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Exponentially suppressed cosmological constant and enhanced gauge symmetry Sota Nakajima

1. Introduction

String theory can give the descriptions of all the observed matters and interactions includ-
ing gravity and has been explored to answer a lot of questions about fundamental physics. For
theoretical and phenomenological reasons, most works focused on string theories with spacetime
supersymmetry (SUSY) and compactified them, preserving SUSY by Calabi-Yau manifolds or
orbifolds [1–3]. However, since the LHC experiment suggests that there is no SUSY in the multi
TeV scale, the scenario that SUSY is already broken at very high energy such as string/Planck
scale has been brought to attention. In particular, the constructions of realistic models such as the
Standard(-like) Model directly from non-supersymmetric string theories [4, 5] have been studied.
Although it is natural to consider non-supersymmetric string phenomenology, we will be faced with
some difficulties in such top-down approaches. One of them is the problem of vacuum instabili-
ties causing by non-vanishing dilaton tadpoles. In general, the vacuum energies (the cosmological
constants) give a nonzero value without SUSY since there are no cancellations between fermionic
and bosonic states at each energy level. Consequently, the dilaton tadpoles, which are proportional
to the cosmological constants, are non-vanishing and give rise to the serious vacuum instabilities.
In order to discuss non-supersymmetric string phenomenology, therefore, the good starting points
are non-supersymmetric string models whose cosmological constants are sufficiently small.

While some constructions of non-supersymmetric string models with small or zero cosmolog-
ical constants have been proposed, we adopt, in this talk, the interpolating models [6] as a clue to
fix the problem of the vacuum instabilities. The interpolating models are constructed by the coordi-
nate dependent compactification (CDC) [7, 8] which is the stringy version of the Scherk-Schwartz
compactification [9], and the partition function of 9D interpolating models is, in general, written as
the following form [10]:

Z(9)
int =

1
2

Z(7)
B

{
Λ0,0

(
Z+
+ +Z+

−
)
+Λ1/2,0

(
Z+
+ −Z+

−
)

+Λ0,1/2
(
Z−+ +Z−−

)
+Λ1/2,1/2

(
Z−+ −Z−−

)}
, (1.1)

where Z(N)
B = τ−N/2

2 (ηη̄)−N is the contributions from bosonic string coordinates in spacetime di-
mensions, Z±± is those from fermionic string coordinates1, and Λα,β is the momentum lattice de-
fined as

Λα,β = (ηη̄)−1 ∑
n∈2(ZZZ+α)

∑
w∈ZZZ+β

q
α ′
2 p2

L q̄
α ′
2 p2

R = (ηη̄)−1 ∑
n∈2(ZZZ+α)

∑
w∈ZZZ+β

q
1
4 (na+w/a)2

q̄
1
4 (na−w/a)2

, (1.2)

with a dimensionless inverse radius a =
√

α ′/R. In order for Z(9)
int to be modular invariant, the

following relations must be satisfied:

Z+
+ (τ) = Z+

+ (−1/τ) , Z−− (τ) = Z−− (−1/τ) , Z−+ (τ) = Z+
− (−1/τ) . (1.3)

We can check that the behaviors of Λα,β in the limits a→ 0 and a→ ∞ are respectively

Λα,β →
1

2a
Z(1)

B δβ ,0, Λα,β → aZ(1)
B δα,0. (1.4)

1In heterotic strings, Z±± contains rank 16 current algebras. But, they can be regarded as fermionic string coordinates
by fermionization.
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Then, we obtain, in each limit, the two endpoint 10D models M1 and M2 whose partition functions
are written as respectively

ZM1 = Z(8)
B Z+

+ , ZM2 =
1
2

Z(8)
B

(
Z+
+ +Z+

− +Z−+ +Z−−
)
. (1.5)

While model M1 and M2 are related discretely by a ZZZ2 twist Q : Z±+ → Z±− , they can be connected
continuously through Z(9)

int with a continuous parameter a. In this sense, 9D string models whose
partition functions are written as (1.1) interpolate between two different 10D string models. In
particular, if model M1 is supersymmetric and model M2 is non-supersymmetric, then the cosmo-
logical constant of the interpolating model at one-loop level can be written as [6, 11]

Λ(9) = (nF −nB)ξ a9 +O(e−1/a), a≈ 0 (1.6)

where nF and nB are the degrees of freedom of massless fermions and massless bosons respectively.
Namely, in string models that interpolate from supersymmetric models to non-supersymmetric
models, the cosmological constants are exponentially suppressed in the region where SUSY is
asymptotically restoring if nF = nB. Such models are referred to as super no-scale models and
preferred in order to investigate non-supersymmetric string phenomenology [12–22].

