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1. Introduction

Although the Bonneau identities [1, 2] are not widely used in the physical community, they
have several important applications. In combination with the action principles [3, 4, 5, 6] they lead
to a very convenient method for finding the finite counterterms in the framework of the axiomat-
ically consistent Breitenlohner-Maison-t’Hooft-Veltman (BMHV) scheme [5, 7], which may lead
to significant shortcut of calculations, usually performed in a conventional way using the Slavnov-
Taylor identities [8, 9, 10]. Second, using the algebraic renormalization techniques they lead to the
method for finding the renormalization group equations [1, 2, 6] which do use the renormalized
effective action only.

The intention of this proceedings is to give an introduction to the Bonneau identities and the back-
ground for it, namely the BMHV scheme approach to the dimensional renormalization. The idea
is to present the material in a consecutive way, and with lot of comments when argumenting the
steps, which are not always or not obviosly written in the original articles.

The structure of the article is as follows. In the second section we give the overview of terms
and notions for the BMHV scheme and list all basic statements, lemmas and theorems from the
Breitenlohner-Maison (BM) paper which are used in derivation of the Bonneau identities. A spe-
cial emphasis is given to the BM Lemma 5 and Proposition 3 [5]. In the third section the basic
notions needed for deriving the Bonneau identities are listed. The basic Bonneau identity and the
Bonneau identity for the trace anomaly are rederived with special emphasis to the application of
the BM Proposition 3 and Lemma 5, as well as the notions used in the steps used to derive these
identities. In the third section we also shortly describe the application of the Bonneau identities for
restoring the BRST symmetry of a non-Abelian chiral gauge theory up to the essential anomalies
[6], and do express the final results for amplitudes in terms of the corresponding effective action.
The fourth section is the conclusion in which we stress the points which we emphasized to make
the notion and derivation of the Bonneau identities more tractable for phenomenologists.

2. Terms and Notions on Graphs and Amplitudes and Renormalization

The Bonneau identities are defined using the Breitenlohner-Maison-t’Hooft-Veltman (BMHV)
dimensional remormalization scheme [5, 7]. The basic notions, theorems and lemmas for the
BMHV are given in this section.

2.1. The Breitenlohner-Maison (BM) definition of the amplitude which is defined in terms of
a set of graph-theory terms.

2.1.1. Graph notions: We list here the basic graph notions together with the references where they
are defined :
Definition of a (Feynman) graph [11, 5]: its vertices V G = {Vi, i = 1, . . . ,M}, lines L G = {``, `=
1, . . . ,L}, number of loops hG and incidence matrix e [11, 5]; Euler formula [12];
Types of graphs: empty graph [13], nonempty graph [5], trivial graph [13], nontrivial graph [5],
connected graph [5], subgraph [14, 13], proper subgraph [11, 5, 13], conectivity components (max-
imal connected components) of a graph, graph G with set of lines L removed G−L [11, 5],
one-particle irreducible (1PI, proper) (sub)graph [15, 5], maximal 1PI subgraph (1PI connectivity

1



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
8
9

Bonneau identities Amon Ilakovac

components) of a graph [12, 5], non-overlapping (sub)graphs [14, 15, 5], overlapping (sub)graphs
[14, 15, 5], reduced graph G/H [11, 5], tree [11, 12, 15, 5], chord [11], 2-tree [11, 12, 5], comple-
ment of 2-tree [11];
Forests of a graph G: definition of forest [14, 16], normal forests, full forests [14, 15, 16], maximal
forests [14, 5], restricted forests [14].

2.1.2. Amplitude: The BM amplitude [5] in the D-dimensional space is initially defined in the
coordinate space, including the definitions of vertex operators Xi(−i∂/∂xi) and differential opera-
tors defining numerators for propagators Z`(−i∂/∂u`) having masses {m`} = m, where u = {u`}
are auxiliary variables of mass dimension −1, introduced to project out momenta of internal lines.
Propagators are written in the exponential form using Schwinger parameters α = {α`}, of mass
dimension −2. The amplitude is then Fourier-transformed. This leads to several effects. Namely,
the coordinate dependence of the exponent, its Gaussian structure and the structure of the incidence
matrix lead to:
i. the conservation of the total external momentum;
ii. the dependence of the amplitude: on the differences of external momenta (except in the vertex
factors), on the diagonal matrix of the Schwinger parameters α , on the reduced incidence ma-
trix ek

E = ({e}`i)k (of the mass dimension 0) with a k− th column deleted in e, and the reduced
set of external momenta pk

E = {pE}k with the k-th momentum deleted, on the matrix (Ak
E)
−1 =

((ek
E)

T α−1ek
E)
−1 and on the determinant of a matrix M defined below d(α).

All quantities in the amplitude are independent on a choice of k, specifically d(α) and (pk
E)

T (Ak
E)
−1 pk

E
do not depend on k. The quantities d(α) and (Ak

E)
−1 can be expressed in terms of minors A(k;k)

and A(ki;k j) of the matrix A = eT α−1e, obtained by deleting a k-th row and column, and by delet-
ing a k-th and a i-th rows and the k-th and a j-th columns in A, respectively, and are related to the
Symanzik polynomials [17, 5] which characterize an amplitude of any loop diagram.
The final expression for the amplitude for a graph G is

TG(p) = lim
ε→0

h̄hG−1(2π)D/2
δ

D
(
∑ pi

)( i
2

)−DhG/2 ∫
∏
`∈LG

dα`Iε(p,u,β )|u=0 ,

where:

Iε(p,u,α)=d(α)−D/2
∏

i∈LG

Xi

(
pi,−i

∂

∂u`

)
∏
`∈LG

Z`

(
− i

∂

∂u`

)
exp iW (p

E
,u,β ) ,

W (p
E
,u,α)=V (p

E
,u,α)−α(m2− iε) ,

V (p
E
,u,α)=(pT

E
,uT )

(
0 −2eT

E

−2eE −4α

)−1(
p

E
u

)
≡ (pT

E
,uT )M−1

(
p

E
u

)
,

d(α) = detM/(−4)L , (2.1)

with the infinitesimal ε defining the Feynman structure of the propagator denominators in the mo-
mentum space. It should be noted that due to the momentum conservation in the vertex operator Xi

one can make a replacement pi→ eT
i`∂/∂u`.

2.2. Tensor and Dirac algebra [5]: In the BMHV scheme the D-dimensional space is understood
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to possess its 4-dimensional and D−4 dimensional sub-spaces. To these three (sub)spaces corre-
spond metric tensors gµν , ḡµν and ĝµν , by the action of which on the D-dimensional objects one
defines objects living in all three spaces respectively, for example γµ matrices, covariant deriva-
tives, vector fields. The γµ matrices satisfy Grassmann algebra in all three spaces. Nevertheless,
the Levi-Civita symbol εµνρσ and the γ5 matrix are defined only in 4 dimensions. In the BMHV
scheme γµ matrices do not anticommute with the γ5 matrix. The 4-dimensional part of γµ matrices
anticommute with γ5, but their D−4 dimensional part commute with γ5. This approach enables one
to define a theory which is axiomatically correct in the sense of Hepp [18], and to reproduce the
Adler-Bell-Jackiw anomaly [19, 20]. The metric tensor ĝµν , and all vector objects which might be
written as a contraction corresponding to D dimensional vector object with ĝµν , are called evanes-
cent.
Using the Dirac algebra rules of the BMHV scheme, every amplitude has to be reduced to its
simplest form, the so called "normal form" [5]. The D-dimensional amplitude thus obtained is a
meromorphic function of the complex variable D, which, between all the poles the amplitude has,
has the poles at D = 4, used to define counterterms for the amplitude.

