr(¢9) — £202)° + Voreak @, h, )
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with another small parametes ~ 1034, The first term reproduces the linearmodel potential
invariant under the chiral SURxSU(2k transformationp — g, ¢gr whenszd:v% is replaced by
the VEV &;M2 = m2/)\2. The last termVyreak Stands for the chiral symmetry breaking term which
is caused by the explicit quark mass terms appearing as the result of tiny Yukawa couplings of
quarksyu, Yd, to the Higgs doubleh; e.q.,

1 .
Vorea @, h, ¢) = *£3¢2tr [dJT (yuh ydh) +h.c.}
with &5 ~ 4me, andh = ioxh*.

3.2 quantum mechanically

As soon as we come to quantum field theory, we are confronted with the SI anomaly:

’ Scale invariance suffers from an Anomaly.

Usual wisdom tells us so. Owing to the UV divergence in quantum field theory, it is necessary to
introduce a (dimensionful) renormalization pojntwhich necessarily break the classical Sl. If we
also take the renormalization pointinto account, the dimension counting identity comes to read

<u£l+2m£q>v(<p) —av(g). 3:6)

The anomalyu(d/du)V term may be eliminated by using renormalization group equation (RGE):

(u(il+gﬁa( +ZV %q) (@) =0.

Then, we obtain

(Z(l—v zBa (Ma) @) =4V (0), 3.7)

which replaces the above naive dimension counting equatignd/d@)V (@) = 4V (@). With
either Eq.B.6) or Eq. B3, we cannot conclude the vanishing potential val{g®) = 0 at the
stationary poinig®. Eq. B2 shows that the anomalous dimensigf} ) is not the problem, but
Ba(A) terms may be problematic.

Still, if we assume the existencelofrared Fixed Pointg3;(Ajr) = 0 and that the theory on top
of that pointAjr is well-defined, then, | can prove that the potential valie®) at the stationary
point @ = ¢° is zero at any finitex (not necessarily in the IR limjt — 0). That is,the vanishing
property of the stationary potential valug¥) is not injuredby the scale-invariance anomdly].

Even then, however, we will meet the same difficulty — flat direction problem — as that we
will encounter also in the next approach which we discuss from now on. So we do not discuss this
approach assuming the IR fixed point anymore here.
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3.3 quantum scale invariant renormalization

Shaposhnikov and Zenhaus&proposed a new approach to this anomaly obstacle for the
scale invariance scenario. Their proposal is based on a very simple observati&h tiaat be
maintained even in quantum field theory if we have a dilaton fieid the system. Generally, if a
regularization method exists which keeps a symmetry, then it implies the absence of anomaly for
the symmetry. In this case of Sl, the extensiomidimension is shown possible keeping Sl if a
dilaton field® is used, as we explain shortly.

This way of quantum SI renormalization is, however, not new, but actually has long been
known since the original proposal by Englert, Truffin and Gastrifindf was also used in the
prior scale invariant approaches to the CC prohi &].

Recall the way how the scalar quartic couplih@nd Yukawa coupling are kept dimension-
less inn dimension in the usual dimensional regularization. It is realized by introducing renormal-
ization scaleu as follows:

Usual dimensional regularization
AT eOh))? = Ap*(h'(0h(x)? =
YEMWMhK) = yuZ Ppeon (W) =" (38)

To avoid the introduction of explicit dimensionful parameteviolating the Sl, we can replaqe
by a power of the dynamical dilaton fietb(x), P2 (x), of dimension 1 as

Sl prescription
MATOONGOZ = A[@(7 21" (W (9(x)?
yuxX)g(x)h(x) —  y[d(x)m- T

(8

12" G P()h(x). (3.9)

N

Since no dimensionful parameter is introduced, this prescription really keeps Sl in any dimension
n. But the price we have to pay is the non-renormalizable interaction terms; that is, on the vacuum
in which the dilaton field develops the VEMP(x)) = M, the introduced fractional power gf(x)
yieldsnon-polynomial “evanescent" interactions2e = 4 —n:

e o),  le2e-1)px? )

—MtE (14— T
' <+1—£ M T2 e w2

I
=3

OX) =M+0(x) — [®()]"

Nl

This prescription gives quantum scale invariant theory, which might realize the vanishing CC. So
let us examine this theory in more detail.

