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We introduce a phase space with spinorial momenta, corresponding to fermionic derivatives, for a
2d supersymmetric (1,1) sigma model. We show that there is a generalisation of the covariant De
Donder-Weyl Hamiltonian formulation on this phase space with canonical equations equivalent
to the Lagrangian formulation, find the corresponding multisymplectic form and Hamiltonian
multivectors. The covariance of the formulation makes it possible to see how additional non-
manifest supersymmetries arise in analogy to those of the Lagrangian formulation.
We then observe that an intermediate phase space Lagrangian defined on the sum of the tangent
and cotanget spaces is a first order Lagrangian for the sigma model and derive additional super-
symmetries for this.
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1. Introduction

In [1] and [2] generalised sigma models with additional auxiliary coordinates resembling
spinorial momenta were investigated. Additional supersymmetries were expected to correspond
to Generalised Geometry. In particular it was hoped that the Gualtieri map from bihermitean to
Generalised Kähler geometry, known from [3] would emerge. The analysis in the Lagrangian for-
malism was difficult and only partial results, such as the relation for (1,0) models, were obtained.
The explicit map from sigma models to Generalised Kähler Geometry, yielding the Gualtieri map
as a necessesary and sufficient condition for (2,2) supersymmetry, was first derived in [4] using
a Hamiltonian formulation. It may therefore be of some interest to further reformulate the (1,1)
sigma model in a covariant Hamiltonian form which lends itself to interpretation in a generalised
tangent space. The third section of this contribution contains a starting point for such a formula-
tion. The Legendre transformation involved in such a formulation naturally suggests a first order
formulation of the theory where additional supersymmetries can be studied. The fourth section
reports on the results of this study.

2. The sigma model Lagrangian

We shall be interested in the sigma model∫
d2

ξ dθ
+dθ

−L =
∫

Σ

d2
ξ dθ

+dθ
−(D+φ

iEi j(φ)D−φ
j) , (2.1)

where

Ei j = (E(i j)+E[i j]) := Gi j +Bi j . (2.2)

The coordinates on the 2d superspace domain Σ are the bosonic light cone coordinates (ξ++,ξ=)

and the spinorial coordinates (θ+,θ−), while φ = φ(ξ++,ξ=,θ+,θ−) are superfields and the
spinorial and bosonic derivatives D± and ∂

++
=

obey

D2
± = i∂

++
=
. (2.3)

The field equations that result from varying the action (2.1) are

∇
(+)
+ D−φ

i = 0 , (2.4)

where the the Levi-Civita connection Γ(0) has been augmented by torsion1

Γ
(±) k

i j = Γ
(0) k

i j ± 1
2 Hi jmGmk , (2.5)

and

Hi jm := Bi j,m + cycl. (2.6)

1Gi jG jk = δ i
k
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3. The sigma model De Donder-Weyl Hamiltonian

For bosonic field theories there is an alternative formulation to Lagrangian field theories where
one introduces a momentum dual to each derivative of the field, spacelike as well as timelike. A
De Donder-Weyl Hamiltonian HDW is introduced via Legendre transforms and the evolution is then
given by its canonical equations, the De Donder-Weyl equations [5] [6]-[10]. We now modify and
apply those ideas to N=(1,1) superspace.

It was observed in [1] that a first order action for (2.1) can be found if we define the spinorial
“momenta” S± 2

S±i =
∂L

∂D±φ i . (3.1)

We find

S+i = Ei jD−φ
j

S−i =−D+φ
jE ji . (3.2)

From (3.2), it follows that ∇+S−i−∇−S+i ∼ ∇(B∇φ), and hence ∇+S+i =−∇−S−i when B = 0, a
result sometimes needed in what follows.

Letting α := (+,−), a Legendre transformation Dφ±→ S± is given by

Sα
i Dαφ

i +L , (3.3)

together with (3.1) and yields

HDW = S−i E i jS+j , (3.4)

with E i jE jk = δ i
k. Notice that, unlike the usual Hamiltonian, HDW is still fully (1,1) superpoincaré

covariant.
The above formulation represents a model on the sum two copies of the cotangent space T∗⊕

T∗. If we extend it by including a copy of the Lagrangian in (2.1) we have a model on T⊕
T∗⊕T∗. which may be used to study generalised geometry. In Sec.4 below we find its extended
supersymmetries. Before turning to these, however, it is worth making a few more comments on
the covariant formalism, leaving the details for a future publication [12].

3.1 The equivalence

In analogy to the usual Canonical equations for a Hamiltonian, we consider the following

Dαφ
i =

∂HDW

∂Sα
i

DαSα
i =

∂HDW

∂φ i . (3.5)

We shall call this set of equations the De Donder-Weyl equations for the N =(1,1) sigma model.
The two first equations yield the expressions (3.1) for the momenta. When inserted in the third
equation, the field equation (2.4) is recovered. In other words, the system (3.5) is an equivalent
formulation of the evolution.