2.3. Labelled forests and their role in the renormalization procedure [5]:
For a connected graph G with 1PI components Gi, a maximal forest for G, C (or CG), is a maximal
set of non-trivial non-overlapping 1PI subgraphs of G (for 1PI diagram G the number of maxi-
mal forests is equal to hG, the number of loops of G). For any maximal forest C and any H ∈ C

(therefore H ⊆G) a set M (H) of maximal elements of C properly contained in H (for X ∈M (H)

where X ⊂ H) is defined. It is further used to define a set of complements of elements of M (H)

with respect to H, H/M (H) = {H̄ ∈ H/M (H)}. For each H ∈ C , H̄ is chosen (there may be
more choices of H̄ for each maximal forest CG of G). For each specific choice of H̄’s one defines
a mapping σ : C →LG such that σ(H) = LH̄ = {lines of H̄}. A pair (C ,σ)G is a labelled forest
for G. To it is adjoined a subset of α-space of Schwinger parameters defined by

D(C ,σ) = {(α1, . . . ,αL) : α` ≥ 0 ∀` ∈ G; α` ≤ ασ(H) . (2.2)

In addition, maximal forests and labelled forests have the following properties [5]:
a. Any maximal forest CG for G is a disjoint union of maximal forests CGi for its 1PI components
Gi.
b. Any maximal forest CG for G may be labelled.
c. For any 1PI subgraph H there is a one-to-one correspondence between the labelled forest (C ,σ)

and pairs of ((C1,σ1),(C1,σ1)) of labelled forests for G/H and H.
d. Any maximal forest for G has hG elements.
e. For any σ(CG) of G, G−σ(CG) is a tree in G. Thit means that for any choice of {H̄}’s for a
given C of G, σ(C ) =

⋃
H LH̄ forms a chord of G.

f. The union of all subsets of Schwinger parameters D(C ,σ) covers the whole space of Schwinger
parameters of the amplitude for G, {α` : α` ≥ 0 ∀`}:

⋃
(C,σ) = {α` : α` ≥ 0∀`}.

g. For (C ,σ) 6= (C ′,σ ′), D(C ,σ)∩D(C ′,σ ′) is a set of Lebesgue measure zero.

In conclusion, for a graph G, one finds all maximal forests C . For each maximal forest one finds
all sets of H̄ lines which form chords of G for a given maximal forest. To every such set is adjoined
a mapping σ and a subset of Schwinger parameters D(C ,σ). The introduced quantities satisfy the
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properties a.-g.

Using the property f. of labelled forests the amplitude becomes [5]

TG = lim
ε→0

TG,ε = lim
ε→0

∫
dαIG,ε(p,α) = lim

ε→0
∑

(C ,σ)

∫
D(C ,σ)

dαIG,ε(p,α) . (2.3)

Using the Zimmermann forest formula [14, 15], assuming the action of the counterterm CH of each
subgraph H ⊂G of IG is known (see subsection 2.6), and that CH is defined so that [14, 15] for any
forest F ∈F (F = {F} is the set of all forests F of G) the relation

∫
D(C ,σ) dα ∏H∈F(−CH)IG,ε(p,α)=

0 unless F ⊆C is fulfilled (if F 6⊆C then CHIG,ε(p,α)∈D(C ′,σ ′), (C ′,σ ′) 6= (C ,σ), so the zero
result is a consequence of property g. of labelled forests), the renormalized amplitude reads

RG = lim
ε→0

RG
ν ,ε = lim

ε→0
∑

(C ,σ)

∫
D(C ,σ)

dα ∑
F∈F

∏
H∈F

(−CH)IG,ε(p,α)

= lim
ε→0

∑
(C ,σ)

∫
D(C ,σ)

dα ∏
H∈C

(1−CH)IG,ε(p,α) . (2.4)

The first line corresponds to the Zimmermann forest formula, while the second is its re-expression
in terms of labelled forests [5]. Note that for each labelled forest the Dyson renormalization formula
[21, 22] can be used.

2.4. Changes of variables: The variables α` and the choice of the momenta p are not appropriate
for extracting singularities.
2.4.1. Variables (t,β ): For this reason more appropriate variables {(t,β ) = (tH ,H ∈C ), `∈L ′

G =

LG−σ(C )} and corresponding auxiliary variables ζH and ξH are introduced for a labelled forest
D(C ,σ) [5],

α` =


∏H⊆H ′∈C t2

H ′ = t2
Hξ 2

H = ζ 2
H if `= σ(H), H ∈ C ,

β`ζ
2
H if ` ∈L ′

H̄ , H ∈ C ,

(2.5)

and taking β` = 1 for ` ∈ σ(H). All the new variables are dimensionless, except for tG which has
mass dimension −1. The variables assume the following values 0≤ tG < ∞, 0≤ tH ≤ 1 for H 6= G
and 0≤ β` ≤ 1 for ` ∈L ′.

The transformation between α and (tH ,β H
) and the parameter region D(C ,σ) in terms of new

variables are

dα =
L

∏
`=1

dα` =
(

∏
H∈C

2tHt2LH−1
H

)(
∏
`∈L ′

G

dβ`

)
, (2.6a)

D(C ,σ) = {(t,β )|0≤ tG < ∞;0≤ tH ≤ 1 for H 6= G;0≤ β` ≤ 1 for ` ∈L ′
G} . (2.6b)

After changing the variables, the part of the amplitude (2.1) under the integral sign, and corre-
sponding to the labelled forest D(C ,σ), reads∫

D(C ,σ)
dαIG,ε(p,α)= ∏

`∈L ′
G

∫ 1

0
dβ`

{
∏

H∈C

∫
θH

0
µ

ν 2dtH
tH

t2LH
H

{
d(α)−D/2ZH

(
−i

∂

∂u`

)
eiW (p,u,t,β )

}}
,

(2.7)

4



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
8
9

Bonneau identities Amon Ilakovac

with θG = ∞, θH = 1 for H 6= G, and ZH(−i∂/∂u`) = ∏`∈H̄ Z`(−i∂/∂u`)∏i∈H̄ Xi(ieT
il ∂/∂u`,

−i∂/∂u`). In content of the BMHV renormalization scheme, the regularization mass parame-
ter/scale µ [23], was introduced in the integration measure by Bonneau [1]. Notice that α and u
are dimensionful parameters, and that d(α) = d(α(t,β )) depends on all the tH variables.

2.4.2. Dimensionless covariants q̃, ũ: The next step is to group external momenta of the graph
G into momenta of H̄ of all its subsets H which are defined by the mapping H → H/M (H) = H̄
of H’s in a maximal forest C of G [5]. The mapping is linear and defines the momenta of each H̄
in terms of linear independent momenta p = {pi, i = 1, . . .M− 1} of G, replacing the mometa of
H ′ ∈M (H) by its sum and keeping other H(H̄) momenta unchanged. The obtained momenta for
H are linearly dependent and one has to erase one of them to obtain the linearly independent set
of momenta qH . The set of all such momenta qH for all H’s is q = {q`}= {qH ,H ∈ C }= Rp. To
obtain the correct expression for V (p,u,α) in Eq. (2.1) eE must transform accordingly, eE→ eERT .
It is also convenient to decompose u = {u`, ` ∈LH̄} and eE to have the same H substructure as
q: u = {uH = {u`, ` ∈LH̄},H ∈ C }, eERT = {eHH ′ ,H,H ′ ∈ C }. In addition, in order to extract
the tH variables from d(α), and to express V (p,u,α) from Eq. (2.1) in terms of dimensionless
quantities, dimensionless momenta and variables are introduced [5]: q̃ = {q̃

H
= q

H
ζH ,H ∈ C },

ũ = {uH = uH/ζH ,H ∈ C }, ẽ = {ẽHH ′ = (eERT )HH ′ζH/ζH ′} in terms of which

V (p,u,α) = (q̃T , ũT )M̃−1

(
q̃
ũ

)
, where M̃−1 =

(
0 −2ẽ
−2ẽ −4β

)
,

d(α) = d̃(β , t) ∏
H∈C

ζ
2hH̄
H = d̃(β , t) ∏

H∈C
t2hH
H , where d̃H = detM̃/(−4)L . (2.8)

Here R is a square triangle matrix with unit values on its diagonal. Furthermore, ẽ = {ẽHH ′} is
equal to 0 if H 6⊇H ′, is equal to eHH if H = H ′, and gives information on how H ′ is contained in H
if H ′ ⊂ H. Concerning M̃ and d̃−1

H they do not depend on tG, and are analytic C∞ functions of the
β` variables and the remaining tH variables.