4, Quantum Scale-Invariant Renormalization: 2-scalar model

Explicit calculations were performed by Ghilencea and his collaborBfg&B, [17] in a sim-
ple 2-scalar model; following RefIH], we henceforth use notationgx) and o (x) to denote our
Higgs fieldh(x) and dilaton fieldd(x) (h — ¢, ® — 0). Then the Lagrangian reads

.Z:%duqo-d“qo+%duo-d“a—V(qo,o) (4.2)
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with scale-invariant potential in dimension:

[ A A A
V(0.0) = ()" (2 - Pt T o) @2)

with
2
u(o) =zon=2. (4.3)
Herezis a renormalization point parameter introduced by Tardijitfo discuss renormalization

group equation (RGE) in this quantum Sl theory, but we can rakel if we do not care about
RGE. At tree levelp2 = ApAg is assumed so that the potential becomes a complete square form:

A
V(9.0) = u(0)' "L (¢~ e0?)”,
with  Am=¢€dy,  Ag=E%A,. (4.4)

Note: If the dilatono and the Higgsp are supposed to get the VEVs of order of the Planck
scale mas$/! ~ 10'8GeVand the electroweak mags~ 10°GeV, respectively, then the parameter
£ = (p)?/(0)?is very tiny~ 1032, We know that Higgs quartic coupling = 2A, ~ 1/4 so that
Am andA, are very tiny ofO(g) andO(&?), respectively.

Ghilencea has shown the following for this quantum scale invariant theory:

1. Non-renormalizability higher and higher order non-polynomial interaction terms of the form

(p4+2p

ag2p (p:17273a) (45)

are induced by thevanescent interactioreg higher loop level (up tp < 7 at/ loop level),

and they must also be included as counterterms. These terms, however, can be neglected in
the low-energy region below Planck sc&le< (o) ~ M. So the usual renormalizable theory

is an effective low energy theory valid below Planck energy, irrespectively of whether the
gravity is quantized or not.

2. Mass hierarchy is stabldf we put

with O(1) coupling constantgi (i = @,m o) and very tinye = 10-32, then,)Ti’s remain of
O(1) stably against radiative corrections. This is essentially becatigéterm comes only
through theA,@?c? interaction.

Explicit form of the one-loop potential @t= 4 is actually given in th&cale Invarianform:

A A A
V(g.0) = 2egt Aoz Ao ge

4 4
h Af . M2 3 af . M2 3
@° 2 4
+ (—16Am+ 25A ) Am@? 02 — 210 2 0%, (4.8)
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whereM? (i = 1,2) are two mass-square eigenvalues for two scalar fields around the yBEwd
o, soM?/a? are dimensionless functions of dimensionless varigBleo?. TheAV potential is
the finite part which comes from th@( &) evanescent interaction terms multiplied by the one-loop
divergence le.

However, there is a problem to which Ghilencea has not mentioned:

3. Vanishing CC again requires fine tuningwing to quantum corrections.

This is the most important point in this paper, so let us now explain it in detail. $itpeo) is a
dimension-4 function i andg, it takes the form

V(p,0)=0d*W(x) with x=¢?/02 (4.9)

Since the stationarity conditions

qoadv = oW/ (x) - 2x =0
;" (4.10)
oo\ = 04<4W(x)+W’(x) (—2x)) ~0
requires both
W/ (x)=0 and W(x)=0 are satisfied, unlesg = ¢ =0. (4.11)

Let us examine these conditions with the above 1-loop poteHt@l (

642 | o4\ 20?2 2 g4 2202 2
— ApAmX® + (16ApAm — BAZ + 3ApAg) X2 + (—16Am + 25A 5 ) AmX — 21A§} .

