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1. Introduction

Interfaces and defects play a prominent role in many physical system. Phenomena
ranging from defects in lattice models to D-branes in string theory are but few examples.
Our focus here will be on co-dimension one interfaces where the coupling constants of
the theory vary in a direction orthogonal to the interface, but no new dynamical degrees
of freedom are introduced [1]. Such position dependent coupling clearly break the four-
dimensional Poincaré symmetry to a three-dimensional Poincaré invariance. If the original
four-dimensional theory is a conformal field theory (CFT), the conformal invariance is
similarly also broken. Three-dimensional conformal symmetry can be retained by letting
the coupling constants jump from one value to another on an infinitesimally thin surface
(see figure 1). These configurations are called Janus interfaces. In this contribution I review
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Figure 1: The complexified coupling constant of N = 4 SYM jumps from one value to another on
a 2+1 dimensional hypersurface. As a result a 2+1 dimensional conformal symmetry is retained.

the constructions of holographic duals to such Janus interfaces where the parent theory
is either four-dimensional N = 4 supersymmetric Yang-Mills (SYM) or a class of N = 1
SFCTs with a marginal coupling.

The original holographic Janus is an SO(6) invariant interface in N = 4 SYM [1]. It
breaks all supersymmetries and is realized as a dilatonic deformation of the well-known
AdS5×S5 background of type IIB supergravity. It was quickly understood that Janus
interfaces in N = 4 could also preserve some ammount of supersymmetry [2, 3], but then
the SO(6) R-symmetry is also broken. The classification of supersymmetric Janus interfaces
in N = 4 was carried out in [3] and is summarized in table 1. Supersymmetry allows for a
more controlled study of the Janus interfaces. In particularN = 4 superconformal interfaces
were understood to give rise to interesting SCFTs in three dimensions [4, 5, 6]. Similar
study was carried out for N = 2 interfaces in [7, 8].

In this contribution I focus on the holographic duals of the Janus interfaces and their
twisted compactification (which I will come to in a moment). The holographic dual to
N = 1 interface in N = 4 SYM with SU(3) flavor symmetry was constructed directly in
type IIB supergravity in [9]. The solution is a deformation of AdS5×S5 just like the
original non-supersymmetric Janus [1]. This solution can also be found as an uplift [10]
of a five-dimensional solution [11]. Both procedures lead to the same ten-dimensional
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N Superalgebra R-symmetry Commutant

4 OSp(4|4,R) SU(2)×SU(2)

2 OSp(2|4,R) U(1) SU(2)

1 OSp(1|4,R) SU(3)

Table 1: Possible symmetry superalgebras of the three-dimensional superconformal Janus inter-
faces inside N = 4 SYM. R-symmetry of the Janus interface must be embedded in the SO(6) R-
symmetry of the parent theory while its commutant when left unbroken, realizes a flavor symmetry
of the interface.

background, but the five-dimensional approach has the advantage that a priori the field
equations reduce to ordinary differential equations as opposed to partial differential equa-
tions one usually encounters in ten dimensions. This is because the five-sphere has been
consistently truncated away, leaving a supergravity theory in five dimensions. A type IIB
dual of the N = 4 interface was constructed directly in ten dimensions in [12]. Here I
review the five-dimensional construction of the holographic duals to the N = 2 and N = 4
interfaces in N = 4 SYM which were first constructed in [13]. These can also be uplifted to
ten dimensions using the formulae in [14]. I also review [15] which showed that holographic
duals to N = 1 interfaces in a large class of N = 1 SCFTs can be obtained by uplifting the
solution of [11] to deformations of AdS5×SE5 for an arbitrary Sasaki-Einstein manifold
SE5.

The study of interfaces in four-dimensional SCFTs has lead to new insights into the
world of three-dimensional SCFTs. In particular, the 3D T [U(N)] SCFT discovered on the
1/2-BPS interface of N = 4 SYM [4, 5, 6] possesses a U(N)×U(N) global symmetry which
can be gauged leading to a large class of new SCFTs [16, 17, 18, 19]. These constructions will
be denoted as J-fold theories as their holographic dual are simply twisted compactifications
of the holographic Janus interfaces [20, 16]. A direct compactification of the direction
orthogonal to the interface is obstructed by the dilaton which has a non-trivial profile in
that direction. However for a limiting class of Janus solutions for which the dilaton is
linear, a Scherk-Schwarz compactification can be performed leading to AdS4 backgrounds
in IIB string theory. Instead of the dilaton being periodic around the compactified circle it
has an SL(2,Z) monodromy. It is worth noting that these AdS4 backgrounds (but not their
Janus parent) can be obtained as solutions of a four-dimensional supergravity [21, 22, 23]
which are constructed as a truncation of type IIB on S5×R.

This contribution is organized as follows, in section 2 I describe the construction of
Janus solutions in five-dimensional supergravity and their uplifts to ten dimensions. In
section 3 we move on to the compactification of a limiting Janus solution to a AdS4 J-fold
solution. In section 4 I conclude with some remarks and open questions.