2.5. Divergences: Now the divergences can be localized. The amplitude (2.7), obtained by insert-
ing (2.8) into it, reads [5]∫

D(C ,σ)
dαIG,ε(p,α)= ∏

`∈L ′
G

∫ 1

0
dβ`

{
∏

H∈C

∫
θH

0
µ

ν 2dtH
tH

tνhH−ωH
H ZH

(
− i

∂

∂ ũ`

)
gε(q,u, t,β ,ν)

}}
= ∏

H∈C

{∫
dµHζ

ν−ωH̄ ZH

(
− i

∂

∂ ũ

)}
g(q,u, t,β ,ν) , (2.9)

where ν = 4−D; ωH = 4hH − 2LH + rH , rH = ∑LH r`+∑VH vi where r` and vi are numbers of
momenta in the propagator numerators Z` and the vertex operators Xi respectively; ωH̄ = ωH −
∑H ′∈M (H) ωH ′ ; dµH = 2

∫
θH
0 µνdtH/tH

∫ 1
0 ∏`∈LH̄

; gε(q,u, t,β ,ν) = d̃(β , t)−D/2 exp iW (p,u, t,β )
is a function analytic in ν and exponentialy decreasing as tG→ ∞.

The source of divergences are the functions tνhH−ωH−1
H . They have to be actually interpreted as

distributions of the form tλ
+, which correspond to meromorphic functions of λ with simple poles at

all negative integers [24, 5], specifically

(tH)
νhH−ωH−1
+ = (−)ωH δ

(ωH)(tH)/(ωH!νhH)+ regular at ν = 0 , (2.10)

5



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
8
9

Bonneau identities Amon Ilakovac

where "regular at ν = 0" represents a regular function at ν = 0, specified by its integral below, and
the δ (ωH)(tH) is ωH-th derivative of the δ (tH)-distribution for which δ (tH)/ωH! = 0 for ωH < 0.
Using (2.10) the tH integrals in (2.9) become equal to [24, 5]∫

θH

0
tνhH−ωH−1
H gε(., tH , .) =

1
ωH!νhH

dωH gε(., tH , .)
dtωH

H

∣∣∣
tH=0

+
∫

θH

0
(. . .)regdtH , (2.11)

∫
θH

0
(. . .)regdtH =

∫
θH

0
dtHtνhH−ωH−1

H

[
gε(., tH , .)−

ωH−1

∑
k=0

tk
H
k!

g(k)(., tH = 0, .)

−θ(1− tH)
( tωH

H
ωH!

g(ωH)(., tH = 0, .)
)]

. (2.12)

The divergences of the amplitudes are used to define counterterms of the amplitude.

2.6. Counterterm: The definition of the counterterm [5] of a subgraph H, CH , requires several
notions: the algebra of the covariants on the graph G: AG, the operator that extracts the divergence
(principal part) of an element of the algebra of covariants C, and the definition of the domain for
CH : DH . The algebra of covariants is generated by any linear combination of products of elements
of {pi,H}i∈VG , elements of {ul,H}i∈LG (see Eq (2.1)), and {γµ} matrices. The operator C extracts
from the normal form (NF) of each element A ∈AG its singular part according to the MS scheme,

C(A) = singular part at D = 4 of NF(A|u=0) . (2.13)

The definition of the domain DH of CH requires the introduction of two more notions. The first
is the definition of a set GH of triplets X̂ = (X ,FX ,(C ,σ)X), where X ⊂ G, FX is a forest (any
forest, in the sense of Zimmermann [14, 15]) of 1PI, pairwise disjoint proper subgraphs of X , F ′

X

is set of all forests FX , and (C ,σ)X is a labelled forest for X/FX . The second is a set of functions
EG on GG with values in AG defined by EG = { f : GG→AG}, where each f (X̂) depends only on
variables (p,u) from X/FX . The domain for CH is defined as a subset of functions of EG defined
on a specific set of triplets Ĥ and polynomial form of C( f (X̂)), DH = { f ∈ EG | for all X̂ = X̂0 ≡
(X , /0,(C ,σ)X), C( f (X̂)) is polynomial in p}. The polynomial form of C( f (X̂)) assures locality of
the counterterms and therefore the necessary condition for the renormalizability of the theory. On
DH the operator CH is defined by

(CH f )(X̂) =


f (X̂) if either X ∩H = /0 or if H ⊂ H ′ for some H ′∈FX ,

C( f (X̂0)) if X = H,

UH(C( f (Ĥ0))) f (X̂ :H) if H 6∈FX and FX∪{H} ∈F ′
X ,

0 else (overlapping diagrams),

(2.14)

where X̂ :H = (X ,FX∪{H},(C ,σ)X :H) with ((C ,σ)H ,(C ,σ)X :H) being a pair of labelled forests
which is in one-to-one correspondence with (C ,σ)X , and UH is a transformation of momenta
of the subdiagram H of X , UH : q

H
→ q

H
− ieT

XH∂/∂uT
X , whose action on these momenta of the

function C( f (Ĥ0)) describes the insertion of this function as a vertex into the reduced diagram(s)
X/FX∪{H}. It is interesting to note that ((1−CH) f )(X̂) gives a zero result for the first row in
(2.14), (1−C)( f (X̂0)) if X =H (second row), f (X̂)−UH(C( f (Ĥ0))) f (X̂ :H) for the third row, and
f (X̂) for the overlapping diagrams (fourth row). Nevertheless, when integrated over α variables,
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the fourth row gives a zero result since for any two overlapping diagrams the variables of (CH f )(X̂)

of the first of overlapping diagrams and integration variables of the second overlapping diagram
belong to different labelled forests, and according to property g. of labelled forests the integral is
equal to zero. Also, it should be noted that the definition of the countertem (2.14) insures a correct
Zimmermann forest formula, the validity of field equations and the action principle [5, 1].

2.7. Lemma 5: The expression for the counterterms includes the relation between the divergences
of the subdiagram and corresponding divergence in diagram. This relation is assured by the Lemma
5 in [5]:

UH [ξ
ωH
H P(q

H
)]IG/H =

[
(ωH!)−1 dωH IG

dtωH
H

]
tH=ũH=0

. (2.15)

The Eq. (2.15) relates the singular terms of the tH integrals in amplitudes TG and TH where
H ⊂ G, and G/H is the corresponding reduced diagram whose amplitude is TG/H (for generic TX

amplitude see (2.1)). The IG and IG/H are parts of the complete amplitudes TG and TG/H neglecting
the integrations and operators the complete amplitudes have in common:

IG =ZH

(
− i

∂

∂ ũH

)
(detM̃G)

D/2 exp iWG ,

IG/H =(detM̃G/H)
D/2 exp iWG/H , (2.16)

with WG and WG/H defined as in (2.1) for G and G/H and expressed in terms if of dimensionless
momenta q̃

X
, auxiliary variables ũX and masses (m2

X = ∑`∈LX α`(m`− iε)) with X = G,G/H,H.
PH(qH

) is an homogeneous polynomial of order ωH appearing in the singular part of the TH defined
as in (2.11),

ξ
ωH
H P(q

H
) =

{ 1
ωH!

dωH

dtωH
H

[
Z
(
− i

∂

∂ ũH

)
(detM̃H)

D/2 exp iWH

]
ũH=0

}
tH=0

, (2.17)

obtained by integrating over tH in TH . UH is the same operator as in the definition of the countert-
erm. The singular part obtained by performing the tH integral of the IG amplitude is [(ωH!)−1(d/dtH)ωH IG]tH=ũH=0.
In the MS scheme the singular parts do not depend on µ [1].