Interpolating models can be deformed by turning on constant backgrounds because they are
constructed by compactifying higher-dimensional models. Heterotic string models d-dimensional
compactified have the freedom of the deformations which are represented by the coset

SO(16+d,d)
SO(16+d)×SO(d)

. (1.7)

These deformations are realized by adding the following terms to the world-sheet action [23, 24]:

AIi

∫
d2z∂X I

L∂̄X i
R +C ji

∫
d2z∂X j

L ∂̄X i
R, (1.8)

for I = 1, · · · ,16, i, j = 10−d, · · · ,9, where the constant AIi corresponds to the background gauge
fields (Wilson lines) and the constant C ji is decomposed into metric g ji and antisymmetric tensor
B ji. In this talk, we set, for simplicity, A9

1 = A and A9
I ̸=1 = 0, and consider 9D interpolating models

deformed by one Wilson line. For detail of this proceeding, please refer to Ref. [25]. The 9D
interpolating models deformed by the complete set of Wilson lines and the moduli space are studied
in Ref. [26], which is our current work.

2. Two examples of interpolations

In this talk, we focus on two interpolations between the following 10D string models:

• Model I: SUSY SO(32) model←→ SO(16)×SO(16) model

• Model II: SUSY E8×E8 model←→ SO(16)×SO(16) model
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In Model I, the partition functions of the endpoint models M1 and M2 are respectively written
as follows:

ZM1 = Z(8)
B

(
V̄8− S̄8

)
(O16O16 +V16V16 +S16S16 +C16C16) , (2.1)

ZM2 = Z(8)
B

{
Ō8 (V16C16 +C16V16)+V̄8 (O16O16 +S16S16)

−S̄8 (V16V16 +C16C16)−C̄8 (O16S16 +S16O16)
}
, (2.2)

where (O2n,V2n,S2n,C2n) are the SO(2n) characters defined as(
O2n

V2n

)
≡ 1

2ηn

(
ϑ n

[
0
0

]
(0,τ)±ϑ n

[
0

1/2

]
(0,τ)

)
, (2.3)(

S2n

C2n

)
≡ 1

2ηn

(
ϑ n

[
1/2

0

]
(0,τ)±ϑ n

[
1/2
1/2

]
(0,τ)

)
. (2.4)

Note that the products of the theta functions in the above characters imply the sums over the zero
modes of internal bosonic string coordinates from the viewpoint of bosonization. According to
(1.1), the partition function of Model I is

Z(9)
int = Z(7)

B

{
Λ0,0

(
V̄8 (O16O16 +S16S16)− S̄8 (V16V16 +C16C16)

)
+Λ0,1/2

(
Ō8 (V16C16 +C16V16)−C̄8 (O16S16 +S16O16)

)
+Λ1/2,0

(
V̄8 (V16V16 +C16C16)− S̄8 (O16O16 +S16S16)

)
+Λ1/2,1/2

(
Ō8 (O16S16 +S16O16)−C̄8 (V16C16 +C16V16)

)}
.

(2.5)

We can obtain the spectrum at the mass level N by expanding the partition function in q and figuring
out the coefficients of (qq̄)N . For example, the massless spectrum of Model I is

• the nine-dimensional gravity multiplet: graviton Gµν , anti-symmetric tensor Bµν , dilaton ϕ ;

• the gauge bosons transforming in the adjoint representation of SO(16)×SO(16)×U(1)2;

• a spinor transforming in the (111666,111666) of SO(16)×SO(16).

