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1. Introduction

An appealing idea is that Einstein’s theory may not be fundamental, but induced by quantum
fluctuations of the matter content of the universe [1–7]. If this is the case, the dynamics of the
spacetime metric gµν is seen as an approximation of the dynamics of the underlying degrees of
freedom. The fundamental theory is assumed to be free of UV divergences, whereas the non-
renormalizability of gravity is just an artefact of the effective theory.

In some approaches of induced gravity, the metric is considered to be purely classical, a back-
ground field that acquires a kinetic term only through loop corrections of the matter fields [1–6].
However, this assumption leads to several drawbacks, one of which being the absence of natural
reason to impose the extremization of the effective action with respect ot gµν : The Einstein equa-
tions should be imposed by hand. Another reason is that gravitational higher derivative terms are
also generated, and it appears to be impossible to obtain finite results for the induced R2- and C2-
terms, whereR is the Ricci scalar and Cµνλω is the Weyl tensor. These four-derivative terms need
to be renormalized, which requires the existence of counterterms of the same form at tree-level.

In the present note, we consider infinite towers of matter fields (scalars, spinors and vectors)
that interact only with a four-dimensional spacetime metric, whose classical kinetic terms contain
exclusively four derivatives of the formR2 and C2. The full theory is renormalizable [8–11]. If the
matter fields can formally be seen as Kaluza-Klein (KK) states arising from a (4+n)-dimensional
theory, the metric has no KK excitations and only makes sense from the four-dimensional point of
view. We find that a cosmological constant Λind and a Newton constant Gind are induced by the
radiative corrections of the matter fields. They are finite and calculable from data of the underlying
fundamental theory, provided the numbers of towers satisfy some specific rule. Λind and Gind

remain predictable when quantum corrections of the gravitational degrees of freedom are taken
into account at the 1-loop level.

These results are derived in Sect. 2 using heat kernel methods [1, 12–15], and they are in
perfect agreement with Adler’s approach to induced gravity [2–6] we consider in Sect. 3. Further
details beyond the results presented here can be found in Ref. [16]

2. Induced gravitational terms from the heat kernel method

In this section, we first derive the effective gravitational couplings induced by the radiative
corrections associated with infinite numbers of real scalars, Weyl fermions and vectors fields. Then,
we will justify why the form of the induced effective action remains valid once quantum correction
in the gravitational sector are taken into account at 1-loop. The “matter” fields are organized in
towers of KK modes arising from a (4+n)-dimensional spacetime of the form M4×S1×·· ·×S1,
where the S1 circles have radii Ri, i ∈ {4, . . .3+ n}, and M4 is a four-dimensional spacetime of
metric gµν .1 The towers of states are labelled by an index u, such that

u ∈Φ≡ {1, . . . ,Nφ} for real scalar fields ,

u ∈Ψ≡ {Nφ +1, ...,Nφ +Nψ} for Weyl fermions ,

u ∈A ≡ {Nφ +Nψ +1, ...,Nφ +Nψ +NA} for vector bosons .

(2.1)

1Our convention for its signature is (−,+,+,+).
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For every tower u, the KK modes are labelled by ~m≡ (m4, ...,m3+n) ∈ Zn and their masses squared
are given by

Mu~m =
3+n

∑
i=4

(mi +Qui

Ri

)2
. (2.2)

In this expression, ~Qu is a real n-vector, whose components shift the KK momenta. From a (4+n)-
perspective, ~Qu is a charge vector under the Abelian isometries of the n circles.2 Even if this is
not compulsory, we will assume that ~Qu /∈ Zn for all u, so that no massless state belongs to the KK
spectrum.