2.8. JK
H and J̃K

H: In order to deal with the tνhH factors in the amplitude (2.9) it is convenient to
introduce two sets of functions [5, 1] JK

H for 0 ≤ K,hH , and J̃K
H , for 0 ≤ K ≤ hH , defined for all

H ∈ C , K being a nonnegative integer:

JK
H =

{
f (ξ ,ν) : f (ξ ,ν) = ξ

ν
∏

H ′∈M (H)

gH ′(ξ ,ν) with gH ′ ∈ J̃KH′
H , K = ∑

H ′∈M (H)

KH ′

}
;

J̃K
H =

{
g(ξ ,ν) : g or ξ

νg with g ∈ JK
H or g(ξ ,ν) =

∫
ξ

1

dx
x

f (x,ν) with f ∈ JK−1
H

}
. (2.18)

The elements of sets JK
H and J̃K

H are defined iteratively by the equations (2.18). The initial function is
defined for hH = 0, that is for M (H) = /0, implying K = 0, for which there is only a set J0

H = {ξ ν}
containing one function only, ξ ν . For a given K the elements f (ξ ,ν) of JK

H have the following
properties [5]:

a. f (ξ ,ν) = ν
−K

hH

∑
m=1

cmξ
νm with some constant cm; (2.19a)
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b. f (ξ ,0) = c(lnξ )K with some constant c; (2.19b)

c. f (ξ t,ν) = ∑
j

f1 j(ξ ,ν) f2 j(t,ν) with fi j ∈ JKi j
H such that K1 j +K2 j = K; (2.19c)

d. J0
H = ξ

mν ,m = 1, . . . ,hH . (2.19d)

2.9. Proposition 3: The convergence of a labelled forest contribution to the renormalized ampli-
tude RG

(C ,σ), from Eq. (2.4), is assured by the proofs [5, 1] of Proposition 3 from Ref. [5]. The
proof in Ref. [1] is done including the (regularization mass scale) factors µν . The Proposition 3
states the following:
For any forest X0 ∈F ′

G satisfying condition X0 ⊂ C , one defines forests XH each one satisfying
a condition

XH = {H ′ ∈ C : H ′ ⊆ H for some H ∈X0}. (2.20)

After performing all subtractions corresponding to subgraphs H ′ ∈X , the contribution of (C ,σ)

to RG,ε is a sum of terms of the form

∏
H1∈C \XH

{∫
dµH1(1−CH1)ζ

ν−ωH̄1
H1

ZH1

(
− i

∂

∂ ũ

){
∏

H2∈X ′
0

ξ
−ωH2
H2

gH(ξH2 ,ν)
}

gXH (q̃, ũ, t,β ,ν)|ũ=0

}
.

(2.21)
Here (t,β ) and ũ are scaling variables and ũ-variables for G/X0 (in particular this means that uH

for H ∈X are already set to zero), q̃ are momenta for the family C /X , and X ′
0 =X0\(M (H)∪

{H}). Furthermore, gH are elements of J̃K
H for some nonnegative integer K and gX is some element

of the abstract algebra of covariants with coefficients which are C∞ in scaling variables (t,β ),
analytic at ν = 0, and due to ε > 0, exponentialy decreasing at tG→ ∞.

The proof of Proposition 3 is based on the Lemma 5 and on the properties the functions of the sets
JK

H and J̃K
H .

The following should be noted:

a. The function gX (q̃, ũ, t,β ,ν)|ũ=0 is an element of G/H where H ∈ X0 which defines XH ;
/0 ∈X0 so one might have X = /0.

b. In Eq. (2.21), due to the properties of labelled forests, only one term (this is related to the
problem of decomposing integral region D(C ,σ) into Hepp sectors [25], defined as regions of
Schwinger parameters satisfying relation αi1 ≤ ·· · ≤ αi j ≤ ·· · ≤ αL, which are confirmed to be
labelled forests in [12, 5]) contributes per each dµH1 integration, so the complete expression for a
given labelled (C ,σ) forest has one term per integration,

(RG
ν ,ε)(C ,σ)G = ∏

H1∈C \XH

{
(1−CH1)

∫
dµH1ζ

ν−ωH̄1
H1

[
∏

H2∈M ′(H1)

ξ
−ωH2
H2

gH2(ξH2 ,ν)
]

×
(

ZH1

(
− i

∂

∂ ũ

)
gXH (q̃, ũ, t,β ,ν)

)
ũH=0

}
(2.22)

= ∏
H1∈C \XH

{
(1−CH1)

∫
dµH1

[
ζ

ν−ωH1
H1

gH(ξH ,ν)
(

ZH1

(
− i

∂

∂ ũ

)
gXH (q̃, ũ, t,β ,ν)

)
ũH=0

]}
,

where we have used M ′(H1) =M (H1)\M (H2) = {H} and ζ
ν−ωH̄1
H1

ξ
−ωH
H2

= ζ
ν−ωH1
H1

and the defini-
tion of the counterterm. The choice of labelling σ corresponds to the various choices of definition
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of variables (t,β ) (2.5) for the maximal forest C . These choices correspond to the ordering of the
subsets in labelled forests introduced by Bonneau, i < j if tHi < tH j or tHi = tH j and βi < β j [1]. The
steps of the algorithm given by Eq. (2.22), starting form the subtracted amplitude for a subdiagram
gH , give the subtracted amplitude gH1 (the expression in the curly brackets; it plays the role of gH in
the next step of the algorithm, while the role of the subset H1 is taken by the next in size H1 subset
in the sense of the Bonneau ordering) for the next largest subdiagram in the labelled forest (C ,σ)

in the sense of the Bonneau ordering. In the last step, after performing all steps except for the ac-
tion of the (1−CG) operator, one obtains the relation between the completely subtracted diagram
(RG

ν ,ε)(C ,σ)G and the corresponding amplitude without the overall subtraction (R
G
ν ,ε)(C ,σ)G ,

(RG
ν ,ε)(C ,σ)G = (1−CG)(R

G
ν ,ε)(C ,σ)G , (2.23)

which is central for the Bonneau identities.

c. Prior to performing operations in Eq. (2.22), all the subtractions corresponding to subgraphs
H ′ ∈ X , H ′ ⊆H, have to be performed using the same algorithm as in (2.22), but for H playing the
role of G. These subtractions are making the gX , for subgraph H functions, analytic, concerning
the integrations over (t,β )H variables corresponding to the subgraph H and all its subsets H ′ ⊂ H,
with the property H ′ ∈ C . The procedure continues till one reaches an one loop subgraph. In a real
calculation the procedure goes in the opposite way: one first performs the removal of divergences
for smaller graphs using the (1−CH) and then proceeds to larger ones. This procedure can formally
be written, following Bonneau, using the symbol©, representing the application of the algorithm
splitted into two parts [1],

(RG
ν ,ε)(C ,σ)G =

{
∏

H∈C \Hi

∫
dµH(1−CH)

}
IG/Hi© (RHi

ν ,ε)(C i
2,σ2)Hi

=(R
G/Hi
ν ,ε )(C i

1,σ1)G/Hi
© (RHi

ν ,ε)(C i
2,σ2)Hi

, (2.24)

where H1 is the first and G = HhG (hG is number of loops of G) the last subgraph in the sense
of Bonneau, and at the same time the overall graph G. It should be noted that the integrand gX

does not split into two parts as formally noted. Nevertheless, the powers of µν can be split into
corresponding G/Hi and Hi factors.

d. Theorem of renormalizability: From Proposition 3 follows the theorem on renormalizability
([5]):

The singular part of the dimensionally regularized amplitude for any subgraph H of a graph G
consists of poles of order ≤ hH , and is a polynomial of degree ωH in the external momenta of the
graph. The singular part vanishes if H is superficially convergent. The amplitudes RG,ε(p,D),
remaining after performing subtractions corresponding to all 1PI subgraphs, are analytic at D = 4
at any order of pertubation theory. The limit D→ 4 includes first the limit ν = 4−D→ 0 and
then setting all evanescent objects to be equal to zero. The limit limε→0 RG,ε exists in the space of
external momenta and is analytic at D = 4, and it represents the renormalized amplitude RG(p).

3. Bonneau identities; Restauration of the BRST invariance in view of Bonneau
identities

The derivation of the Bonneau identities do have BMHV renormalization scheme background
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but are also based on two lemmas [1] which are presented in the following.

3.1. Two Lemmas

3.1.1. Lemma 1.: For any function f (ν) meromorphic in ν = 4−D, having poles at ν = 0, and
whose Laurent expansion around ν = 0 is f (ν) = ∑

∞
−∞ aiν

i, the following relations hold:

f (ν) =C( f (ν))+(1−C)( f (ν)) ,

r.s.p.( f (ν))≡ a−1 = ν(C( f (ν)))−C(ν f (ν)) ,

r.s.p.( f (ν)) = (1−C)(ν f (ν))−ν(1−C)( f (ν)) . (3.1)

Here C = p.p. denotes the extraction of the singular part (principal part) of any function f (ν),
C( f (ν)) = ∑

−1
−∞ aiν

i; r.s.p. is the abbreviation for "residue of the simple pole", a−1. The elements
A of the algebra AG, defined above Eq. (2.14) given in the precious section, are meromorphic
functions of ν having poles at ν = 0. For the algebra AG of any graph G, the operator C defined
in Eq. (2.13) plays the role of C defined for general meromorphic function in ν , f (ν) (here and in
what follows the MS renormalization scheme is assumed).

