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Spontaneous conformal symmetry breaking in Fishnet CFT Georgios K. Karananas

1. Intoduction and motivation

This talk 1 is based on the findings of [1] written in collaboration with Vladimir Kazakov and
Mikhail Shaposhnikov, and concerns the spontaneous breakdown of conformal symmetry in a spe-
cific limiting case of the γ-deformed N = 4 supersymmetric Yang-Mills (SYM) theory, the Fishnet
CFT (FCFT).

The model was discovered a few years ago by Gurdogan and Kazakov [2] and since then it
is being extensively studied [3–22], although the majority of the considerations concern the phase
where the conformal symmetry is not broken. The reasons the FCFT has attracted considerable
attention are manyfold. Among others, in the planar Nc→ ∞ limit, although nonsupersymmetric,
the theory is a genuine CFT, it appears to be integrable [2, 23, 3] and in addition it accommodates a
rich set of flat directions corresponding to spontaneously broken quantum conformal symmetry [1].

Contrary to what happens if the symmetry is unbroken, on top of nontrivial (i.e. symmetry-
breaking) flat vacua, the spectrum of the theory—apart from a massless dilaton—comprises mas-
sive particle states. Nevertheless, and in spite of the presence of mass scale(s), the vacuum energy
is exactly zero (for instance see [24–27]). This is due to the stringent constraints that conformal
invariance imposes on a system. Specifically, it dictates that the potential be a homogeneous func-
tion of the fields. In turn, if there exist nontrivial configurations that extremize the potential, then
automatically the vacuum energy of the theory vanishes. In the FCFT this happens naturally, i.e.
without resorting to finetunings. In general, such solutions were believed to be present only at
specific values of the corresponding coupling(s) for nonsupersymmetric theories.

Apart from a possible “academic” interest on the moduli space of the FCFT—especially in
connection with the parent N = 4 SYM and its γ-deformation—the existence of natural flat di-
rections which are not lifted by quantum corrections can be of relevance in particle physics phe-
nomenology too. It is conceivable that some of the features of the FCFT concerning the natural
breakdown of quantum scale/conformal symmetry may be universal and be also present in more
realistic theories.2 This may in turn put the cosmological constant problem in a different context.
Note that the latter theories may provide the appropriate language to address yet another fine-tuning
puzzle of the Standard Model: the gauge hierarchy problem. It has been argued that the smallness
of the Higgs mass as compared to the Planck scale may be the consequence of scale/conformal
symmetry [62, 32] in combination with no particle thresholds between the electroweak and Planck
scales [63, 27],3 and the presence of nonperturbative gravitational effects operative at very high
energies [65–68].

The paper is organized as follows. A (very) basic overview of the FCFT is given in Sec. 2.
Classical and quantum aspects of the symmetry breaking vacua are discussed in Sec. 3. The con-
clusions are presented in Sec. 4.

1The slides can be found online at:
http://physics.ntua.gr/corfu2019/Talks/georgios_karananas@physik_uni-muenchen_de_01.pdf .

2For a non-exhaustive list of relevant works see [28–34, 27, 35–60] and references therein, as well as [61] for a
recent nice review.

3Interestingly, the absence of heavy particle states may also be achieved in the context of Grand Unified Theories,
see [64].
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2. A crash course on the basics of Fishnet CFT

The starting point of the discussion is the purely scalar sector of the γ-deformed N = 4 SYM
Lagrangian (for example cf. [69, 2]) 4

L = Nc tr
[

∂µφ a∂µφa +g2
Y M

(
1
4
{φ a,φa}{φ b,φb}− e−iεabcγcφ aφ bφaφb

)]
, (2.1)

where the φa’s are 3 complex scalar (traceless) Nc×Nc matrices in the adjoint of SU(Nc), a bar
denotes Hermitian conjugation, gY M is the Yang-Mills coupling, and the γa’s are the parameters
of the deformation, also called “twists.” In the above, summation over all repeated spacetime
(µ = 0, . . . ,3) as well as internal (a,b,c = 1,2,3) indexes is tacitly assumed; as customary, the
curly brackets stand for the anticommutator and εabc is the three-dimensional totally antisymmetric
symbol. The γ-deformed theory is defined by (2.1), supplemented by the corresponding gauge and
fermionic sectors, which are not explicitly written down since they play no role in the subsequent
considerations.