The classical action of the full theory is

Stree = Sg +∑
u

Su(~Qu) , (2.3)

where Sg is a purely gravitational action and Su(~Qu) depends on the nature of the tower u. For
u ∈Φ, we have

Su(~Qu) =−
∫

d4x
√
−g

1
2 ∑

~m

[
gµν

∂µφu~m∂νφu~m +M2
u~mφ

2
u~m

]
, (2.4)

where φu~m is a real scalar. For u ∈Ψ, the action is

Su(~Qu) =
∫

d4x
√
−g

1
2 ∑

~m

[
i∇µ ψ̄u~mσ̄

µ
ψu~m− iψ̄u~mσ̄

µ
∇µψu~m−Mu~m

(
ψu~mψu~m + ψ̄u~mψ̄u~m

)]
, (2.5)

where the conventions for Weyl spinors we use are those of Ref. [17]. Finally, for u∈A, the action
of the tower of vector bosons Au~m is

Su(~Qu) =−
∫

d4x
√
−g ∑

~m

[1
4

gµρgνσ Fu~mµνFu~mρσ +
1
2

M2
u~m gµνAu~mµAu~mν

]
, (2.6)

where Fu~mµν ≡ ∂µAu~mν − ∂νAu~mµ is the field strength. In unitary gauge, the ghosts are infinitely
massive and do not need to be considered when computing radiative corrections.

Following Ref. [13], the 1-PI effective action in the semiclassical limit for gµν can be written
as

Seff = Stree +W , (2.7)

where W arises from the radiative corrections of the matter fields,

W =
i
2 ∑

u
(−1)F

∑
~m

lndet
[
(−D2

u +M2
u~m− iε)σ2

]
. (2.8)

In our notations, F = 0 for u ∈Φ∪A and F = 1 for u ∈Ψ, while D2
u is the kinetic operator of the

KK modes of the tower u and σ is an arbitrary length introduced for dimensional purpose. Using
the identity lndet = tr ln and the relation

ln(Kσ
2) =−

∫ +∞

ρ2

ds
s

e−isK− ln
[
ieγ

(
ρ

σ

)2]
+O(ρ2K) , (2.9)

2In that case, the towers should be combined in pairs in order to be complexified.
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kuΛ kuR kuR2 kuC2

tower u of real scalars 1 1
6

1
72

1
120

tower u of Weyl fermions 2 −1
6 0 − 1

40
tower u of massive vector bosons 3 −1

2
1
72

13
120

Table 1: Coefficients kuΛ, kuR, kuR2 and kuC2 appearing in Eq. (2.12) for each mode of the KK tower u.

which is valid for any complex number K having a small negative imaginary part −iε , we obtain

W =− i
2 ∑

u
(−1)F

∑
~m

tr
∫ +∞

ρ2

ds
s

e−is(−D2
u+M2

u~m−iε)+W1 ,

where W1 =
i
2 ∑

u
(−1)F

∑
~m

tr
(

ln
[
ieγ

(
ρ

σ

)2]
+O(ρ2(−D2

u +M2
u~m− iε))

)
.

(2.10)

Note that in W1, the term proportional to ln(ieγ(ρ/σ)2) cancels out when the number of bosonic
and fermionc towers are equal, Nφ +NA = Nψ . Indeed, we will impose later on this condition in
order to eliminate all divergencies occurring in the cosmological constant. Anticipating this fact,
and noticing that the contribution O(ρ2) vanishes in the UV limit ρ → 0, we discard from now on
the contribution W1. The relevant term in the expression of W can be computed thanks to the heat
kernel expansion [12–15]

− i
2

tre−is(−D2
u+M2

u~m−iε) =−1
2

∫
d4x
√
−g

e−is(M2
u~m−iε)

(4πs)2

+∞

∑
κ=0

(is)κauκ , (2.11)

where the auκ are functions of the local spacetime geometry. Dimensional analysis implies that
they contain 2κ derivatives. For the lower values of κ , we have

au0 = kuΛ ,

au1 = kuRR ,
√
−gau2 =

√
−g
[
kuR2R2 + kuC2 C2

]
+ total derivative ,

(2.12)

where R is the Ricci scalar and C2 ≡ CµνλωCµνλω , with Cµνλω the Weyl tensor. Moreover, the
coefficients appearing in the r.h.s., which depend on the nature of the KK modes, are given in
Table 1 [12, 13, 18, 19]. Finally, the total derivative, which contains in particular a contribution
proportional to the Gauss–Bonnet density, will not be considered in the following because it only
contributes as a constant to the action. Thus, W can be decomposed as