3.1.2. Lemma 2.: The Lemma 2. relates the amplitudes of two Feynman graphs G and Gν which
are identical up to one vertex V , being equal to V in the first, and to V ν = νV in the second
amplitude:

(RGν

ν ,ε)(C ,σ)G−ν(RG
ν ,ε)(C ,σ)G = ∑

γi

Uγi(r.s.p.(R
γi
ν ,ε)(C2,σ2)γi

)(R
G/γi
ν ,ε )(C1,σ1)G/γi

. (3.2)

In Eq. (3.2) the sum is performed over all subgraphs γi ⊆G containing V as one of its vertices. The
amplitude Rγi

ν ,ε = (1−Cγi)R
γi
ν ,ε = (1−Uγi C)R

γi
ν ,ε corresponds to the subtracted amplitude gXH in

the Eq. (2.22) with the identification H := γi. The pair of labelled forests ((C2,σ2)γi ,(C1,σ1)G/γi)

is in one-to-one correspondence with the labelled forest (C ,σ)G. To the vertex V corresponds a
field monomial Oδ .

In order to prove the Lemma 2., it is convenient to subdivide the maximal forest C of the graph
G into three subforests; FB = {bk,k = 1, . . .o}, FA = {a j, j = 1, . . . p}, and FV = {vi, i = 1, . . . ,q}
with FA ⊂ FAV , FV ⊆ FAV , and with the property that the vertex V is neither a vertex of bk nor of
a j for every bk ∈ FB and for every a j ∈ FA, while V is a vertex of every vi ∈ FV . In the sense
of the subtraction procedure FAV and FB are independent, while FA and FV are dependent. The
maximal elements of FB and FAV may have only one common vertex or may be connected by one
propagator. Further, the elements of FV are assumed to be strictly ordered: γ1 ⊂ γ2 ⊂ ·· · ⊂ γq. The
subtraction procedure may be taken to be performed consecutively with respect to all the elements
of the forests FB first, then of the forest FA and at the end of the forest FV . With this ordering the
proof proceeds in two steps. First, the procedure does not differentiate the amplitudes of Gν and G
at the level of the elements of FB and FA, since the corresponding subgraphs have the same vertices
and propagators in both amplitudes. The amplitudes start to differ with the smallest element of
FV , v1. Second, for each vi starting with v1 and ending with vq = G, the following relations hold:

Rγν
i = (1−UγiC)R

γν
i ,G⊃γi

=Uγi(1−C)R
γν

i ,γi
= νRγi +∑ j≤iUγ j(r.s.p.(R

γ j
ν ,ε))R

γi/γ j
ν ,ε , with UG = 1

and R
γi/γi
ν ,ε = 1, and identifying Cγi = UγiC. The subtracted amplitude R

γν
i ,G⊃γi is considered as a

part of the amplitude for the graph G, and R
γν

i ,γi is self-standing amplitude for the graph γi inserted

10



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
8
9

Bonneau identities Amon Ilakovac

by Uγi into larger subgraphs. In the expression Uγi(1−C)R
γν

i ,γi the Lemma 5 is used. With this
procedure the Lemma 2 is proved.
Two facts should be noted. First, the matrix elements R

γ j
ν ,ε are strongly restricted since they have

to be divergent. Second, by summing the result of Eq. (3.2) over all labelled forests (C ,σ) and
using Eq. (2.4), one obtains the result relating the total finite amplitudes RGν

ν ,ε and RG
ν ,ε ,

(RGν

ν ,ε)−ν(RG
ν ,ε) = ∑

(C ,σ)
∑

γi∈C
Uγi(r.s.p.(R

γi
ν ,ε)(C2,σ2)γi

)(R
G/γi
ν ,ε )(C1,σ1)G/γi

. (3.3)

3.2. Basic Bonneau identity: The Lemma 2. may be used to obtain the corresponding operatorial
identity in several steps, which we give with more details than in [1].

a. First is to use the basic result of the renormalization theorem that the singular part of the ampli-
tude for a graph γi, subtracted from the divergences of all its 1PI subgraphs R

γ j
ν ,ε , is a polynomial

in the masses and the external momenta of degree (or superficial divergence of γi) δγi = 4−dγi for
4-dimensional field theories, where dγi = ∑

ni
k=1 dφk is the sum of the canonical dimensions of all

fields coresponding to the external lines of the subgraph γi. Therefore, R
γ j
ν ,ε can be written as the

finite Taylor expansion in external momenta

r.s.p.R
γi
ν ,ε =

δγi

∑
r=0

∑
{i1,...,ir}
1≤i j≤nγi

1
r!

[
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

r.s.p.R
γi
ν ,ε

]
pi=0

pµ1
i1 . . . pµr

ir , (3.4)

where nγi is the total number of external lines for the subgraph γi.

b. Inserting this result into (3.2), and rearranging the sum ∑γi over subgraphs γi, with respect to the
number of external lines n, Eq. (3.2) becomes equal to

(δRGν ,νG
ν ,ε )(C ,σ)G ≡ (RGν

ν ,ε)(C ,σ)G−ν(RG
ν ,ε)(C ,σ)G =

nmax=4

∑
n=nmin=2

∑
γn

i :V∈γn
i ⊆G

0≤δγn
i
≤4

δγn
i

∑
r=0

∑
{i1,...,ir}
1≤i j≤n{(

∂ r

∂ pµ1
i1 . . .∂ pµr

ir

r.s.p.R
γn

i
ν ,ε

)∣∣∣
pi=0

Uγi

( 1
r!

pµ1
i1 . . . pµr

ir

)}
R

G/γn
i

ν ,ε , (3.5)

where γn
i denotes γi subgraph with n external lines. Due to the fact γi is 1PI subgraph of G, nmin = 2.

In 4-dimensional theories only terms with n≤ 4 may lead to divergences, therefore nmax = 4.

c. Since r.s.p.R
γn

i
ν ,ε is a finite polynomial in external momenta, one can attribute to each term of

the polynomial a local vertex of the normal product (see Ref. [26]) of the fields coresponding to
the external lines of γi. The definition of the normal product of an operator inserted into some
diagram, includes the renormalization of the operator and fields included in the diagram. The
renormalization includes the subtraction, the limit ν ,ε → 0 and setting all evanescent objects to
zero. With the convention that all the momenta are incoming into graphs, the following replacement
is valid

REP≡ 1
r!

pµ1
i1 . . . pµr

ir →
ir

r!
−i

∏ jk n jk !
N
[ 1

∏
k=ni

∏
α/iα=k

∂µα
φ jk(x)

]

11
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=
ir

r!
−i
n! ∑
{ j1,..., jn}

N
[ 1

∏
k=ni

∏
α/iα=k

∂µα
φ jk(x)

]
, (3.6)

where φ jk denotes a field with quantum numbers jk which define the type of the field. The identi-
fication (3.6) is obtained by taking a Feynman rule for its LHS. The factor −i cancels the factor i
from i×Lagrangian, and the factor 1/∏ jk n jk ! cancels the factor ∏ jk n jk ! coming from the identical
fields on the RHS of the first line expression. In the second row we sum over all combinations
of different types of the fields giving an additional factor n!/∏ jk n jk !, whose calculation gives the
factor 1/n!, n being number of fields. According to the Lemma 5 of BM in the subsection 2.7 this
vertex is inserted into R

G/γn
i

ν ,ε . It should be noted that 1PI matrix element has a nontrivial group
structure corresponding to the quantum numbers of the amputated legs jk. Therefore, all the coeffi-
cients of the polynomial r.s.p.R

γn
i

ν ,ε are group structures which do appear in the 1PI matrix element,
multiplied by a certain power of masses, this power being smaller or equal to δγn

i
. In the case of

a massless theory, the only contribution from the third sum in (3.5) comes from the term r = δγn
i
,

and only dimensionless group structures do appear as coefficients. The choices of {i1, . . . , ir} in-
dices in the fourth sum in Eq. (3.5) correspond to different choices of derivatives of φ jk fields.
The total quantum numbers of the product of fields ∏

1
k=n φ jk(x) emerging from the diagram γi are

equal to the quantum numbers of the monomial Oδ as a whole. The set of all such operators for all
choices of subdiagrams γi permitted by the quantum numbers of Oδ , and by the condition that the
corresponding contributions to R

γn
i are divergent, form a basis. In the limit ν ,ε → 0, any matrix

element 〈0|T (N[νOδ ])|0〉1PI may be expressed in terms of this basis, but one has to sum over all
combinations of fields φ j1 . . .φ jn , that might contribute to the matrix element 〈0|T (N[νOδ ]X)|0〉1PI ,
with X being an arbitrary polynomial product of the fields of the considered theory,

〈0|T (N[νOδ (x)]X)|0〉1PI = ∑
(C ,σ)

(δRGν ,νG
ν ,ε )(C ,σ)G

∣∣∣
REP

=
4

∑
n=2

∑
Jn

δ
Jn
O

∑
r=0

∑
{i1,...,ir}
1≤i j≤n

{ ir

r!
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

r.s.p.〈0|T (N[Oδ (x)]φ̃ j1(p1) . . . φ̃ jn(pn))|0〉
1PI∣∣∣

pi=0

}

×〈0|T
(

N
[−i

n!

