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1. Introduction

Nowadays there is adversarial debate amongst high energy physics community whether the
string theory landscape contains de Sitter (dS) vacua. No go theorems such as [1], and swamp-
land conjectures [2] cast doubts on their existence in consistent quantum theories 1 and disfavour
cosmological inflation in effective field theory models of string origin. Instead, there are sugges-
tions [4] that quintessence models where the cosmological constant varies over time satisfy current
observational constraints. If so, the present acceleration phase shall come to an end and eventually
the rapid expansion of the universe will terminate in the distant future. However, string quantum
corrections which are anticipated to play essential role in shaping the final form of the effective
theory and the scalar potential, have not been fully explored yet. Therefore, before abandoning
the attractive de Sitter solutions which abide with successful inflationary models, it is worth ex-
ploring further the ‘landscape’ of string compactifications and the implications of various localised
defects (such as D-branes) on the emerging effective theories. This presentation will focus on the
investigation of dS vacua in type IIB superstring theory in the presence of D-branes.

There are several ways of building de Sitter vacua in the literature. Most common are those
based on non-perturbative corrections, such as the KKLT mechanism [5] and the so-called large
volume scenario [6]. These constructions are much debadable however, due to the fact that they rely
on non-perturbative effects which cannot be controlled at the full string level (some improvements
of the original models have appeared using the nilpotent chiral multiplets [7], leading to a new
mechanism of uplifting the vacua in the stringy landscape [8]).

In this work, de Sitter vacua will be sought only from sources inducing perturbative correc-
tions. It will be argued that higher derivative terms in the ten-dimensional string effective action
generate upon compactification a four-dimensional Einstein-Hilbert term localised in the internal
space, which in turn induces logarithmic corrections to the scalar potential via loop effects. At
this point, it is worth emphasising that such corrections are standard in the presence of D7-branes;
they appear as quantum corrections either in the world-sheet or in the string coupling perturbation
theory and have also been studied in different contexts in the past [9, 10]. Such contributions,
break the no-scale structure of the Kähler potential and lead to an effective theory with some Käh-
ler moduli stabilised, such as the internal six-dimensional volume [11]. On the other hand, D-term
contributions associated with abelian symmetries which are present for instance in configurations
of intersecting D7-branes, work as an “uplifting” mechanism, stabilising the remaining Kähler
moduli and ensuring the existence of de Sitter vacua [11].

2. Prelude

The aim of this work is to propose a solution to the moduli stabilisation problem in II-B string
theory and to examine whether a dS minimum exists in consistent theories (i.e. those having an
ultraviolet (UV) completion), based only on perturbative corrections. To set the notation and focus

1For a review and further references see [3]
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only on what is needed from type II-B framework, the moduli fields to be used in the subsequent
analysis are briefly presented. 2

From the NS-NS sector, the relevant ingredients are the dilaton and KB-field:

gµν , φ , Bµν → B2

From the R-R sector, we make use of the various p-form potentials:

C0, Cµν , Cκλ µν →Cp, ; p = 0,2,4 .

The C0 potential and the dilaton field, are used in the usual axion-dilaton combination denoted here
with S:

S =C0 + i e−φ →C0 +
i

gs
,

where gs is the string coupling. In addition, we will consider a six-dimensional compactification on
a CY threefold and denote the complex structure (CS) moduli with za, and the Kähler class moduli
with Ti:

CS : za, a = 1,2,3 . . .h(2,1), ; Kähler : Ti , i = 1,2,3, . . .h(1,1) .

Note also that CS moduli are (2,1)-forms whilst Kähler moduli are (1,1)-forms, with their respective
number h(2,1) and h(1,1). Obviously, if moduli remain massless at low energies, they give rise to
fifth forces and create other cosmological problems in the effective field theory. Hence, the task is
to generate a potential and assure positive mass-squared for all moduli fields.