W =
∫

d4x
√
−g

+∞

∑
κ=0
Lκ ,

where Lκ(x) =
1

32π2 ∑
u
(−1)Fauκ(x)∑

~m

∫ +∞

ρ2
ids fuκ~m(is) ,

fuκ~m(is) = (is)κ−3 e−is(M2
u~m−iε) .

(2.13)

In order to compute radiative corrections of an infinite number of states, we make a choice of
prescription encountered in string theory. Namely, we first sum over the spectrum and then compute

3
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the Schwinger integral. The reason for this is that the sum over the spectrum may have a smoother
behavior than the contribution of each individual state. Applying this rule to the expressions of
the induced Langrangian densities Lκ , it is then legitimate to apply a Wick rotation, a change of
variable t = is, and to take the limit ρ → 0 to write

Lκ(x) =
1

32π2

∫ +∞

0
dt ∑

u
(−1)Fauκ(x)∑

~m
fuκ~m(t) , (2.14)

provided the integrand has no pole [16]. To see when this is the case, let us consider three cases:

• For κ ≥ 3, the function fuκ~m has no pole and the result is

∀κ ≥ 3 : Lκ =
Γ(κ−2)

32π2 ∑
u
(−1)F

∑
~m

1

M2(κ−2)
u~m

auκ . (2.15)

• For κ = 0,1, a Poisson summation over ~m leads to

∑
~m

fuκ~m(t) =
π

n
2

t3+ n
2−κ

(
∏

i
Ri

)
∑
~̀∈Zn

e−
π2
t ∑ j(` jR j)

2
e2iπ~Qu·~̀ , (2.16)

which has a pole only for ~̀ = 0. However, the latter is independent of the charge ~Qu. Hence
the sums over the towers u of all unwanted contributions ~̀=~0 in L0 and L1 are proportional
to

∑
u
(−1)FkuΛ and ∑

u
(−1)FkuR = 0 . (2.17)

Using Table 1, these coefficients vanish when the numbers of towers satisfy the conditions

Nφ −2Nψ +3NA = 0 , Nφ +Nψ −3NA = 0 , (2.18)

which admit the solutions

(Nφ ,Nψ ,NA) = (1,2,1)N , N ∈ N. (2.19)

In that case, the integrals over t can be computed term by term using the change of variable
t = π2

∑ j(` jR j)
2/l, and the result is

L0 ≡−
1

8π

Λind

Gind
=

Γ(2+ n
2)

32π6+ n
2

(
∏

i
Ri

)
∑
u
(−1)FkuΛ ∑

~̀ 6=~0

e2iπ~Qu·~̀(
∑ j `

2
jR

2
j

)2+ n
2
,

L1 ≡
1

8πGind

R
2

=
Γ(1+ n

2)

16π4+ n
2

(
∏

i
Ri

)
∑
u
(−1)FkuR∑

~̀ 6=~0

e2iπ~Qu·~̀(
∑ j `

2
jR

2
j

)1+ n
2

R
2
.

(2.20)

• For κ = 2, the Poisson summation leads again to a singular contribution ~̀ = 0. Summing
over u, the divergent coefficients of theR2 and C2 terms are proportional to

∑
u
(−1)FkuR2 and ∑

u
(−1)FkuC2 . (2.21)

4



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
1
8

Induced cosmological and Newton constants from towers of states Balthazar de Vaulchier

Upon using Table 1, vanishing of these coefficients amounts to satisfying the constraints

Nφ +NA = 0 , Nφ +3Nψ +13NA = 0 , (2.22)

which however have no solution. Thus, the Lagrangian density L2 is UV divergent and must
be renormalized thanks to tree-level R2 and C2 counterterms. As a consequence, the purely
gravitational classical action appearing in Eq. (2.3) is defined as [8, 9, 11]

Sg =
∫

d4x
√
−g
(
R2

f 2
0B
− C

2

f 2
2B

)
, (2.23)

where f 2
0B, f 2

2B are infinite bare couplings.