2. Janus

The holographic Janus solutions are constructed in five-dimensional gauged supergrav-
ity. When the dual field theory is N = 4 SYM in four dimensions the gravity theory in
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question is the N = 8 supergravity with SO(6) gauge group [24, 25, 26]. The SO(6) gauge
symmetry is the holographic dual to the SO(6) R-symmetry of N = 4 and as mentioned in
the introduction, is broken for the Janus solutions we are after. This theory is obtained as
a consistent truncation of type IIB supergravity on S5, and the SO(6) gauge symmetry of
the theory is directly related to the isometry group of the five-sphere. The symmetries of
the Janus interfaces, listed in table 1, are an important tool in managing the complicated
five-dimensional supergravity theory. Working directly with its 42 scalar fields, 15 vectors
and 12 tensor-fields quickly leads to equations which are unmanageable. First we use the
fact that all Janus interfaces we study are conformal, preserving SO(3,2) conformal group
in three dimensions. This means that the metric can be written in a domain wall form

ds2
5 = dr2 + e2Ads2

AdS4 , (2.1)

where the function A only depends on the radial coordinate r. The metric on AdS4 is
chosen to have unit radius and its isometries realize the conformal symmetry. Preserving
this form of the metric means that all vector and tensor fields must vanish. The Janus
interfaces are therefore solution of scalar-metric theory where all scalars as well as the
metric only depend on the coordinate r. Even with this simplification our remaining task
is still seemingly out of reach. This is because the scalar fields are 42, parametrizing
the scalar coset E6(6)/USp(8), and the scalar potential is a complicated function of those
42 fields. In fact, the critical points of the potential have only recently been classified
using machine learning techniques [27, 28]. Fortunately, all Janus interfaces can possess
continuous global symmetry as a combination of R-symmetry and flavor symmetry. On the
supergravity side, this implies that all scalar fields which are charged with respect to this
continuous symmetry must vanish. In this way we are able to greatly simplify the scalar
sector of the theory. Instead of working with the full coset E6(6)/USp(8) we are left with
the much simpler cosets listed in table 2. It should be noted that for N = 2 and N = 1

N Scalar coset dimension

4 SL(3,R)
SO(3) 5

2 R+× SO(3,2)
SO(3)×SO(2) 7

1 SU(2,1)
U(2) 4

Table 2: Scalar cosets and their dimension for the three Janus interfaces considered.

supersymmetric Janus interfaces we assume the maximum amount of flavor symmetry. It
would be interesting to search for Janus solutions where this restriction is relaxed, but then
the scalar sector of the supergravity theory is bigger than considered here and solutions
are harder to obtain.

The five-dimensional SO(6) gauged supergravity exhibits a global SL(2,R)S symmetry
which corresponds directly to the SL(2,R) symmetry of type IIB supergravity. This implies
in particular that the full five-dimensional potential does not depend on two scalar fields
(ϕ,c). These scalar fields are usually called the axion and dilaton as they are closely
related to the type IIB axion and dilaton. It is important to note however that they are
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not just a direct dimensional reduction of the type IIB fields. I will make this distinction
clear by using capital letters (Φ,C) to denote the ten-dimensional dilaton and axion. The
five-dimensional axion and dilaton parametrize the Euclidean disc SL(2,R)/SO(2) and are
uncharged with respect to SO(6). They are therefore a part of all three scalar truncations
mentioned above,

SL(2,R)
SO(2) ⊂M⊂

E6(6)
USp(8) , (2.2)

whereM is one of the coset manifolds in table 2. It turns out that by parametrizing the
scalar manifold in a particular way, one can choose a gauge for the SL(2,R) symmetry
such that two scalars are eliminated completely.1 Schematically the coset element U ∈M
is written as a product

U = V ·USL(2) , (2.3)

where USL(2) parametrizes the full SL(2,R) and not only its non-compact part. The matrix
V parametrizes the rest of the manifoldM. The SL(2,R)S symmetry acts on U by a left
multiplication and so essentially acts on USL(2) in this parametrization. As mentioned,
the SL(2,R)S symmetry can be utilized to simplify USL(2) such that it only involves a
single scalar – the dilaton. A general background, in an arbitrary SL(2,R)S gauge can be
obtained by rotating the solution we find using SL(2,R)S transformation.

The final step in obtaining the Janus backgrounds is to impose supersymmetry in line
with the supersymmetry preserved by the Janus interfaces in table 1. This is done by
making sure that fermion variations of the N = 8 supergravity theory vanish. For flat
supersymmetric domain walls we often encounter BPS equations of the form

A′ ∼W , φ′ ∼ ∂φW , (2.4)

where W is the superpotential of the truncation, φ denotes a collection of scalar fields in
the truncation and prime is the derivative with respect to r. For the Janus interfaces we are
after the domain walls are curved and therefore the BPS equations are more complicated.
For example the metric function A now satisfies

(A′)2 = 1
9 |W |

2− e−2A , (2.5)

where the absolute value appears because the superpotential of our truncations are usually
complex. In order to go further we must analyze each Janus background in turn. Due to
space constraints I will be brief but further details can be found in [13].

