
P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
9
8

Using LHC to Discover the Bilepton

Paul H. Frampton∗

Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento and
INFN-Lecce, Via Arnesano, 73100 Lecce, Italy.
E-mail: paul.h.frampton@gmail.com

We discuss a minimal and simple extension of the standard electroweak model and discuss its
uniqueness properties. Its most readily testable prediction is the existence of |Q|= |L|= 2 gauge
bosons, bileptons, which decay into like-sign lepton pairs. We discuss how a discovery could be
made at the LHC.
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1. Introduction

Because the two most popular theoretical models aiming beyond the standard model - electroweak
supersymmetry and large extra dimensions - have received no encouragement from LHC data, in
this talk we shall discuss what seems to be the most likely first BSM particle. It is now being
searched for by the ATLAS Collaboration.
The Bilepton Model was invented as an example of a class of models which turned out, up to
variants, to have one distinct member.
Speculation
Probability LHC will find a new particle : 2/3 likely. If so, guess that the bilepton is 90% likely so
overall the bilepton can be (2/3)×90% which means 60% probable.

We shall not have time to explain how this model was invented historically but there is no Royal
Road to model building. One generally aims for
(i) motivation usually by addressing a question unanswered within the Standard Model.
(ii) testability by explicit predictions.
Both (i) and (ii) are satisfied by the Bilepton Model.
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2. Bilepton Model

The gauge group is:
SU(3)C ×SU(3)L ×U(1)X (2.1)

The simplest choice for the electric charge is

Q =
1
2

λ 3
L +

(√
3

2

)
λ 8

L +X

(√
3√
2

)
λ 9 (2.2)

where

Tr(λ a
L λ b

L ) = 2δ ab (2.3)

and

λ 9 =

(√
2√
3

)
diag(1,1,1) (2.4)
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Thus a triplet has charges (X +1,X ,X −1).

Leptons are treated democratically in each of the three families. They are colour singlets in an-
titriplets of SU(3)L :

(e+,νe,e−)L

(µ+,νµ ,µ−)L

(τ+,ντ ,τ−)L

All have X = 0.

Quarks in the first family are colour triplets and left-handed triplets plus three singlets

(uα ,dα ,Dα)L (ūα)L,(d̄α)L,(D̄α)L

Similarly for the second family

(cα ,sα ,Sα)L (c̄α)L,(s̄α)L,(S̄α)L

The X values are for the triplets are X =−1/3 and for the singlets X =−2/3,+1/3,+4/3 respec-
tively. The electric charge of the new quarks D,S is −4/3.

The quarks of the third family are treated differently. The color triplet quarks are here in a left-
handed antitriplet and three singlets under SU(3)L

(bα , tα ,T α)L (b̄α)L,(t̄α)L,(T̄α)L

The antitriplet has X =+2/3 and the singlets carry X =+1/3,−2/3,−5/3 respectively. The new
quark T has Q = 5/3.

Before discussing the symmetry breaking to SU(2)L ×U(1)Y and the resulting mass spectrum, we
must explain the nontrivial anomaly cancellation of this model which can explain the occurrence
of three quark-lepton families.

3. Cancellation of Triangle Anomalies

There are six triangle anomalies which are potentially troublesome; in a self-explanatory notation
these are diophantine equations[1]
(3C)

3,(3C)
2X ,(3L)

3,(3L)2X ,X3,X .

The QCD anomaly (3C)
3 is absent because QCD is, as usual, vectorlike. (3C)

2X vanishes because
the quarks are in nine color triplets with net X = 0 and nine antitriplets also with net X = 0. The pure
(3L)

3 anomaly vanishes because there is an equal number of 3L and 3∗L. (3L)
2X cancels because the
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leptons have X =0 and the quarks are in six triplets 3L with X = −1
3 and three antitriplets 3∗L with

X =+2
3 .

The X3 cancellation can be checked by a little algebra: the three quark families contribute, respec-
tively, +6+6−12 = 0.

It is especially interesting that this anomaly cancellation takes place between families. Each indi-
vidual family possesses nonvanishing
(3L)

3, (3L)2X , X3 anomalies.

Only with the number of families a multiple of three does the overall anomaly vanish. The imposi-
tion of the experimental requirement of asymptotic freedom of QCD then dictates that the number
of families be exactly three.

The anomaly equations provide a system of six simulataneous diophantine equations. Algebraic
number theory suggests that such a system almost never has any solution.

The fact that one unique solution exists, that underlying the Bilepton Model. This is the main
reason for optimism that this arrangment of gauge group, embedding of the SM, and assignment of
chiral fermions to irreps may be the one chosen by Nature.

As Einstein said when queried about the 1919 light-bending result and what would he have thought
if the experiments had disagreed with his general relativity theory: Then I would feel sorry for the
Lord. The theory is correct. In our experience, such infinite self-belief exists in some of the best
particle theorists.

4. Upper Limit on Bilepton Mass

The symmetry breaking to the standard model is achieved by a Vacuum Expectation Value (VEV)
of an X =+1 triplet < Φa >=Uδ a3. This gives mass ΛD,S,TU to the new quarks D,S,T where Λi

are the Yukawa couplings. It also provides mass to five gauge bosons: the bileptons (Y±±,Y±) and
Z

′
.