The subsequent analysis will be presented in the framework of type II-B N = 1 effective super-
gravity. In this context, the two basic ingredients related to the present work are the superpotential
of the moduli fields and the Kähler potential. Type II-B compactifications on six-dimensional CY
manifolds give rise to N = 2 supersymmetry in four dimensions. This is broken to N = 1 in the
presence of 3-form fluxes and orientifold planes satisfying a set of conditions (see e.g. [12]). To
construct the superpotential we need the field strengths derived from the KB field and the p-form
potentials. We also need to introduce the holomorphic (3,0)-form Ω which is a function of the CS
moduli

Fp := dCp−1 , H3 := d B2 ⇒ G3 := F3−SH3 , Ω = Ω(za) .

Then, the fluxed induced superpotential W0, at the classical level, is given by the well-known
formula [13]:

W0 =
∫

G3∧Ω(za) . (2.1)

Clearly, the perturbative superpotential W0 is a holomorphic function and depends on the axion-
dilaton modulus S, and the CS moduli za. Thus, we apply the supersymmetric conditions, w.r.t.
these fields za,S by setting the Kähler covariant derivatives to zero:

DzaW0 = 0 , DSW0 = 0 . (2.2)

2The usual abbreviations for Calabi-Yau (CY), Neveu-Schwarz (NS), Ramond (R), and Kalb-Ramobd (KB) are also
used.
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The above conditions fix the moduli za,S which are present in the superpotential W0. On
the contrary, the Kähler moduli, being (1,1)-forms, do not enter in the superpotential and thus,
they remain completely undetermined at this stage. Nevertheless, we may appeal to the second
ingredient of the effective supergravity which is the Kähler potential that depends logarithmically
on the various moduli fields, including the Kähler moduli:

K0 = −2ln(iV )− ln(−i
∫

Ω∧ Ω̄)

= −
3

∑
i=1

ln(−i(Ti− T̄i))− ln(−i(S− S̄))− ln(−i
∫

Ω∧ Ω̄) , (2.3)

where V is the volume of the CY depending on the Kähler class moduli. We then specialised for
simplicity to the case of the three geometric moduli of the six dimensional torus T 6 corresponding
the areas of three orthogonal planes T 2×T 2×T 2. One can now compute the effective potential
using the standard formula

Veff = eK (∑
I,J

DIW0K
IJ̄DJ̄W0−3|W0|2) · (2.4)

This can be split it in two parts:

Veff = eK
∑

{I,J}={za,S}
DIW0K

−1
IJ̄ DJ̄W0 (DIW0 = 0 ,supersymmetry) (2.5)

+eK

(
∑
i, j

K i j
0 DiW0D jW0−3|W0|2

)
(= 0, no scale structure) (2.6)

= 0 (2.7)

The first part of the scalar potential (2.5) involves the moduli fields za,S and it vanishes due to the
supersymmetric conditions (2.2). The second part (2.6) involves only the Kähler moduli Ti and is
also identically zero because of the no-scale structure of the Kähler potential (2.3). Hence, it is
impossible to fix the Kähler moduli at this (classical) level.

From the above discussion, it is inferred that in order to stabilise the Kähler moduli it is
necessary to go beyond the classical level and include higher order effects. In fact, when quantum
corrections are included they break the no-scale structure of the Kahler potential. To this end, let
us first assume a generic test function depending only on a single modulus τ , representing such
corrections in the form = γ f (τ), with γ a small parameter measuring their strength. This breaks
the no-scale structure and the Kähler potential takes the form in the large volume expansion 3

K =−2log
(

τ
3
2 + γ f (τ)

)
, V = τ

3
2 , |γ|< 1 (2.8)

Expanding in γ , the F-term potential becomes

VF ∝ γ
3 f (τ)−4τ f ′(τ)+4τ2 f ′′(τ)

τ
9
2

. (2.9)

As expected, when γ → 0, the no-scale structure of the Kähler potential is restored and VF ≡ 0.

3τ is assumed to be a 4-cycle modulus and thus, the internal volume has the simple form V = τ
3
2 .