1

∏
k=n

∏
α/iα=k

∂µα
φ jk(x)

]
X
)
|0〉1PI . (3.7)

Here Jn = { j1, . . . , jn} is a set of different quantum numbers denoting the fields φ jk . The fields φ̃ jk
are the Fourier-transformed fields φ jk , and 〈0|T (N[Oδ (x)] φ̃ j1(p1) . . . φ̃ jn(pn))]|0〉1PI = Rγi

ν ,ε .

d. Since (3.7) is valid for any set of fields X it is valid at the operator level

N[νOδ (x)] =
4

∑
n=2

∑
{ j1,..., jn}

δ
Jn
O

∑
r=0

∑
{i1,...,ir}
1≤i j≤n

{ ir

r!
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

×r.s.p.〈0|T (N[Oδ (x)]φ̃ j1(p1) . . . φ̃ jn(pn))]|0〉
1PI∣∣∣

pi=0

}
N
[−i

n!

1

∏
k=n

∏
α/iα=k

∂µα
φ jk(x)

]
, (3.8)

and this relation is the basic Bonneau identity. This equation confirms that the quantum numbers
of the operator Oδ and of the product of derivarives of field operators in the last factor of the RHS

12



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
8
9

Bonneau identities Amon Ilakovac

of Eq. (3.8) are the same. The corresponding dimensions do not have to be the same, since the
coefficients in the curly brackets may comprise masses, but in the case of a massless theory they
are the same. Furthermore, the fields in the mentioned product may contain an external source field
and in that case the combination of the Fourier-transformed fields must contain a product of the
Fourier-transformed fields, which in combination with the external source field form a term in the
action of the considered model. The external source field may be put outside of the normal pruduct
N, but the derivatives acting on it have to be retained within it.
X is any set of fields which arise from the action of the theory and form together with νOδ (x)
a 1PI diagram, with X fields being external fields of the 1PI diagram. Therefore, the relation
(3.7) may be written for the sum of such fields or, in other words, for the sum of matrix elements
〈0|T (N[Oδ (x)]X)|0〉 which are represented in the field theory by the insertion of the νOδ (x) oper-
ator into the renormalized effective action Γren, [νOδ (x)] ·Γren. In the same way one can represent
the right hand side of Eq. (3.7). This leads to the equality

N[νOδ (x)] ·Γren =
4

∑
n=2

∑
Jn

δ
Jn
O

∑
r=0

∑
{i1,...,ir}
1≤i j≤n

{ ir

r!
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

(3.9)

× r.s.p.〈0|T (N[Oδ (x)]φ̃ j1(p1) . . . φ̃ jn(pn))|0〉
1PI∣∣∣

pi=0

}
N
[−i

n!

1

∏
k=n

∏
α/iα=k

∂µα
φ jk(x)

]
·Γren .

3.3. Bonneau identity for the trace anomaly

3.3.1. Trace anomaly and axial anomaly: The properties of the normal product given in subsec-
tion 3.2. point c. imply that the evanescent metric ĝµν does not commute with the normal product,
in contract to 4-dimensional metric gµν , which is not affected by renormalization procedure and
does commute with the normal product. The information on the evanescent object may be received
only if, in the procedure of taking normal form [5] of the amplitude, ĝµ

µ =−ν =−(4−D) appear
and divergences appearing in the integration procedure multiply ν and give an additional finite
contribution to the amplitude. This implies the following trace anomaly relations [2]

gµνN[gµνP(φ ,∂φ)]−N[gµ

µP(φ ,∂φ)] = N[νP(φ ,∂φ)] , (3.10)

gµνN[Oµνλ ...(φ ,∂φ)(x)]−N[gµνOµνλ ...(φ ,∂φ)(x)] = N[−ĝµνOµνλ ...(φ ,∂φ)(x)] ,(3.11)

where P(φ ,∂φ)(x) and Oµνλ ...(φ ,∂φ . . .)(x) are scalar and tensor monomials in the fields and their
derivatives. The operatorial relations written above have to be understood as the insertion of the
N[. . . ] operators as a vertex into an arbitrary 1PI diagram, labeled with its external fields designated
by X , and taking its vaccum expectation value, N[. . . ]→ 〈0|T (N[. . . ]X)|0〉.

The axial anomaly is a consequence of the fact that in the BMHV scheme, γ5 does not anticommute
with the D-dimensional γµ matrices: it anticommutes with the 4-dimensional γ

µ matrices, but
commutes with the (−ν)-dimensional γ̂µ matrices, leading to the equality {γµ ,γ5} = 2γ̂µγ5. The
tree level term 2γ̂µγ5 induces at the loop level additional contribution to the nonconservation of
the axial current [2], called axial anomaly. The evanescent tree level term inducing the axial
anomaly may have different forms [6, 27], depending on how the fermion-fermion-gauge boson
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interaction is defined in D dimensions, all of which are equivalent at 4 dimensions. For instance, if
the mentioned interaction term has the form ψPLγµPRψAµ , the evanescent term inducing the axial

anomaly is N[ĝµνψγ5γν(1/2
↔
∂ µ)ψ] having the trace anomaly form (3.11). If the interaction term

ψγµPRψAµ is chosen, then the evanescent term inducing axial anomaly contains the gauge field

N[ĝµνψγ5γν(1/2
↔
∂ µ − igAµ)ψ], which is again of the trace anomaly form (3.11).

In fact all spurious anomalies (those which are not proportional to the Levi-Civita symbol) have
always the trace anomaly form. Therefore, it is enough the consider the Bonneau identities for the
general trace anomaly (3.11).

3.3.2. Bonneau identities for the trace anomaly: The general form of the regularized Feynman
integrand of any graph H, with external momenta pi, and having a special vertex V (OµνΛ) ≡
V (Oµνλ1...) corresponding to the field monomial OµνΛ ≡ Oµνλ1... with Lorentz indices µ ,ν to be
contracted with −ĝµν and remaining Lorentz indices Λ = λ1, . . . , (which may but no not have to
be present in the special vertex) is

IHOµνΛ

ν ,ε;µν = ∑
i, j∈VH

pi
µ p j

νMHOµνΛ

1i j +gµνMHOµνΛ

2 + ∑
i∈VH

pi
µMHOµνΛ

3ν +MHOµνΛ

4µν , (3.12)

where the component functions MHOµνΛ

1i j and MHOµνΛ

2 do not have Lorentz indices µ and ν , MHOµνΛ

3ν

has the Lorentz index ν and MHOµνΛ

4µν
is a tensor function antisymmetric in Lorentz indices µ and

ν . The integrand and the component functions may have any number of additional Lorentz indices
Σ=σ1, . . . independent of Lorentz indices Λ, but the results obtained are the same as those obtained
below. The component functions may depend on the (remaining) external momenta the Levi-Civita
symbols and γα matrices. Furthermore, VH is the set of vertices of graph H. The corresponding
Feynman integrand of the same graph but with the evanescent operator ∆Λ ≡−ĝµνOµνΛ is

IH∆Λ

ν ,ε =− ∑
i, j∈VH

p̂i·p jMHOµνΛ

1i j +νMHOµνΛ

2 − p̂i·M̂HOµνΛ

3i . (3.13)

The results (3.12) and (3.13) may be used to find the difference between the regularized subtracted
amplitudes RG∆Λ

ν ,ε and (−ĝµν)RGOµνΛ

ν ,ε , which represents the trace anomaly for the special vertex
V (OµνΛ). Using the same subdivision of the maximal forest C of considered labelled forest (C ,σ)

into subforests FB, FA and FV as in the proof of the Bonneau’s Lemma 2 from subsubsection 2.1.2,
and performing the algorithm procedure of Eq. (2.22), one obtains the same amplitudes for all

subgraphs bk∈FB and a j∈FA of R
G∆

Λ

ν ,ε and−ĝµνRGOµνΛ

ν ,ε , since they do not contain the vertex OµνΛ.
The differences do appear for all amplitudes of the subgraphs vi ∈FV , i = 1, . . . ,q, as explained
in what follows. The integrand functions of

∫
dµHi for graphs v∆Λ

i and vOµνΛ

i have the same form
as the expressions in (3.12) and (3.13), with the identification H := vi−1 and H1 = vi in (2.22),

and with component functions Mv
OµνΛ

i
1i j,ν ,ε , Mv

OµνΛ

i
2ν ,ε , Mv

OµνΛ

i
3iµ , and M

Oµνλ1 ...