First consider these conditions at tree level; the stationary pe#g should satisfy

A A A
/ —7«’ —*m: :7m
W' (Xo) = 2xo > 0 — X )\(p7 w12
A A A A2 '
W(xo):zwxg—?monrZU:O — /\G:ﬁ.

Note here that the stationary poit= % is already determined by the first conditidfi(xg) = 0
alone, while the second oWg#(x) = 0 imposes aonstraint on the coupling constanigs. This
constraintAgAy = A2 at this stage is the condition we have initially imposed on the tree potential
in Eq. @.9).

At one-loop level, next, the stationary point may be shifted and the coupling constants may be
adjusted:

X = Xo+ hxq, Ai = Ai+hdA (i=¢@,mo). (4.13)

10
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The first conditiolV' (x) = 0 requires, folO(h) parts,

A oA S\
/ _ "o e —m
W(X)O(H)_ S X X0t

1
+5u {4)\4,)\,“(34— 2%0 — X3) <In

This determines, as at tree level, the VEV's shift at 1-loop léxel We may or may not adjust the
coupling constants at this stage. But important is the point that this condid8 {s consistent

with the VEV (mass) hierarchy; that is, no fine tuning of the coupling constants is necessary to
maintain the tiny ratio of field VEV& = (¢)?/(0)? at tree levelxy = Am/Ag = € ~ 10732, Indeed,

every termin Eq[4.19 is O(¢) simply by keeping the order of magnitude of the coupling constants
as in Eq.[.8); namely, the barred coupling constants are all kept of ord&r,5A; ~ O(1), and

then the VEV ratiog + hx; consistently remains d@(¢):

2’\’“(;;"0) - 1> + 16)\,%(1+xo)] . (4.14)

2
Am, OAm ~ O(€), Ap,0Ap ~ O(1) — Xo, X1 ~ O(g) — x= gq)iz =Xo+hx ~ O(¢). (4.15)
o
Next is the second condition:
oA oA oA 1 2Am(1+x9) 3
w = 219y m g 472(1 2(In=fm= 700 2 (4.1
Mo = 7 0+t 3 20+ +647‘[2[ m(1+%0)7( In—"7 2 )| (416)

Again, this gives a constraint on the coupling constants. Here again all the tergmnaistently

of O(g?), so thatW(x) = 0 can be realized up to(€?) by O(1) tuning of the barred coupling
constants\y, Am, Ag. However althoughW(x) at the stationary point can be made vanish very
precisely in the order as tiny @& ~ 10-%4, the Vacuum Energy \&= o*W(X) itself vanishes only

in the sense 0D(£2) x 4 = O((100GeV}*). This is because the Planck energy is so hiige? =
(10'8GeV)* = 10°4 x (100GeV)*. If we require the vanishingness up to the order of presently
observed vacuum energy, ~ (1meV)* ~ 107°¢ x (100GeW*, then, we have still to tune the
barred coupling constants,, Am, Ag in 56 digits! We still neecuperfine tuningven in quantum
scale-invariant theory. This is nothing but reappearance of the original CC problem! We have to
conclude:

| Quantum Sl is not enough to solve the CC problgm. (4.17)

Shaposhnikov and Zenhaus@&lhfioted that there are degrees of freedom of coupling constants to
realize the conditioklV(x) = 0, but they did not recognize that it requires the superfine tuning of the
coupling constants which is essentially the same problem as the CC problem we originally wanted
to solve.

Note also, however, that this is in fact theoblem beyond the perturbation theorye are
discussing the vacuum energy in much finer precision than the perturbation (loop) expansion pa-
rameteh/167 ~ 1/158.

5. What happens?

If the theory is quantum scale-invariant, then we have the dimension counting equation

S 05 V(0) =4V (9 5.1)
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which impliesV (g®) = 0 at any stationary poing®, and any point in that directiop¢® with
Vp € R also realizes the vanishing energyp@®) = p*V (¢°) = 0 (flat directior). Conversely
speaking, therefore, W (¢) # 0 at3g, then the potential is not stationary at tlgat

In the aboveV (@, 0) = 0*W(x) was flat in the directiop?/ g2 = xg at tree levelW (xo)=0,
but, at one-loop, the potential did not exactly satiéfyxo + hx;) = 0 at the ‘stationary point’
realizingW’(xo + hxy) = 0 exactly, unless the coupling constants were superfine-tuned. The value
W(xo+hxy) is just as tiny ag? ~ 10-%* but not exactly zero.