3



P
o
S
(
C
O
R
F
U
2
0
1
9
)
0
9
9

String vacua George K. Leontaris

Next, let us consider the typical case of perturbation theory at large volume with a power-law
in the modulus τ , i.e., f (τ) ∝ τn. In this case, the resulting scalar potential exhibits a monotonic
behaviour in τ , VF ∝ τn− 9

2 , hence there is no minimum. On the other hand, if the function f (τ) is
a logarithm of the modulus τ , the potential contains two different types of terms competing each
other and in principle a minimum can exist. Indeed:

VF ∝ γτ
n− 9

2

(
log(τ)− 8

3

)
+ · · · ⇒ ∃ (VF)min if γ < 0 , (2.10)

i.e., at a certain value of τ , the potential has a minimum provided γ < 0. Note though that this is an
anti-de Sitter (AdS) vacuum and, as we will see below, additional uplifting terms will be required
to obtain the desired dS minimum. Furthermore, assuming an exrta constant correction ξ in the
Kähler potential:

K =−2log
(

τ
3
2 +ξ + γln(τ)

)
, (2.11)

it is is found that the size of the volume at the minimum is controlled by the constant parameter
µ ≡ eξ/γ :

Vmin =
e13/3

µ
; µ = eξ/γ .

The constant µ can be chosen so that we can have an exponentially large volume.
From the above simple example, it is obvious that the existence of a minimum depends cru-

cially on the properties of the function f (τ) associated with the quantum corrections. Hence, the
crux of the matter is whether a suitable type of quantum corrections exist in string theory.

3. “Localised” Einstein-Hilbert term

In this part of the presentation, the role of perturbative string loop corrections will be exam-
ined. Firstly, we recall the well known world-sheet corrections, perturbative in the string slope
α ′, which are found to be proportional to the Euler characteristic χ of the compactification mani-
fold. Secondly, subsequent string loop contributions will be computed which are found to be very
important in the presence of D7-branes.

Starting with α ′ corrections, it was shown that in the large volume limit they imply a redefini-
tion of the dilaton field: [12]

e−2φ4 = e−2φ10(V +ξ ) = e−
1
2 φ10 (V̂ + ξ̂ ) , (3.1)

where φD is the D-dimensional dilaton (φ10 is fixed from the supersymmetry condition (2.2)) and
the last expression holds in the Einstein frame. The volume can be expressed in terms of the
imaginary parts tk of the Kähler deformations T k as follows:

V =
1
3!

κi jkt it jtk, tk =−Im(T k) = t̂k e
1
2 φ10 .

Therefore, the corrections to the Kähler potential (2.3) can be accounted by a shift of the volume
by a constant ξ which is determined in terms of the Euler characteristic

ξ =− ζ (3)
4(2π)3 χ . (3.2)
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The above corrections are associated with higher derivatives induced in the 10-dimensional
effective action. Indeed, as is well known, multigraviton scattering in string theory generates higher
derivative couplings. The leading terms in the effective action are those with eight derivatives and
are proportional to R4, (i.e., the Riemann tensor to the power four with appropriate contractions
of indices). Upon compactification to four dimensions, they induce an Einstein-Hilbert (EH) term
which is multiplied by the Euler characteristic of the manifold.

Indeed, let us just cast a glance back to the previous works incorporating the R4 term in the
Type II-B 10-dimensional effective action. According to [14, 15, 16, 12] the latter is given by

S ⊃ 1
(2π)7α ′4

∫
M10

e−2φ10R(10)−
6

(2π)7α ′

∫
M10

(−2ζ (3)e−2φ10−4ζ (2))R4∧ e2 , (3.3)

where R(D) is the D-dimensional Ricci scalar. Compactifying six dimensions on a CY manifold
X6 (so that M10 = M4×X6), and taking into account the tree-level and the one-loop generated EH
terms, the ten-dimensional action reduces to

Sgrav =
1

(2π)7α ′4

∫
M4×X6

e−2φ10R(10)+
χ

(2π)4α ′

∫
M4

(
2ζ (3)e−2φ10 +4ζ (2)

)
R(4) , (3.4)

with the Euler characteristic defined as

χ =
3

4π3

∫
X6

R∧R∧R ·

Therefore, after compactification, a localised EH term is generated with a coefficient proportional
to the Euler characteristic χ . From the above reduction and the form of χ , it is also deduced that
this effective EH-term is possible only in four dimensions.