Collecting all our results, the semiclassical 1-PI effective action reads

Seff =
∫

d4x
√
−g

[
1

8πGind

(R
2
−Λind

)
+
R2

f 2
0
− C

2

f 2
2
+

+∞

∑
κ=3
Lκ +

Nφ+Nψ+NA

∑
u=1

Su(~Qu)

]
, (2.24)

where f 2
0 and f 2

2 are finite couplings to be determined by measurements.
Notice that at this stage, the gravitational fields are quantum degrees of freedom that have been

treated semiclassically. However, the above expression remains valid once radiative corrections in
the gravitational sector are taken into account at the 1-loop level. To understand why, notice that
when no matter is coupled to pure quadratic gravity, namely the theory of gravity where the kinetic
terms are of the form R2 and C2 only, no cosmological and Newton constants are generated at
the quantum level. This follows from the fact that scale invariance is a non-anomalous symmetry
of this theory [8–11, 20, 21]. In our case, though, quadratic gravity is coupled to towers of mat-
ter fields. However, because 1-loop Feynman diagrams arising from different particles are simply
added linearly to each other, we conclude that Eq. (2.24) continues to be true at this order. Nev-
ertheless, whether predictability of the induced cosmological and Newton constants is preserved
beyond 1-loop involving gravitational degrees of freedom is a question that is beyond the scope of
the present paper.

Before concluding this section, we would like to present the simplest example where finiteness
of the cosmological and Newton constants are achieved in our framework. This corresponds to
the case where N = 1 supersymmetry is spontaneously broken via implementation of a Scherk-
Schwarz mechanism [22] along n = 1 circle of radius R4. If all bosons have a universal charge, we
have

for u ∈Φ∪A : Qu = Q /∈ Z , for u ∈Ψ : Qu = Q+
1
2
. (2.25)

Using Eq. (2.20), we obtain

1
8π

Λind

Gind
=−N

Γ
(
5/2
)

4π
13
2

1
R4

4
∑
`

e2iπQ(2`+1)∣∣2`+1
∣∣5 ,

1
8πGind

= N
Γ(3/2)

24π
9
2

1
R2

4
∑
`

e2iπQ(2`+1)∣∣2`+1
∣∣3 . (2.26)

3. Induced Einstein action from Adler’s approach

An alternative approach to compute the induced gravitational couplings was developed by
Adler [2–6]. Instead of using a heat kernel expansion in derivatives, one may define the variation

5
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of the metric near a flat background and Taylor expand the effective action arising by integrating
out the massive fields. The two first coefficients of this expansion are the cosmological and Newton
constants, which can be expressed as

1
8π

Λind

Gind
=− 1

4
〈T (0)〉 ,

1
8πGind

=− i
48

∫
d4x x2 〈T̃ (x)T̃ (0)〉 .

(3.1)

In these formulas, T (x) is the trace of the stress-energy tensor of the massive fields to be inte-
grated out, T̃ (x) ≡ T (x)−〈T (x)〉, and the correlators of time-ordered operators are evaluated in
Minkowski spacetime. In the following, we derive in Adler’s framework the Einstein action in-
duced by Nφ , Nψ , NA KK towers of real scalar fields, Weyl fermions and vector bosons, and find
perfect agreement with the results of the previous section.

The traces in flat space of the stress-energy tensors of the towers of states can be derived from
the actions (2.4), (2.5) and (2.6):

Tφ (x) = − ∑
u∈Φ

∑
~m

[
∂µφu~m∂

µ
φu~m +2M2

u~mφ
2
u~m

]
,

Tψ(x) = ∑
u∈Ψ

∑
~m

[
3i
2

(
∂µ ψ̄u~mσ̄

µ
ψu~m− ψ̄u~mσ̄

µ
∂µψu~m

)
−2Mu~m

(
ψu~mψu~m + ψ̄u~mψ̄u~m

)]
,

TA(x) = − ∑
u∈A

∑
~m

M2
u~m Aµ

u~mAu~mµ .