Electroweak breaking is achieved by VEVs of two triplets < ϕ a >= vδ a2 (with X = 0) and <

ϕ ′a >= v
′δ a1 (with X =−1) and a doublet VEV in a sextet with X = 0

< Hαβ >= y
√

10(δ α1δ β3 +δ α3δ β1)

We note that because of global L symmetry, the W+ and Y+ do not mix. For the same reason, the
new quarks with exotic charges (D,S,T ) have lepton numbers (+2,+2,−2) respectively.

Let the scale of breaking 331 → 321 be µ . To avoid imaginary coupling constants with g2
i < 0

which violate unitarity it is necessary to impose an upper limit on µ such that

sin2 θ(µ)≤ 1
4

(4.1)
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while at the Z pole the value is

sin2 θ(MZ)≃ 0.231 (4.2)

which increases using the renormalisation group to 1
4 at µ ≃ 4TeV . Adopting this leads to

MY±± ≤ 2TeV (4.3)

by analogy with the electroweak theory where M(W±) = 80 GeV which is less than the SU(2)×
U(1)→U(1) breaking scale which is ∼ 248 GeV.

The estimated upper limit on bilepton mass of 2 TeV is good news for the ongoing LHC bilepton
search.

5. Lower Limit on Bilepton Mass

Perhaps surprisingly the lower limit comes not from colliders but from two table-top experiments.

Concidentally both experiments have been done at PSI (= Paul Scherrer Institute). A second coin-
cidence is they both give closely the same result for the bilepton lower mass bound.

Firstly there is µ+e− → µ−e+ which can be mediated by doubly-charged bilepton exchange.
Called muonium-antimuonium conversion it provides mY±± > 800GeV .

Secondly there is µ− → e−νeν̄µ mediated by singly-charged bilepton exchange which by Fierz
rearrangement is a (V +A) contribution to µ− → e−µ̄eνµ whose Michel parameter ξ in (V −ξ A)
is 1 ≥ ξ > 0.997. This requires that mY± > 800GeV .

6. Bilepton Phenomenology at the LHC

A study of bilepton pair production and two or more jets at the LHC with
√

s = 13 TeV was made,
using the Feynman rules for the Bilepton Model.

About 3000 tree-level Feynman graphs were implemented by SARAH 4.9.3.
Amplitudes were computed numerically by MadGraph.
Simulation of parton showers and hadronisation was made by HERWIG.

For more details, see[2, 3]
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7. Resonance Bumps

One method [4] of estimating the numbers of events at ATLAS is to use old ATLAS data which
were analysed to search for a SSM(=Sequential Standard Model) Z

′
which was not discovered.

There is some similarity between production of Y and Z
′
. The biggest difference is that Y must be

pair produced so we approximate by using σZ
′

SSM(M(Z
′
= 2M(Y )). We need to estimate the brancing

ratio (BR) for (Y → e+e+,µ+µ+,τ+τ+). Because there exist non-leptonic decays B → Qq̄,qQ̄
where Q is an exotic quark, the BRs depend on the mass M(Q) of the exotic quarks.

We have calculated the branching ratios into each flavour of like-sign lepton pairs, assuming 800
GeV as the common mass of the three exotic quarks, see Table 1. If some of the exotic quarks are
more massive than 800 GeV these BRs would be slightly larger so the estimates in Table 2 will be
conservative lower limits on the event rates.

.
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Table 1: Branching ratios into like-sign lepton pairs for each of the three flavours of charged lepton e,µ,τ .

M(Y) BR=branching ratio
GeV into like-sign lepton pair

(per flavour)

800 0.33
1100 0.31
1400 0.28
1700 0.25
2000 0.21

We re-calculated the numbers of signal events and SM background events, using the values of BR
from Table 1. The results which are our most reliable predictions for the LHC are displayed in
Table 2.

Table 2: Numbers of signal and background events at resonance in like-sign lepton pairs for integrated
luminosity 150/fm. This Table gives our most reliable predictions.

M(Y) σZ′
SSM(MZ′ = 2M(Y )) (BR)2 Signal Background

GeV (fb) events events.

800 100 0.109 1635 < 0.01
1100 20 0.096 288 < 0.01
1400 6 0.078 70 < 0.01
1700 1 0.062 9 < 0.01
2000 0.6 0.044 4 < 0.01

Summary

Parity violation in weak interactions, chiral fermions and triangle anomalies underly the Standard
Model and its extension to the Bilepton Model.

A possible search for ATLAS and CMS is for Y±± which underly an explanation of three families
in the Bilepton Model predicts doubly-charged siblings Y±± to accompany W±.

There is the expected mass range

800GeV ≤ MY±± ≤ 2000GeV
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which renders this new particle accessible to the LHC.

What is encouraging about the Bilepton Model at the LHC is that our calculations of the new signal
and the Standard Model background suggest that obtaining a 5σ statistically significant signal for
the resonance seems, at least to a theorist, to be straightforward.

As may be recalled from the 2012 announcement by CERN about discovery of the Higgs Boson,
5σ is their official requirement for announcing the discovery of a new particle, as appears readily
possible for the bilepton. Discovery of the bilepton would be more transformative than the Higgs
Boson since the latter is already contained in the Standard Model. One well-known precedent of
a particle discovery was the Ω− particle discovered at Brookhaven National Laboratory in 1964
which confirmed Gell-Mann’s Eightfold Way theory proposed in 1961. That experimental confir-
mation thus took only three years. If it were discovered in 2020, the bilepton would have taken 28
years from 1992 but recall, however, that discovery of the Higgs boson took much longer.
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