Note that the Abelian factors U(1)2 are generated by Gµ9 and Bµ9. In Model I, therefore, nF−nB =

64, which means that the cosmological constant (1.6) is positive in the small-a region.
In Model II, the partition function of model M2 is the same as in Model I, and that of model

M1 is

ZM1 = Z(8)
B Z+

+ = Z(8)
B

(
V̄8− S̄8

)
(O16 +S16)(O16 +S16) . (2.6)

Then, the partition function of this interpolating model is

Z(9)
int = Z(7)

B

{
Λ0,0

(
V̄8 (O16O16 +S16S16)− S̄8 (O16S16 +S16O16)

)
+Λ1/2,0

(
V̄8 (O16S16 +S16O16)− S̄8 (O16O16 +S16S16)

)
+Λ0,1/2

(
Ō8 (V16C16 +C16V16)−C̄8 (V16V16 +C16C16)

)
+Λ1/2,1/2

(
Ō8 (V16V16 +C16C16)−C̄8 (V16C16 +C16V16)

)}
.

(2.7)

The massless spectrum of this model is

3
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• the nine-dimensional gravity multiplet: graviton Gµν , anti-symmetric tensor Bµν , dilaton ϕ ;

• the gauge bosons transforming in the adjoint representation of SO(16)×SO(16)×U(1)2;

• a spinor transforming in the (111222888,111)⊕ (111,111222888) of SO(16)×SO(16).

In Model II, nF −nB = 64 as well as in Model I.
We can obtain the additional massless states if the parameter a is adjusted appropriately. There

are, however, no values of a such that nF −nB = 0, in both interpolating models.

3. Deformation by one Wilson line

Let us deform the interpolating models by adding the following term to the world-sheet action:

A
∫

d2z∂X I=1
L ∂̄X i=9

R . (3.1)

This term only affects the quantization of string zero modes since it is a total derivative. The left-
and right-moving internal momenta ℓL(= ℓI=1

L ), pL(= pi=9
L ) and pR(= pi=9

R ) are boosted as follows:

ℓ′L =
1√
2α ′

(√
2m−2A

w
a0

)
, (3.2)

p′L =
1√
2α ′

(√
2Am+a0n+

(
1−A2) w

a0

)
, (3.3)

p′L =
1√
2α ′

(√
2Am+a0n−

(
1+A2) w

a0

)
, (3.4)

where a0 ≡
√

1+A2a. It is convenient to introduce a complex parameter t defined as

t = t1 + it2 =
1√
2

Aa−1
0 +

i√
2

a−1
0 . (3.5)

Then, the above momenta are rewritten as

ℓ′L =
1√
α ′

(m−2t1w) , (3.6)

p′L =
1√
α ′

t−1
2

(
t1m+

n
2
− (t2

1 − t2
2)w
)
, (3.7)

p′R =
1√
α ′

t−1
2

(
t1m+

n
2
− (t2

1 + t2
2)w
)
. (3.8)

In the partition function, the momentum lattice and a theta function in one of the two left-moving
SO(16) characters are convoluted as follows:

Λα,β


ϑ

[
γ
δ

]
η


8

→ Λ(α,β )
(γ,δ ) (t1, t2)


ϑ

[
γ
δ

]
η


7

, (3.9)
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where Λ(α,β )
(γ,δ ) is a SO(2,1) momentum lattice defined as

Λ(α,β )
(γ,δ ) (t1, t2)≡ (ηη̄)−1 η−1 ∑

n,w,m
(−1)2mδ q

α ′
2 (p′2L +ℓ′2L )q̄

α ′
2 p′2R , (3.10)

for n ∈ ZZZ+α , w ∈ 2(ZZZ+β ), m ∈ ZZZ+ γ . We can check that the lattice Λ(α,β )
(γ,δ ) is invariant under the

shift
t→ t +2. (3.11)

Therefore, the fundamental region of the moduli space is

−1 < t1 ≤ 1, t2 ≥ 0. (3.12)

3.1 Model I with one Wilson line

Applying (3.9) to (2.5), the partition function of Model I deformed by the Wilson line is

Z(9)
int (t1, t2) = Z(7)

B

{
V̄8

(
O(0,0)

16 O16 +S(0,0)16 S16

)
− S̄8

(
V (0,0)

16 V16 +C(0,0)
16 C16

)
+V̄8

(
V (1/2,0)

16 V16 +C(1/2,0)
16 C16

)
− S̄8

(
O(1/2,0)

16 O16 +S(1/2,0)
16 S16

)
+Ō8

(
V (0,1/2)