(3.2)

The associated correlators involved in the cosmological term are

〈Tφ (0)〉= ∑
u∈Φ

∑
~m

[
iδ (4)(0)−M2

u~m ∆u~m(0)
]
,

〈Tψ(0)〉= ∑
u∈Ψ

∑
~m

[
−6iδ (4)(0)+2M2

u~m ∆u~m(0)
]
,

〈TA(0)〉= ∑
u∈A

∑
~m

[
iδ (4)(0)−3M2

u~m ∆u~m(0)
]
,

(3.3)

where ∆u~m(x− y) is the Feynman propagator of a real scalar field of mass squared M2
u~m, while the

δ (4)-functions at x = 0 are infinite constants that contain no physical information and are harmless.
One way to see this is to consider an equivalent definition of the classical theory that includes
non-dynamical real scalar fields. The action associated with an infinite number of such fields D~m is

Snon-dyn =
∫

d4x
√
−g ∑

~m

1
2

D2
~m , (3.4)

which yields an extra contribution to the previous correlators equal to ∑~m 2iδ (4)(0). Because we
can choose the number of such towers so that all terms of this form cancel out [16], we will discard
all δ (4)-functions from now on. In order to compute the pieces of the correlators that involve the
propagators, we follow a prescription inspired by what is commonly done in string theory:

• We apply a Wick rotation and switch to first quantized formalism by introducing a Schwinger
parameter t,

∆u~m(x)≡−i
∫ d4k

(2π)4
eik·x

k2 +M2
u~m− iε

=
∫ d4kE

(2π)4

∫ +∞

0
dt e−k2

Et+ikE·xEe−M2
u~mt . (3.5)

6
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• We compute the Gaussian integral over the Euclidean momentum kE.

• We perform a Poisson summation on the KK momentum ~m.

• Adding the contributions of all KK towers, the divergent terms (labelled by ~̀ =~0 as in the
previous section) cancel out provided the condition (2.19) is fulfilled.

• All other contributions ` 6=~0 can be integrated term by term over t.

Applying this procedure, we find that the induced cosmological constant obtained by adding the
contributions of the integrated out scalars, fermions and gauge bosons is

1
8π

Λind

Gind

∣∣∣
φ

+
1

8π

Λind

Gind

∣∣∣
ψ

+
1

8π

Λind

Gind

∣∣∣
A
= ∑

u∈Φ

I′0(~Qu)−2 ∑
u∈Ψ

I′0(~Qu)+3 ∑
u∈A

I′0(~Qu) , (3.6)

where we have defined

I′0(~Q) =−
Γ(2+ n

2)

32π6+ n
2

(
∏

i
Ri

)
∑
~̀ 6=~0

e2iπ~Q·~̀(
∑ j `

2
jR

2
j

)2+ n
2
. (3.7)

This result is in agreement with what we found in Eq. (2.20).

The derivation of the gravitational constant is more involved. The relevant correlators are
expressed as

〈T̃φ (x)T̃φ (0)〉= 2 ∑
u∈Φ

∑
~m

[
∂µ∂ν∆u~m(x)∂

µ
∂

ν
∆u~m(x)+4M2

u~m∂µ∆u~m(x)∂
µ

∆u~m(x)+4M4
u~m∆u~m(x)2

]
,

〈T̃ψ(x)T̃ψ(0)〉= ∑
u∈Ψ

∑
~m

[
−9
(
�∆u~m(x)

)2
+9∂µ∆u~m(x)∂ µ�∆u~m(x)+39M2

u~m∆u~m(x)�∆u~m(x)