This means from the above EGLI0 that the pointxg + hx; realizes the stationarity with
respect tap but not necessarily ta. “W(xo + hx;) # exactly 0" means that the potential hatingy
gradienta(0/d0)V = 40*W(x) = 0*O(g?) # 0 in the g-direction (or, more precisely?/o? =
Xo + hxq direction) and that the potential is actually stationamy at the origing = 0! That is,

] The flat direction idifted by the radiative correctioﬁ (5.2)

Quantum scale invariance alone does not protect the flat direction, automatically. Artificial su-
perfine tuning of the coupling constants was required to keep the flat direction.

TomboulisH] however proposed an interesting mechanism with which the condiition = 0
may automatically be satisfied without any fine tuning of the coupling constants. Let us explain his
arguments. Recall that the stationar%: 0 and% =0 required, folV = g*W, respectively,

(1) W(xA)

=0 = (2) W(x(A);A)=0 (5.3)
x=Xo(A)
determines the VEV ratig = gz =Xo(A) demands super fine tuning afs.

Tomboulis introduced a renormalization pojnin addition to the dilaton fieldr and consider the
running of coupling constarit:

X(z), ZE% . renormalization point parameter (5.4)

Then, he claims that, the second condition in Eg3)( now reading

W(%0(A(2));A(2) =0, (5.5)

is simply an equation determining the renormalization paint Lp/0o and so is automatically
satisfied without any fine tuning.
This interesting idea, however, does not work unfortunately, since

d

d—ZW(xo()\ (2));A(2)) =0. (5.6)

Changing the renormalization point= p/o cannot change the value W(XO(X(Z));)_\(Z)) since
it is a physical quantity independent of the choice of renormalization point.

1The coupling constants run even in quantum scale invariant theory despite the fact that the usual beta functions
Ba(A) represent the anomaly for the scale invariance. Tomboulis as well as Shaposhnikov-Zenhausern did know this
fact, but it was fully clarified by Tamari§ and properly used by GhilencB&]. Here we use the letterfollowing
Ghilenced[q to denote the renormalization point paramefesf Tamarit's[[g.
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We thus have no mechanism which can preserve the flat direction against quantum radiative
corrections. We still need another symmetry to realize the flat direcBopersymmetrSUSY)
would be an immediate candidate for it. But it will also introduce another problem how to break it
spontaneously. Depending on the way of breaking, the superfine tuning problem may reappeatr.

6. Discussions: hierarchy problem

Although the quantum scale invariance is not yet sufficient for solving the CC problem, it
should be emphasized that it already almost solved the hierarchy problem.
There are two aspects of the hierarchy problem:

1. Origin: to explain the origin why the hierarchy exist.

2. Stability: to explain its stability against radiative corrections, once it exists anyway.

6.1 stability against radiative corrections

As for the stability against the radiative correction, it is guaranteed, for instance, by SUSY as
a well-known example. If the system has scale invariance, there exist only the logarithmic diver-
gences but no quadratic divergences, so that the stability is automatic in the SM, as was emphasized
by Bardeer[d in 1980’s. In the present two scalar model, however, if¢Re? term is radiatively
induced withO(1) coefficient, the (mass) hierarchy is immediately broken sifme= M is of
Planck or GUT energy scale. We have observed based on Ghilencea’s explicit computation that
the coupling constam, of the ¢?a? term remains of orde®(¢) at one-loop. The general reason
for it is that the coupling betweeg? and g totally disappears in the 2-scalar modehjf = €A
vanishes at tree level, so it must be proportiona & any loop level].