To obtain the FCFT one takes the double-scaling (DS) limit of weak Yang-Mills coupling,
while keeping γ1,2 fixed and forcing γ3 to be large and imaginary

gY M → 0 , γ1,2→ fixed , γ3→+i×∞ , (2.2)

such that
ξ

2
1,2 = g2

Y M Nce−iγ1,2 → 0 , ξ
2 = g2

Y M Nce−iγ3 6= 0 . (2.3)

One can show that the gauge fields, fermions and the scalar φ3 decouple [2]. Therefore, the the-
ory (2.1) simplifies considerably and boils down to [2, 70]

L = Nc tr
(

∂µX∂µX +∂µZ∂µZ + ξ̃
2XZXZ

)
, (2.4)

where φ1 = X ,φ2 = Z and ξ̃ = 4π ξ .5 Notice that by taking that specific limit, the Hermitian coun-
terpart of the interaction term does not survive,6 something that has far-reaching implications.
Namely, the number of planar diagrams at each order in perturbation theory is severely restricted to
the point that only a handful of them needs to be computed (the number of course depends on the
quantity under consideration). Moreover, the multiloop diagrams of the theory arrange themselves
into regular square lattices with quartic massless φ 4-type vertices, so they resemble a “fishnet.”
Such graphs are integrable [71], see also [72]. Owing to that, the FCFT is integrable in the planar
limit [2, 23, 3], which translates into nontrivial CFT data= {Operator Product Expansion (OPE)
coefficients, scaling dimensions ∆} be in principle calculable [7]. As it will become clear in the

4In what follows, all considerations concern four spacetime dimensions exclusively. The generalization to arbitrary
number of dimensions was considered in [6].

5The factor of 4π was introduced for convenience.
6To explicitly see how this comes about, it is useful to expand the anticommutators in the potential of (2.1); the

terms of interest are
L ⊃ Nc tr

(
g2

Y Me−iγ3 XZXZ +g2
Y Meiγ3 ZXZX

)
+ . . . . (2.5)

In the DS limit (2.2), (2.3), it is obvious that the coefficient of the last term decays exponentially. This is the source of
the non-Hermiticity of the single-trace term.
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next sections, the non-Hermiticity of the biscalar FCFT gives rise to a number of remarkable prop-
erties when its comes to conformal symmetry breaking too, especially when compared to other
nonsupersymmetric CFTs.

It is important to note at this point that the theory as given by (2.4) is not complete, starting
already from the one-loop order. Rather, it should be supplemented by the following double-trace
terms [69]

Ld.t./(4π)2 = α
2
1
[
tr(X2)tr(X2)+ tr(Z2)tr(Z2)

]
−α

2
2
[
tr(XZ)tr(XZ)+ tr(XZ)tr(XZ)

]
, (2.6)

that are required in order to renormalize the correlators of the composite operators tr(X2), tr(X2),
tr(XZ), tr(XZ). In the above, α1 and α2 are couplings whose running with the renormalization
scale is responsible for the explicit breaking of conformal symmetry. It turns out, however, that
the beta functions for the couplings have the following two complex fixed points parametrized by
ξ [73, 5]

α
2
1 = α

2
+ , α2 = ξ

2 and α
2
1 = α

2
− , α2 = ξ

2 , (2.7)

with

α
2
± =± iξ 2

2
− ξ 4

2
∓ 3iξ 6

4
+O(ξ 8) . (2.8)

When the couplings take their critical values, the FCFT

LFCFT = L +Ld.t. , (2.9)

behaves as a fully-fledged finite conformal theory for arbitrary values of ξ .

3. Classical vacua and their quantum fate

3.1 Classical considerations

The (matrix) equations of motion follow easily by varying the action

S =
∫

d4x LFCFT , (3.1)

w.r.t. X ,X ,Z,Z. For constant field configurations, these respectively read

κ tr(X2)X + tr(XZ)Z + tr(XZ)Z = NcZXZ ,

κ tr(X2)X + tr(XZ)Z + tr(XZ)Z = NcZXZ ,

κ tr(Z2)Z + tr(XZ)X + tr(XZ)X = NcXZX ,

κ tr(Z2)Z + tr(XZ)X + tr(XZ)X = NcXZX ,

(3.2)

where κ = −2α2
±/ξ 2. Notice that the equations for the fields and their Hermitian transposes are

not related by complex conjugation. This follows from the particular form of the single-trace term
and the fact that κ is complex. This is nothing but the manifestation of the non-unitarity of the
theory at the level of the equations of motion.
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The question to be addressed is if there exist vacua 7 of the theory for which at least one of the
field’s vev is nonvanishing, meaning that the symmetry is nonlinearly realized. To proceed, let me
make the simplest possible ansatz, i.e. require that the vacuum expectation value (vev) of one of
the fields is zero

〈X〉tree = 0 , (3.3)

while the other has a diagonal vev,

〈Z〉tree = vdiag(z1, . . . ,zNc) , (3.4)

with v a (complex) parameter carrying mass dimension; the elements zk are complex numbers that
satisfy

Nc

∑
k=1

zk =
Nc

∑
k=1

z̄k = 0 , (3.5)

since the matrix fields are traceless. For obvious reasons, in what follows I will refer to (3.3)
and (3.4) as “asymmetric vacua.”