2The functional derivative is taken to act from the left. The first order action will appear in Sec.4.
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3.2 A multisymplectic form and Hamiltonian multivector

In this and the following subsection, we closely follow and adapt the bosonic case as described
in [7].

The bosonic DW equations corresponding to (3.4) can are related to the existence of a multi-
symplectic form Ω and a Hamiltonian multivector field X such that

Xy Ω = dHDW (3.6)

For a n dimensional underlying manifold, i.e., for the case of n momenta, and with HDM a scalar,
Ω is an n+1 form and X a n−vector.

For the case of two fermionic momenta, we look for an analogous formula.The two-vector is

X = XM1M2∂M1 ∧∂M2 → XAα
∂A∧Eα , (3.7)

where M runs over (A,α), the antisymmetrisation is graded and the index A = (α
i ,

j) corresponding
to Sα

i and φ j and EM = (∂A ,Eα). The multisympletic form is

Ω :=Cαβ Eβ ∧dφ
i∧dSα

i . (3.8)

Using (3.7) and (3.8) in (3.6) results in the relations

X i
α =

∂HDW
∂Sα

i

X β

iβ =
∂HDW

∂φ i . (3.9)

The solution

X i
α = Dαφ

i

X β

iβ = Dβ S β

i (3.10)

reproduces the De Donder-Weyl equations (3.5).

3.3 A generalised Poisson bracket and conjugate momenta

Given the multisymplectic form Ω, in the purely even case it is possible to relate it to a gener-
alised Poisson bracket { , }GP. For n−1 forms F = Fµdxµ with Hamiltonian multivector XF

XFy Ω = dF (3.11)

the bracket with H is

{F,H}GP = (−)n−1XFy dH (3.12)

Using the DW equations, this means that

?−1dF = {F,H}GP , (3.13)

3
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on the motion. Here ? is the Hodge dual. It follows that {F,H}GP = 0 for conserved quantities.
In the present superspace case we note that (3.13) leads to the one forms Qi

α := φ iEα and
Si := Sα

i Eα satisfying

?−1dQi
α = {Qi

α ,H}GP = ∂
i
αHDW ,

?−1dSi = {Si,H}GP = ∂iHDW . (3.14)

It also leads to φ i and Si being conjugate quantities

{φ i,S j}GP = δ
i
j . (3.15)

Here we leave the brief introduction of a covariant supersymmetric Hamiltonian theory, except for
a comment at the end of Sec.4, and return to the question of symmetries.

4. Additional supersymmetries

The action (2.1) has additional non-manifest supersymmetries

δφ
i = ε

+Ji
(+) jD+φ

j + ε
−Ji

(−) jD−φ
j (4.1)

provided that J(±) are complex structures that preserve the metric (hermiticity)

Jt
(±)GJ(±) = G (4.2)

and

∇
(±)
i J(±) = 0 , (4.3)

with connections defined in (2.5) and (2.6) [11].
We note the simple fact that the transformations (4.1) translate into transformations for the

momenta S±i using (4.1) and the relations (3.2). For the plus-supersymmetry with parameter ε+

this gives

δS+i = Eik∇
(+)
− δφ

k +E jsS+s
(

Ei j,k−EilΓ
(+)l
jk

)
δφ

k

δS−i =−∇
(+)
+ δφ

kEki +S−s Es j
(

E ji,k−Γ
(+)l
jk Eli

)
δφ

k (4.4)

where

δφ
k =−ε

+Jk
(+)lE

lmS−m . (4.5)

When B = 0, (4.4) and (4.5) imply

δS+i = ε
+
(

J k
i ∇−S−k − JksS−s S+n Γ

n
ki

)
δS−i =−ε

+
(

J k
i ∇+S−k + JksS−s S−n Γ

n
ki

)
(4.6)

These transformations leave the action (2.1) invariant and close to a supersymmetry algebra. The
results generalize to B 6= 0 and inclusion of the minus transformations.
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5. A first order system

We notice that there is an intermediate “phase space Lagrangian” on T⊕T∗:

−Sα
i Dαφ

i +S−i E i j(φ)S+j , (5.1)

giving the first order (parent) action for (2.1) derived in [1]. Alternatively we think of it as the
Legendre transformation inverse to (3.3). To this we may add any amount µ of the Lagrangian in
(2.1). Consider

µD+φ
iEi jD−φ

j−Sα
i Dαφ

i +S−i E i j(φ)S+j =: ZtEZ , (5.2)

where

Zt = (D+φ
i,D−φ

i,S−i ,S
+
i ) (5.3)

and

E :=


0 µEi j 0 0
0 0 0 0
0 −δ i

j 0 −E i j

−δ i
j 0 0 0

 (5.4)

This is the kind of action which was investigated in [1] and [2] for additional supersymmetries.
Here we note that the µ term is invariant under the variations δφ i in (4.1). Considering the ε+

transformations only, the variations of S given in (4.4) with this δφ i, make the remaining terms
invariant.
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