If the gravity interaction is taken into account, we need additional reasoning, @irered o
can couple through gravity without factdf,. The point is that? can couple to the gravity loop
directly via,/—go?R whereasp? can couple to it only through the kinetic teri—gg"¥ 9, o, @
unless we use th®(g) Ay interaction,/—gAm@?a?. If we use the kinetic term interaction vertex
in which ¢ is accompanied by a derivative, the gravity loop graph will induce the term of the form
\/Tgazau(paﬂ @. Itis of dimension 6 and should be divided by a mass dimension-2 quatity
But we have no such a dimensionful parameter in this quantum scale invariant theory and only
field that can appear in the denominator is the dilaton i#ldso it eventually gives just the Higgs
kinetic term.

Another worry is whether the gravity loop might induce ttterm withO(1) or evenO(¢)
or not. The worry is only the gravity loops and only the tegfa-go?Ris relevant. Therw? plays
the role of an overall factor in front of the action just like inverse of the Planck constémt,Sb
theL-loop gravity graphs can produce only the term proportionébty*~", and hence no positive
power ofa? terms are induced by gravity loops.

6.2 origin of the hierarchy

In the above wishful scenario in Section 3.1, we have “realizadje gauge hierarchiesim-
ply by assumindiny parameters; ~ 1028 ande, ~ 10734

1 1
Vi= o (hfh—e10?)’ and Voo ko (i(919) — x0%)”.
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However, the chiral symmetry breaking scajd®;), for instance, can usually be explained
by the running coupling as follows; if GUT is assumed, the SU(3) gauge couglrg g§/4n
at scale,/eoM = M; evolves asxz3(1) a la RGE as the scale changes, and reaches to B¢l)
critical couplinga$’ ~ 1 at scaleu ~ Aqcp to break the chiral symmetry, so thgMy ~ Aqcp.
Thus the relation between the GUT scie and QCD scalé\qcp is fixed by the running gauge
coupling constantr3(M;) at scaleM; as

d 1 1 u?
—a3(u) = 2bgai - = —bsin =5
Higp M) = 2005 1) as(n) — as(My) T MZ
1 1 Naco

— a—gr = Gg(M]_) —bszln M% ,

whereag" = O(1) quantity likert/3, so explains the huge hierarchy:

QCD
£ = exp EE— 6.1
2 M% X b3 (Gg(Ml) a§f> ( )

This is the usual explanation.
In quantum Sl theoryas(M;) here, probably, should be replaced My-independent initial
gauge couplingx‘g‘“, while the initial scaleVi? should be replaced by the dilaton field VEWZ.

Then ,
1 1 A
agr - agnit = —bzln <§_§E

(6.2)

so that the QCD scalkqcp is always scaled with the dilaton VEW).

This hierarchy should show up in the effective potential. S'mégD here should stand for the
VEV ¢'¢ of the chiral sigma model scalar fiefl we suspect that we should be able to derive an
effective potential of quasi Coleman-Weinberg type like

)2 t 2
V(U,¢):(¢ ?) (—bglngbagb—ir 1 1r) . (6.3)

2 init ~ C
64t az asg

Note that this form of Sl potential is devised such that it has a non-vanishing field stationary point
at(¢)"(9)/(0)? = xo satisfyingbsInxo = (af"™)~* - (ag") 2.

7. Conclusion

I have shown in this talk that the scale invariance gives a natural mechanism for guarantee-
ing the vanishing vacuum energy at each step of hierarchical successive spontaneous symmetry
breakings, at least in the classical field theory. | also explained the Englert-Truffin-Gastmans pre-
scription which, | called quantum scale-invariant renormalization, preserves the scale-invariance
also in quantum field theory. Even with such a prescription, however, the radiative corrections lift
the flat directions of the potential and leave only the origia- 0 in field space as the stationary
point, unless the superfine tuning of the coupling constants is made. Therefore, the scale-invariance
alone is not sulfficient for realizing the vanishing vacuum energy.
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| believe that the scale invariance is the right direction for solving the CC problem, but some-
thing is still missing. We need yet anotr®mmetryor amechanisnto realize
Spontaneous S| breaking Non-vanishing field VEV
= dflat direction ofV ().
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