One can immediately verify that the first two equations of motion are identically satisfied on
the above ansatz, while the last two yield

κ tr
(
〈Z〉2tree

)
〈Z〉tree = 0, and κ tr

(
〈Z〉2tree

)
〈Z〉tree = 0 , (3.6)

which translates into
Nc

∑
k=1

z2
k =

Nc

∑
k=1

z̄2
k = 0 , (3.7)

since both κ and 〈Z〉tree are non-zero.
It is impressive that the theory supports flat directions with vanishing energy for every value

of the coupling. Put differently, there is actually no need for finetuning in order for the symmetry
breaking vacua (3.4), (3.5), (3.7) to become accessible to the system. Although this is a rather
unusual situation for a CFT without supersymmetry—flat directions were believed to appear only
for particular values of the corresponding couplings [74, 34, 75]—it is not a mystery. The N =

4 SYM has a plethora of vacua that nonlinearly realize the conformal symmetry. The FCFT, in
spite of being a heavily deformed descendant of this theory, has nevertheless inherited some of the
aforementioned flat directions.

That’s not the end of the story though. Provided that 〈X〉tree = 0 there are more symmetry
breaking solutions to (3.2), also for all values of ξ . These are absent both in the N = 4 SYM,
as well as its γ-deformation and appear only after the DS Fishnet limit (2.2), (2.3) is taken. Such
solutions are nilpotent matrices for which 〈Z〉tree 6= 0, with 〈Z〉2tree = 0. Note that additional flat
directions appear ∀ξ if both fields acquire a vev, for instance 〈X〉tree ∝ 〈Z〉tree, with 〈Z〉tree given
by (3.4), as well as for specific values of the coupling. It is surely worth investigating the impli-
cations of having such a rich moduli space, nevertheless in what follows I will only focus on the
simplest, asymmetric vacua.

7Keep in mind that the theory is not unitary, so in an abuse of language, by “vacua” and “ground states” I actually
mean extrema of the complex action.

4



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
1
6

Spontaneous conformal symmetry breaking in Fishnet CFT Georgios K. Karananas

Figure 1: The parent N = 4 supersymmetric Yang-Mills theory possesses a plethora of nontrivial flat
directions. Some of them are passed down to the FCFT (pink color). Most importantly, a nonzero set of
them is not lifted by quantum corrections (green color). On top of these symmetry-breaking vacua, the
vacuum energy of the theory is naturally zero.

3.2 Quantum corrections

Although conformal symmetry can certainly be present at the classical level, it may be explic-
itly broken when quantum corrections are taken into account. This would be a rather problematic
situation, since the classical flat directions are lifted and the vacuum energy does not vanish any-
more. To put it in other words, the dilaton acquires mass.

To investigate the quantum fate of the classical symmetry-breaking vacua, one needs to com-
pute the Coleman-Weinberg (CW) effective potential [76]. Here, I will confine myself to the one-
loop level, since a possible uplifting of the flat vacua is visible already at this order.

The computation proceeds as follows. First, it is convenient to rescale the fields by
√

Nc to
make their kinetic terms canonical. To have the correct counting of Nc, the double trace terms
should be factorized by the introduction of auxiliary Lagrange multiplier fields A,B, . . . [77]; the
non-derivative part of the theory thus becomes

NcV/ξ̃
2 = tr

(
XZXZ

)
−A tr(X2)−A tr(X2)−B tr(Z2)−B tr(Z2)−C tr(XZ)−C tr(XZ)

−D tr(XZ)−D tr(XZ)+
2Nc

κ
AA+

2Nc

κ
BB+NcCC+NcDD .

(3.8)

Then, one expands the fields around a vacuum configuration

X = 〈X〉+δX , Z = 〈Z〉+δZ , (3.9)

where 〈X〉 and 〈Z〉 are arbitrary constant SU(Nc) matrices. The effective potential reads

Veff =V +V1−loop , (3.10)

where the one-loop correction is schematically given by

V1−loop ∝ tr
(

M4 log
M2

µ2

)
, (3.11)

with M the “mass matrix;” µ is the ’t Hooft-Veltman renormalization point.
The extrema of (3.10) are determined by requiring that the first derivatives of the potential

w.r.t. all the fields vanish. A detailed computation [1] reveals that a subclass of the asymmetric
classical vacua (3.4), (3.5), (3.7) is robust under quantum corrections. This corresponds to setting
A = B =C = D = 0, and imposing the following extra constraints on the matrix elements

Nc

∑
k=1

z2
k logzk =

Nc

∑
k=1

z̄2
k log z̄k = 0 . (3.12)

5
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Figure 2: (a) Diagrams at order ξ̃ 4 that would in principle contribute to the CW potential. A solid (dashed)
line stands for the excitations of X (Z), and “⊗⊗⊗” for the vev of Z. The absent antichiral vertices have been
marked with red. (b) A non-planar diagram with one cubic and one quartic vertex that should not be taken
into account in the evaluation of the effective potential.