More precisely, the above localisation is realised in the non-compact limit (large volume) at
‘points’ in the internal space where the Euler number χ is concentrated [16]. For instance, in the
orbifold case, these are the fixed points of the orbifold group. At these points, there are localised
vertices associated with the induced EH term, emitting gravitons and Kaluza-Klein (KK) excita-
tions in the 6-dimensional space. A useful notion related to this mechanism is the localisation width
which can be estimated by computing the graviton scattering involving two massless gravitons and
one KK excitation (see Fig. 1). The computation can be done explicitly in the orbifold case, where
the term proportional to ζ (3) in the action (3.4) vanishes and the induced EH-term arises at one
loop order [16]. The result for the T 6/ZN orbifold is expressed as follows:

〈V 2
(0,0)V(−1,−1)〉=−CR

1
N2 ∑

f ,k
eiγkq·x f

∫
F

d2τ

τ2
2

∫
∏

i=1,2,3

d2zi

τ2
∑
(h,g)

′eα ′q2F(h,g)(τ,zi) ,

where the subscripts in the vertices denote the ghost-picture, q is the internal (KK) momentum, CR

is a constant related to the tensor structure, whilst x f are the fixed points of the orbifold and γk is
the representation of the action of the orbifold group. The pairs (h,g) label the orbifold sectors and
the prime in the sum excludes the untwisted sector (0,0). The integration over the modulus of the
world-sheet torus τ = τ1 + iτ2 is restricted as usual in the fundamental domain F of the modular
group.
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k

k

k
1

2

3

Figure 1: Non-zero contribution from 1-loop; 3-graviton scattering amplitude of 2 massless and 1 KK.

Referring to the relevant works for the details [11, 16], one finds that the width w associated
with the localised graviton vertices is given by

w2 ≈ α
′F(h,g)(τ,za) |min∼

l2
s

N
(3.5)

with ls =
√

α ′ the fundamental string length. The localisation property can be expressed in terms
of the width (3.5), by computing the amplitude in the position space ‘y’, by a Fourier transform
from the momentum space ‘q’. Indeed, it is found that the coefficient of the induced EH action
R(4) depending on the 6-dimensional internal space (in the position or momentum representation)
exhibits a Gaussian profile

CR
N
w6 e−w2q2

⊥/2 (3.6)

controlled by the ‘effective’ width defined above. Here q⊥ is the internal momentum along the
directions allowed by momentum conservation. For instance, if the graviton emission ends on 7-
branes, q⊥ is along the directions tranverse to their world-volume (see below). Then, the one loop
correction takes the form

4ζ (2)
(2π)7α ′

χ

∫
M4×X6

e−y2
/(2w2)

w6 R(4) , (3.7)

where N has been interpreted as the Euler characteristic χ ∼ N.
In type II-B (as well as in F-theory) context, the geometric configuration may also include D7

branes and orientifold O7 planes. In effect, there can be an exchange of KK-modes between the
localised gravity position (for instance an orbifold fixed-point) and the distinct 7-branes. Since D7
branes occupy four internal dimensions, KK-modes transmitted towards each one of them propa-
gate in a 2-dimensional bulk transverse to D7 (see Fig. 2). In this way, logarithmic contributions are
induced depending on the size of the 2-dimensional space transverse to D7. From the form of the
effective EH term given in (3.4) it can be seen that this correction is multiplied by the Euler char-
acteristic. Referring to the relevant works for the details [11, 16], the corresponding contribution
takes the form