−7M2
u~m∂µ∆u~m(x)∂ µ

∆u~m(x)−32M4
u~m∆u~m(x)2],

〈T̃A(x)T̃A(0)〉= 2 ∑
u∈A

∑
~m

[
∂µ∂ν∆u~m(x)∂

µ
∂

ν
∆u~m(x)−2M2

u~m∆u~m(x)∂ 2
∆u~m(x)+4M4

u~m∆u~m(x)2
]
,

(3.8)
which yield accordingly contributions given by

1
8πGind

∣∣∣
φ

= ∑
u∈Φ

[
I1(~Qu)+ I2(~Qu)+ I3(~Qu)

]
,

1
8πGind

∣∣∣
ψ

= ∑
u∈Ψ

[
I4(~Qu)+ I5(~Qu)+ I6(~Qu)−

7
8

I2(~Qu)−4I3(~Qu)
]
,

1
8πGind

∣∣∣
A
= ∑

u∈A

[
I1(~Qu)−

4
39

I6(~Qu)+ I3(~Qu)
]
,

(3.9)
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where we have defined the integrals

I1(~Qu) =
i

24(2π)8

∫
d4x x2

∑
~m

∫
d4 pd4k

(p · k)2 ei(p+k)·x(
p2 +M2

u~m− iε
)(

k2 +M2
u~m− iε

) ,
I2(~Qu) = −

i
6(2π)8

∫
d4x x2

∑
~m

M2
u~m

∫
d4 pd4k

p · k ei(p+k)·x(
p2 +M2

u~m− iε
)(

k2 +M2
u~m− iε

) ,
I3(~Qu) =

i
6(2π)8

∫
d4x x2

∑
~m

M4
u~m

∫
d4 pd4k

ei(p+k)·x(
p2 +M2

u~m− iε
)(

k2 +M2
u~m− iε

) , (3.10)

I4(~Qu) = −
3i

16(2π)8

∫
d4x x2

∑
~m

∫
d4 pd4k

p2 k2 ei(p+k)·x(
p2 +M2

u~m− iε
)(

k2 +M2
u~m− iε

) ,
I5(~Qu) =

3i
16(2π)8

∫
d4x x2

∑
~m

∫
d4 pd4k

p2 (p · k) ei(p+k)·x(
p2 +M2

u~m− iε
)(

k2 +M2
u~m− iε

) ,
I6(~Qu) = −

13i
16(2π)8

∫
d4x x2

∑
~m

M2
u~m

∫
d4 pd4k

p2 ei(p+k)·x(
p2 +M2

u~m− iε
)(

k2 +M2
u~m− iε

) .
These quantities can be computed by following the procedure described in the derivation of the cos-
mological constant, up to additional Gaussian integratials over the Euclidean spacetime point xE.
The results are

I1(~Q) = −
Γ
(
1+ n

2

)
32π4+ n

2

(
∏

i
Ri

)
∑
~̀

e2iπ~Q·~̀(
∑ j `

2
jR

2
j

)1+ n
2
,

I2(~Q) = − 4
3

I1(~Q) , I3(~Q) = 0 , I4(~Q) = 0 , I5(~Q) =−3
2

I1(~Q) , I6(~Q) = 0 ,

(3.11)

where all ill-defined terms ~̀ =~0 must cancel one another by the interplay between the towers of
KK modes. Because this turns out to be the case when Eq. (2.19) is satisfied, the contributions
induced by integrating out the scalars, fermions and gauge bosons to the Newton’s constant add up
to yield the finite result

1
8πGind

∣∣∣
φ

+
1

8πGind

∣∣∣
ψ

+
1

8πGind

∣∣∣
A
=−1

3 ∑
u∈Φ

I′1(~Qu)−
1
3 ∑

u∈Ψ

I′1(~Qu)+ ∑
u∈A

I′1(~Qu) , (3.12)

where I′1(~Q) is defined as I1(~Q), with the pathological term ~̀=~0 removed. As was the case for the
cosmological constant, this result agrees with that found from the heat kernel method, Eq. (2.20).
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