4µν
. The integration

∫
dµvi does

not change the Lorentz structure and the dependence on the external momenta, but it leads to the

integrated component functions denoted by Mv
OµνΛ

i
1i j,ν ,ε and Mv

OµνΛ

i
2ν ,ε , Mv

OµνΛ

i
3iµ and MOµνΛ

4µν
, which have

poles in ν , and which are forming total amplitude without overall subtraction,

R
v
OµνΛ

i
ν ,ε;µν =∑

i, j
pi

µ · pi
νMv

OµνΛ

i
1i j,ν ,ε+gµνMv

OµνΛ

i
2ν ,ε + ∑

i∈VH

pi
µMHOµνΛ

3ν +MHOµνΛ

4µν ,
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R
v

∆Λ
i

ν ,ε =−ĝµνR
v
OµνΛ

i
ν ,ε =−∑

i, j
p̂i · p jM

v
OµνΛ

i
1i j,ν ,ε+νMv

OµνΛ

i
2ν ,ε − p̂i·

̂
MHOµνΛ

3i . (3.14)

The action of the Uvi(1−C) operator on the amplitudes R
v
OµνΛ

i
ν ,ε and R

v
∆Λ
i

ν ,ε induces an additonal

(polynomial) term Uvi(r.s.p(Mv
OµνΛ

i
ν ,ε )) for the amplitude of the diagram v∆Λ

i with respect to the vOµνΛ

i
amplitude if it was multiplied by −ĝµν . The mutiplication with −ĝµν serves only for comparison,
since the real multiplication with −ĝµν is performed only after all steps of the algorithm, that is
with the final amplitude RGOµνΛ

µν . In addition, all the subsets v j ⊂ vi lead, according to the BM

Lemma 5 of subsection 2.7., to the terms of the form Uv j(r.s.p(M
v
OµνΛ

j
ν ,ε ))Rvi/v j . At the next loop

level, that is for vi+1, the first and third term in the expression for R
v

∆Λ
i

ν ,ε in Eq. (3.14) may constitute

a source of new νMHOµνΛ

ν ,ε terms. At the level of the graph G, the final result is

(RG∆Λ

ν ,ε )(C,σ)− (−ĝµν)(RGOµνΛ

ν ,ε;µν)(C,σ) = ∑
vi∈C
V∈vi

Uvi(r.s.p.(Mv
OµνΛ

i
ν ,ε ))(C2,σ2)vi

(R
G/vi
ν ,ε )(C1,σ1)G/vi

. (3.15)

Summing this result over the labelled forest, the following result is obtained [2]

RG∆Λ

ν ,ε − (−ĝµν)RGOµνΛ

ν ,ε;µν = ∑
(C ,σ)

∑
vi∈C
V∈vi

Uvi(r.s.p.(Mv
OµνΛ

i
ν ,ε ))(C2,σ2)vi

(R
G/vi
ν ,ε )(C1,σ1)G/vi

. (3.16)

The only difference with respect to the result (3.3) is that this result (3.15) has a r.s.p. of the part

of the subtracted amplitude Mv
OµνΛ

i
ν ,ε , and not of the whole amplitude R

v
OµνΛ

i
ν ,ε . To achieve the same

form as in Eq. (3.3), following Bonneau [2], a new symmetric tensor qgµν is introduced, whose
trace and contraction properties are:

qg µ

µ = 1, qgµνgν
ρ = qgµν ĝν

ρ = qgµρ . (3.17)

The amplitude R
v
OµνΛ

i
ν ,ε from Eqs. (3.14) and (3.16) is then contacted with qgµν and fully simplified.

The remaining terms with qgµν are then set to zero, and the r.s.p. of the final expression is taken:

r.s.p.R
v

q∆Λ
i

ν ,ε

∣∣∣
qg=0
≡ r.s.p.(qgµνR

v
OµνΛ

i
ν ,ε )

∣∣∣
qg=0

= r.s.p.
(

∑
i, j∈Vvi

~pi · p jM
v
OµνΛ

i
1i j,ν ,ε +Mv

OµνΛ

i
2ν ,ε

+ ∑
i∈VH

qpi ·


Mv
OµνΛ

i
3ν ,ε

)∣∣∣
qg=0

= r.s.p.Mv
Oµν

i
1ν ,ε . (3.18)

The insertion of this relation into (3.16) provides the explicit result,

RG∆Λ

ν ,ε − (−ĝµν)RGOµνΛ

ν ,ε;µν = ∑
γi,V∈γi

Uγi

(
r.s.p.R

γ
|∆Λ

i
ν ,ε

∣∣∣
qg=0

)
R

G/γi
ν ,ε . (3.19)

It should be noted that in the loop integration procedure, new evanescent operators different from
the monomial ∆Λ might be induced, but all of these operators do contain one and only one (−ĝµν)
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from ∆Λ, which is singled out by replacing (−ĝµν) by qgµν . Therefore, all induced evanescent terms
depend linearly on the initial evanescent ĝµν present in the evanescent vertex operator ∆Λ.
Performing the same procedure as for basic Bonneau identities given there by points a.,b.,c.,d. of
subsection 3.2., one obtains

(R
G∆

Λ

ν ,ε)(C ,σ)G− (−ĝµν)(RGOµνΛ

ν ,ε )(C ,σ)G =
4

∑
n=2

∑
γn

i :V∈γn
i ⊆G

0≤δγn
i
≤4

δγn
i

∑
r=0

∑
{i1,...,ir}
1≤i j≤n{(

∂ r

∂ pµ1
i1 . . .∂ pµr

ir

r.s.p.R
γ

n,q∆Λ
i

ν ,ε

)∣∣∣
pi=0

Uγi

( 1
r!

pµ1
i1 . . . pµr

ir

)}
R

G/γn
i

ν ,ε , (3.20)

after the procedure steps of the points a. and b., then the result

〈0|N[−ĝµνOµνΛ(x)]|0〉1PI =
4

∑
n=2

∑
Jn

δ
Jn
O

∑
r=0

∑
{i1,...,ir}
1≤i j≤n

{ ir

r!
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

× r.s.p.〈0|T (N[qgµνOµνΛ(x)]φ̃ j1(p1) . . . φ̃ jn(pn))|0〉
1PI
∣∣∣∣∣pi=0

ǧ=0

}

×〈0|N
[−i

n!

1

∏
k=n

[(
∏

α/iα=k
∂µα

φ jk(x)
)]]
|0〉1PI , (3.21)

after the procedure steps of the point c. From the relation (3.21) one obtains

N[−ĝµνOµνΛ(x)] ·Γren =
4

∑
n=2

∑
{ j1,..., jn}

δ
Jn
O

∑
r=0

∑
{i1,...,ir}
1≤i j≤n

{ ir

r!
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

× r.s.p.〈0|T (N[qgµνOµνΛ(x)]φ̃ j1(p1) . . . φ̃ jn(pn))|0〉
1PI
∣∣∣∣∣pi=0

ǧ=0

}

×N
[−i

n!