The vacuum energy of the quantum corrected theory in this Coulomb branch is naturally zero,

Veff = 0 , (3.13)

or in other words, the dilaton continues being massless at the one-loop level, without finetunings.

It was already pointed out that the FCFT has inherited many of the vacua of its parent N =

4 SYM. Although by no means guaranteed, out of them there is a nontrivial subclass which is
singled out since they survive quantum corrections, see also Fig. 1.

Before moving on, it is worth pointing out yet another nontrivial feature of the FCFT: many
higher loop diagrams that can in principle spoil the flatness of the effective potential, are absent in
the planar limit. This is due to the constraints (3.5), (3.7), (3.12) that force them to vanish on the
top of the vacua under consideration. In addition, the non-Hermiticity/fixed chirality of the single-
trace interaction acts as a self-protection mechanism in the sense that the “antichiral” vertices that
would stem from the nonexistent tr(ZXZX) term are now absent. Consequently, another class of
dangerous diagrams, such as those presented in Fig. 2(a), cannot be constructed at all. It remains
to be understood whether the theory receives no multi-loop contributions at all.

Note, however, that the flatness of the effective potential may be spoiled due to the presence
of diagrams like the one of Fig. 2(b), which appears at the 1/N2

c order. In general, it would not
be surprising that some properties of the FCFT do not survive beyond the planar limit (or for
finite number of colors), even when the conformal symmetry is linearly realized. This is certainly
something that requires separate investigations.

3.3 Quantum vacua: an existence proof

It is instructive to actually present a simple example of a vacuum which satisfies the aforemen-
tioned constraints, so the flatness of potential is not ruined. Consider 〈X〉 = 0, while the expec-
tation value of the other field 〈Z〉 is an Nc×Nc block-diagonal matrix comprising Nc/4 diagonal

6
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sub-blocks each with dimensions 4×4, i.e.

〈Z〉= v

z1
z2

z3
z4

. . .
z1

z2
z3

z4




. (3.14)

With this ansatz, the set of the transcendental equations (3.5), (3.7), (3.12) admits the following
complex numerical solution

z1 =−0.587849−0.808971 i , z2 = 0.260305+1.45187 i ,

z3 = 1.32754−0.642903 i , z4 =−1 .
(3.15)

More (complicated) vacua can be constructed in a straightforward manner. For instance, one
can seek for solutions to eqs. (3.5), (3.7), (3.12) by considering bigger sub-blocks of the same
dimension, or even combinations of sub-blocks of different dimensionalities.

4. Conclusions

In the present talk I touched upon conformal symmetry breaking in the context of the FCFT.
As it hopefully became clear, this is a rather special theory for a variety of reasons.

First, the theory can accommodate nontrivial vacua without the burden of finetuning the cor-
responding coupling(s). This is in one-to-one with the dynamical generation of scales, while the
vacuum energy is zero, naturally.

Importantly, in the planar limit, the subclass of the classical asymmetric flat directions 〈X〉=
0, 〈Z〉 6= 0 given by (3.4) and subject to (3.5), (3.7) and (3.12), was shown to not be lifted by quan-
tum effects, at least at the one-loop order. In other words, the FCFT exhibits nonlinear realization
of exact quantum conformal symmetry.

Such unique features are the aftermath of: i) the model’s non-Hermiticity that translates into a
fixed orientation of the interaction vertices; ii) the fact that the considerations concern the large-Nc

limit; iii) the constraints (3.5), (3.7) and (3.12) on the flat directions.
Although the phenomenological relevance of the FCFT per se is not clear, the theory is an ideal

playground for studying the dynamics underlying the spontaneous breaking of quantum conformal
symmetry. For example, confronting it with the consistency conditions on the CFT data presented
in [78], may shed light on general properties shared also by realistic effective field theories (see
also footnote 2) exhibiting nonlinearly realized exact conformal invariance. This can be a step
towards understanding to what extent CFTs are in the heart of the solutions to the Standard Model
finetuning issues.

7
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