16 C16 +C(0,1/2)
16 V16

)
−C̄8

(
O(0,1/2)

16 S16 +S(0,1/2)
16 O16

)
+Ō8

(
O(1/2,1/2)

16 S16 +S(1/2,1/2)
16 O16

)
−C̄8

(
V (1/2,1/2)

16 C16 +C(1/2,1/2)
16 V16

)}
,

(3.13)

where
(

O(α,β )
2n ,V (α,β )

2n ,S(α,β )
2n ,C(α,β )

2n

)
are defined by(

O(α,β )
2n

V (α,β )
2n

)
≡ 1

2ηn−1

(
Λ(α,β )
(0,0) ϑ n−1

[
0
0

]
(0,τ)±Λ(α,β )

(0,1/2)ϑ
n−1

[
0

1/2

]
(0,τ)

)
, (3.14)(

S(α,β )
2n

C(α,β )
2n

)
≡ 1

2ηn−1

(
Λ(α,β )
(1/2,0)ϑ

n−1

[
1/2

0

]
(0,τ)±Λ(α,β )

(1/2,1/2)ϑ
n−1

[
1/2
1/2

]
(0,τ)

)
. (3.15)

Let us see the massless spectrum of this model. At generic points in the moduli space, the
massless spectrum is

• the nine-dimensional gravity multiplet: graviton Gµν , anti-symmetric tensor Bµν , dilaton ϕ ;

• the gauge bosons transforming in the adjoint representation of SO(16)×SO(14)×U(1)3;

• a spinor transforming in the (111666,111444) of SO(16)×SO(14).

Note that the gauge symmetry is partially broken because of the deformation by the Wilson line.
We can find special points in the moduli space where the additional massless states appear. In this
talk, we assume that t2 is fixed at a large value such that the formula (1.6) is valid and consider the
one-dimensional moduli space characterized by t1. At the points t1 = 0,1, the following massless
states are found in addition to the above massless states:

• two vectors transforming in the (111,111444) of SO(16)×SO(14);

5
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• two spinors transforming in the (111666,111) of SO(16)×SO(14).

As a result, on these points, the gauge symmetry is enhanced to SO(16)× SO(16)2 and a spinor
transforming in the (111666,111666) of SO(16)×SO(16) becomes massless. Note that the massless spec-
trum at the points is the same as in the no Wilson line case in section 2. The other special points in
the moduli space are t1 =±1/2, where the following states become massless:

• two vectors transforming in the (111666,111) of SO(16)×SO(14);

• two spinors transforming in the (111,111444) of SO(16)×SO(14).

At these points, therefore, the gauge symmetry is enhanced to SO(18)× SO(14) and a massless
spinor transforms in the (111888,111444) of SO(18)×SO(14). Note that nF−nB = 0 at these points, which
means that the cosmological constant is exponentially suppressed.

3.2 Model II with one Wilson line

The partition function of Model II deformed by the Wilson line is

Z(9)
int = Z(7)

B

{
V̄8

(
O(0,0)

16 O16 +S(0,0)16 S16

)
− S̄8

(
O(0,0)

16 S16 +S(0,0)16 O16

)
+V̄8

(
O(1/2,0)

16 S16 +S(1/2,0)
16 O16

)
− S̄8

(
O(1/2,0)

16 O16 +S(1/2,0)
16 S16

)
+Ō8

(
V (0,1/2)

16 C16 +C(0,1/2)
16 V16

)
−C̄8

(
V (0,1/2)

16 V16 +C(0,1/2)
16 C16

)
+Ō8

(
V (1/2,1/2)

16 V16 +C(1/2,1/2)
16 C16

)
−C̄8

(
V (1/2,1/2)

16 C16 +C(1/2,1/2)
16 V16

)}
.

(3.16)

For generic points in the moduli space, the massless spectrum of this model is

• the nine-dimensional gravity multiplet: graviton Gµν , anti-symmetric tensor Bµν , dilaton ϕ ;

• the gauge bosons transforming in the adjoint representation of SO(16)×SO(14)×U(1)3;

• a spinor transforming in the (111222888,111) of SO(16)×SO(14).

As well in Model I, there are some special points in the moduli space. One of them is t1 = 0, which
corresponds to the no Wilson line case in section 2, and the additional massless states are

• two vectors transforming in the (111,111444) of SO(16)×SO(14);

• two spinors transforming in the (111,666444) of SO(16)×SO(14).