1

∏
k=n

∏
α/iα=k

∂µα
φ jk(x)

]
·Γren , (3.22)

by collecting all 1PI amplitudes with different choices of external fields X into the effecive action.
Finally, after the procedure steps of the point d. one obtains the result

N[−ĝµνOµνΛ(x)] =
4

∑
n=2

∑
{ j1,..., jn}

δ
Jn
O

∑
r=0

∑
{i1,...,ir}
1≤i j≤n

{ ir

r!
∂ r

∂ pµ1
i1 . . .∂ pµr

ir

× r.s.p.〈0|T (N[qgµνOµνΛ(x)]φ̃ j1(p1) . . . φ̃ jn(pn))|0〉
1PI
∣∣∣∣∣pi=0

ǧ=0

}

×N
[ 1

n!

1

∏
k=n

∏
iα=k

∂µα
φ jk(x)

]
. (3.23)
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The relation (3.23) is the Bonneau identity for the special vertex V corresponding to the generic
monomial OµνΛ. In the same way as in the basic Bonneau identity Eq. (3.8), the fields in the last
term RHS of (3.23) may have an external source field per monomial, in which case the coefficient
term must contain a product of Fourier-transformed fields, which together with the external source
field form a term in the action of the considered theory. The external source field may be put outside
the normal product N, but the derivatives acting on it have to be retained within N.

3.4. BRST invariance in view of the Bonneau identities

This subsection discusses two related topics. In the first subsubsection we review the regularized
action principle, which constitutes a basis for the second one. The second subsubsection relates the
breaking of the BRST symmetry to the operators induced by the tree-level evanescent operators,
showing that the BRST breaking terms may be expressed using the Bonneau identities.

3.4.1. Regularized action principle. The regularized action principle states the following three
equations hold in dimensionally regularized theories:

i. Arbitrary polynomial variations of the quantized fields φ , δφ(x) = δθ(x)P(φ(x)) leave invariant
the dimensionally regularized the generating functional for the Green functions ZDReg [4, 5, 6]

δZDReg[J,K]≡
〈

δ (S f +SI)exp
{ i

h̄
SI[φ ,J,K,λ ]

}〉
= 0 , (3.24)

where φ , λ , J and K represent fields, couplings, sources for the fields and sources for their BRST
tranformations, where S f is the free action defining propagators of the theory, SI = SI[φ ,J,K,λ ] =

Si[φ ,K,λ ]+
∫

dDxJi(x)φi(x) is the interaction part of the action including the sources Ji for all the
fields φi = (ϕ,Φ)i, Si[φ ,K,λ ] = S0i[φ ,K,λ ]+S(n)sct [φ ,K,λ ]+S(n)f ct [φ ,K,λ ] is the interaction part of
the action which includes the BRST sources KΦi of the fields Φi which transform nonlinarly on
BRST transformations, S0i is the interaction part of the tree level action S0 = S0i +S f , and S(n)sct and
S(n)f ct are singular and finite parts of the counterterm part of the counterterm action S(n)ct = S(n)sct +S(n)f ct

including counterterms up to n-loop level. Finally, ZDReg[J,K,λ ] =
∫

Dφ exp{i(S(n)DReg +
∫

Jiφi)},
and 〈(. . .)〉=

∫
Dφ exp{iS f }(. . .) .

ii. Variations of external fields E(x)≡ (K(x),J(x)) lead to equality [3, 5, 6]〈
δSI

δE(x)
exp
{

SI[φ ,J,K,λ ]
}〉

=−ih̄
δZDReg[J,K,λ ]

δE(x)
. (3.25)

iii. Variation of parameters give [3, 5, 6]〈
δ (S f +SI)

δλ
exp
{

SI[φ ,J,K,λ ]
}〉

=−ih̄
δZDReg[J,K,λ ]

δλ
. (3.26)

The corresponding regularized quantum action equations for the dimensionally regularized effec-
tive action ΓDReg may be written. The equations (3.24-3.26) for the renormalized action which
state the (renormalized) quantum action principle are defined as follows. First, the renormalized
action is defined by taking the limit LIMν→0, denoting the limit when setting ν ,ε → 0 and setting
all evanescent objects to be equal to zero:

Γren = LIMν→0ΓDReg . (3.27)
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The same limit is applied to the regularized quantum action principle equations for the regularized
effective action ΓDReg to obtain the corresponding quantum action principle equations for the renor-
malized effective action Γren.

3.4.2. Slavnov-Taylor identities and anomalous insertions: It is convenient to derive the Slavnov-
Taylor identities of the theory in a similar manner. The reason for this is that in the BMHV scheme
the action of the D-dimensional Slavnov-Taylor opearator SD on regularized effective action the
terms coming from evanescent operators only [6],

SD(ΓDReg) ≡
∫

dDx(sDφ)
δΓDReg

δφ
+

δΓDReg

δKΦ

δΓDReg

δΦ

=∆ ·ΓDReg +∆ct ·ΓDReg +
∫

dDx
[

δS(n)ct

δKΦ(x)
·ΓDReg

]
δΓDReg

δΦ(x)
, (3.28)

where sD is BRST operator in D dimensions. The relation (3.28) is obtained using the Eqs. (3.24-
3.26) [6]. The operators ∆ = sDS0, ∆ct = sDS(n)ct , and δS(n)ct /δKΦ are all induced by evanescent
operators, although they are not fully evanesced by themselves. The remaining contributions to
the SD(ΓDReg) cancel. Therefore, in the procedure to find the breaking of the BRST symmetry
∆BRST

breaking, one can avoid the calculation of the complete renormalized action and performing action
of the 4-dimensional Slavnov-Taylor operator S on it, S Γren. Instead, one can evaluate only the
contributions from the RHS of Eq. (3.28), and then perform the limit LIMν→0,

∆
BRST
breaking = LIMν→0

(
∆ ·ΓDReg +∆ct ·ΓDReg +

∫
dDx
[

δS(n)ct

δKΦ(x)
·ΓDReg

]
δΓDReg

δΦ(x)

)
. (3.29)

Since all operators on the RHS of Eq. (3.29) are induced by evanescent tree-level operator, one can
apply the Eq. (3.22) to evaluate them.

For example, at one loop level, this equation can be reexpressed as [6]

∆
BRST,(1)
breaking = LIMν→0

{
[∆̂]

(1)
sing +bDS(1)sct

}
+{[N[∆̂ ·Γren]

(1)+bS(1)f ct} (3.30)

where bD and b are linearized Slavnov-Taylor operators [28, 6] in D and 4 dimensions respectively.
The first curly-bracket term on the RHS of (3.30) appears to be equal to zero. The second term
comprises a local finite contribution N[∆̂ ·Γren]

(1) which can be evaluated using Bonneau identities.
The finite conterterm bS(1)f ct contributuin is needed to restore the BRST symmetry.

4. Conclusion

This paper gives a short recapitulation of the Breitenlohner-Maison-’t Hooft-Veltman (BMHV)
scheme for dimensional regularization and an overview of the Bonneu identities. In the exposition
of the BMHV scheme we reexpressed the Breitenlohner-Maison (BM) Proposition 3 in several
ways so as to bridge the notational differences between the BM [5] and Bonneau [1, 2] papers
and in order to give a clearer interpretation of the BM renormalization procedure. Specifically, the
Bonneau © operator is identified to correspond to the procedure of the BM Proposition 3. The
explanation of the source of divergences is covered with a corresponding reference [24] and the
interpretation of the counterterm operator is supplemented with additional explanations. Further,
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the Lemma 2 of Bonneau is proved in subsection 3.2. in terms of a clearer expression of the BM
Proposition 3 as well as an extension of action of the Uγ operator, appearing in the BM Lemma 5, to
the complete amplitudes of subdiagrams and not only to the polynomial form structures corespond-
ing to counterterms. The basic Bonneau identity originally derived for the φ 4 theory is rederived
for a general theory, and the expression for the 1PI matrix elements is rewritten in terms of the ef-
fective action. The quantum numbers of the νOδ operator and the operators in terms of which νOδ

is expressed are identified and the dimensions of these operators are discussed. Two examples of
its application have been given: the Bonneau identity for the trace anomaly is rederived for a gen-
eral theory, for the general special vertex with any number of Lorentz indices larger or equal two.
We stated that the trace anomaly covers all the spurious anomalies of the theory. The expression
for the 1PI matrix elements is rewritten in terms of the effective action. Finally, we showed how
these results may be applied to the evaluation of the breaking of BRST symmetry in dimensionaly
regularized theories.
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