AS = −CRg2
s T

2π

sin 2π

N

{
−γ

2
+ ln

(
R⊥
√

2
w

)
+O

(
w2

R2
⊥

)}
, (3.8)
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whete T is the D7 brane tension and R⊥ measures the size of its transverse 2-dimensional space. In
the above formula we are interested in the R⊥ dependence, which exhibits a logarithmic behaviour.
Summing up the two contributions (3.6) and (3.8), and replacing χ ∼ N as above, one finds:

4ζ (2)
(2π)3 χ

∫
M4

(
1−∑

k
e2φ Tk ln(Rk

⊥/w)

)
R(4) . (3.9)

k

kz

z

z

k k

k
k

1,0

1,0

1

2,0

2,02

3,n 3,n

3 X

X

X

X

D7

>

y=0 y=ya

A

worldsheet

Figure 2: Non-zero contribution from 1-loop; 3-graviton scattering amplitude of 2 massless and 1 KK propagating in
2-dimensions towards a D7 brane.

4. The effective potential

The above corrections induce new terms to the Kähler potential. It can be shown [17] that
stabilisation of the Kähler moduli requires at least three sets of D7 branes, with mutual orthogonal
transverse spaces. Hence, the contributions involving the Kähler moduli are written in the form:

δ =
3

∑
k=1

γk ln(τk) .

For simplicity, we take γk = γ/2. Then, the Kähler potential takes the form

K =−2ln(
√

τ1τ2τ3 +ξ + γ ln(τ1τ2τ3))≡−2ln(V +ξ + γ lnV ) (4.1)

It can be easily checked that these corrections do break the no-scale structure. The F-term scalar
potential is computed using (4.1). Expanding in γ , it takes the form

VF ≈ 3γw2
0

ln µV −4
V 3 +O(γ3) ,

where ξ has been substituted with γ ln µ , and w0 = 〈W0〉.
In the presence of D7 branes, it is also possible that D-terms appear. These give rise to a

contribution of form

VD =
3

∑
a=1

da

τa

(
∂K

∂τa

)2

≈
3

∑
a=1

da

τ3
a
+ · · ·

with da numerical constants. Thus, the effective potential is the sum

Veff =VF +VD . (4.2)
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Minimisation with respect to the volume implies the condition [17]:

γw2
0(13−3lnV ) = 2dV ; d = (d1d2d2)

1
3

The solution of the above equation determines the volume at the extrema and depends on the
double-valued Lambert W-function[17], which takes real double values in the region between−1/e
and 0. Hence, in this region the potential has a maximum and a minimum. However, not all values
of this region are acceptable since the requirement for de Sitter vacua puts additional constraints.
Putting all these together, the following constraints apply to the various constants

−0.007242 < ρ <−0.006738, ρ =
d

γw2
0µ

(4.3)

In Fig. 3 the effective potential Veff is plotted versus the volume V for fixed values of the
parameter ρ . The values of ρ in the upper two curves lies within the acceptable region (4.3) and
hence they yield de Sitter minima. On the contrary, the lower curve is for a value of ρ outside the
above region and thus, it corresponds to an AdS vacuum. At large volume, the potential vanishes
asymptotically after passing from a maximum.

ϱ = -0.00695

ϱ = -0.00678 ϱ = -0.00669 > ϱmax

15000 20000 25000


5

10

15

Figure 3: Plot of the scalar potential as a function of the volume for different values of the parameter ρ

5. Conclusions

In this presentation it has been demonstrated that perturbative corrections in a specific D7-
brane configuration of type II-B string compactifications have the appropriate ingredients to sta-
bilise the Kähler moduli. The origin of these corrections come from the reduction of R4 couplings
of the ten-dimensional string effective action and can exist only in 4-dimensions [18]. One may
conclude that this is an indispensable element for the existence of 4-dimensional de Sitter vacua.
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