Of course, the total massless states agree with those in the no Wilson line case. On the other hand,
at the point t1 = 1, all the additional massless states are vectors;

• two vectors transforming in the (111,111444) of SO(16)×SO(14);

• two vectors transforming in the (111,666444) of SO(16)×SO(14).

2Although we often omit the Abelian factors, there is the product of U(1)’s so that the total rank of the gauge
symmetry is eighteen.
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Then, the gauge symmetry is enhanced to SO(16)×E8. Another special points are t1 =±1/2; At
the points, we find the following additional massless states:

• two spinors transforming in the (111,111444) of SO(16)×SO(14).

So, the gauge symmetry remains SO(16)×SO(14) and a massless spinor transforms in the (111222888,111)⊕
(111,111444) in SO(16)×SO(14) at the points t1 =±1/2.

Note that all the above massless states including the additional ones have zero winding num-
bers. We are not interested in nonzero winding states which are suppressed in the small-a region.
In Ref. [25], however, we have found special orbits in the two-dimensional moduli space charac-
terized by t1 and t2 on which the additional massless states with nonzero winding numbers appear.

3.3 The cosmological constants

The cosmological constant is defined as the integral of the partition function over the funda-
mental region of the modular group:

Λ(D) =−1
2
(
4π2α ′

)−D/2
∫

F

d2τ
τ2

2
Z(D). (3.17)

If the partition function is written as the form (1.1), we can evaluate the cosmological constant and
derive the formula (1.6) in the small-a region. The procedure of the calculation remains the same
even if the partition function is deformed by constant backgrounds.

In Model I with one Wilson line, the cosmological constant in the small-a region is written as
the following function of the moduli, up to exponentially suppressed terms:

Λ(9)
Model I(t1, t2)≃C0

(√
α ′t2

)−9
8{(224−220)+2(16−14)cos(2πt1)} , (3.18)

where C0 is a positive constant. Note that 224 is the degree of freedom of the bi-fundamental rep-
resentation of SO(16)×SO(14) and 220 is that of the adjoint representation of SO(16)×SO(14)×
U(1) plus the vector of SO(8). We see that Λ(9)

I is already invariant under the shift t1 → t1 + 1,
which reflects that the massless spectrum at t1 = 0 is the same as that at t1 = 1.

In Model II, the cosmological constant in the small-a region is

Λ(9)
Model II(t1, t2)≃C0

(√
α ′t2

)−9
8
{
(27−220)−2 ·14cos(2πt1)+2 ·26 cos(it1)

}
. (3.19)

Note that 27 and 26 are the degrees of freedom of the spinor representations of SO(16) and SO(14)
respectively.

Figure 1 shows the cosmological constants of Model I and Model II as the one-loop effective
potential of t1. Note that the gauge symmetry is enhanced at the extrema of the potentials. In partic-
ular, in Model I, t1 is stabilized at the points t1 =±1/2, where the gauge symmetry is enhanced to
SO(18)×SO(14). Taking account into that the cosmological constant is suppressed at the points,
these minima seem to be good vacua. In Ref. [26], however, we deform the interpolating models
by the complete set of Wilson lines and it turns out that the other Wilson lines have tachyonic
directions at the points. Therefore, the points t1 = ±1/2 are, in fact, saddle points and the vacua
decay to the other points where the cosmological constant is negative.
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Figure 1: The left and right figures show the cosmological constants Λ(9) with a0 = 1 of Model I and Model
II respectively, in units of α ′ = 1, up to exponentially suppressed terms. The cosmological constants decay
albegraically as t2→ ∞.

4. Summary

We have constructed two 9D interpolating models between the 10D supersymmetric heterotic
models and the 10D SO(16)×SO(16) model and deformed them by one Wilson line. The massless
spectra of the models depend on values of the moduli and there are special points in the moduli
space where the additional massless states appear. We have listed the special points and the cor-
responding massless spectra. We have evaluated the cosmological constants as functions of the
moduli in the small-a region. The cosmological constant of Model I is exponentially suppressed
and the Wilson line is stabilized when the gauge symmetry is enhanced to SO(18)×SO(14).
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