2.1 N = 4 Janus

The scalar truncation for the N = 4 Janus features the superpotential

W = −3g
2
(

cosh2α cosh2χ− isinh2α sinh2χ
)
, (2.6)

where α and χ are the two scalars in the truncation in addition to the dilaton ϕ (after
we have fixed a gauge to eliminate two scalars). Here g is the gauge coupling constant in

1This was shown in [13] using the BPS equations.

4



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
3
2

IIB Janus and J-folds Friðrik Freyr Gautason

the N = 8 theory and determines the length scale of the AdS5 vacuum L= 2/g. The BPS
equations, in addition to (2.5) are

35(α′−ϕ′)2 = |∂αW |2 ,
24(α′−ϕ′)(χ′) = sinh4χRe(W∂αW ) ,
24(α′−ϕ′)(ϕ′) = tanh4χ Im(W∂αW ) ,
18(α′−ϕ′)e−A = Im(W∂αW ) .

(2.7)

And we notice the clear difference with the flat domain wall BPS equations (2.4). Note that
due to the last equation in (2.7) we can solve for one of the functions (A,χ,α) algebraically.
In fact the system of BPS equations exhibits a further integral of motion I > 0 which means
that we can write

cosh4α= 2X2 +I
2
√
X4 +IX

, sinh4χ=
√
IX−3 , e2A = 4

g2X . (2.8)

We introduced a new function X, which determines the full background. A differential
equation for X can be obtained by inserting these three relations into (2.5) which yields

4
g2 (X ′)2 +Veff = 0 , Veff = 4X(1−X)−I . (2.9)

The BPS equations are therefore reduced to the classical mechanics problem of a one-
dimensional particle with zero energy in the potential specified by Veff. The holographic
Janus solutions should be asymptotically AdS5 reflecting the fact that far away from the
Janus interface all experiments should yield the same result as if we were in the conformal
vacuum of N = 4 SYM. The AdS asymptotics is reached as X →∞ in this language. We
should reach these asymptotics on both sides of the interface and so we want our classical
particle described by X to come in from infinity and bounce of the potential where it turns
around and heads back to +∞. This implies that the constant I is bounded from above
by I ≤ 1. The analytic solution to (2.9) is given by

X = 1
2
(
1 +
√

1−I cosh(gr−grtp)
)
, (2.10)

which explicitly shows the bouncing behavior we just described. At r = rtp the velocity
X ′ changes from being negative to positive. I will choose coordinates such that rtp = 0.
Finally, in order to fully specify the background we must solve the BPS equation for the
dilaton. A straight-forward manipulation of the BPS equations together with (2.8) results
in the solution for ϕ as a function of X

ϕ(X) = ϕ0±
∫ X

Xtp

3
√
I(I+ 2x2)

8x(I+x3)
dx√
−Veff

, (2.11)

where Xtp =X(rtp). The sign choice in (2.11) is directly correlated with the branch of the
square root in (2.9) and we must switch a branch when passing through the turning point
to get a regular solution. A sample solution is plotted in figure 2.

This solution can be uplifted to a ten-dimensional solution of type IIB supergravity
as explicitly demonstrated in [13]. There it was also shown that the uplifted solution
reproduces the ten-dimensional Janus backgrounds found previously in [12].
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Figure 2: A plot of the N = 4 Janus solution with I = 1/3. Solid line shows the dilaton ϕ−ϕ0
and the dashed line shows the metric function (1/4) logX.

2.2 N = 2 Janus

The N = 2 Janus is a priori significantly more complicated than the N = 4 one. This
is because the scalar truncation is bigger. Surprisingly, however, we manage to bring the
BPS equations essentially to the same form as for the N = 4 Janus. The only modification
is the effective potential which now is more complicated. The superpotential is

W =−g2e−4α
(
2e6α cosh2χ+ cosh2λ− isinh2λsinh2χ

)
, (2.12)

where (α,χ,λ) are the three scalars in the truncation in addition to the dilaton. As men-
tioned above, the scalar coset in this case is seven-dimensional. Two scalars are eliminated
by choosing a gauge for the SL(2,R)S symmetry and one more is eliminated by choosing
a gauge for a broken U(1)⊂ SO(6) symmetry [13]. It should be noted that even though I
reuse the name for some of the scalars, their origin within the N = 8 supergravity theory
is different and should not be confused. Just as in the N = 4 case, the BPS equations can
be expressed neatly in terms of the superpotential. Due to space constraints I will omit
them here. Remarkably the BPS equations again exhibit a number of integrals of motion
which greatly simplifies the analysis. In fact, both the metric as well as the scalars χ and
λ can be expressed in terms of α:

e6α cosh2λ cosh2χ= 1 , I =−32e6α sinh3 6α
sinh4 2χ

, e−2A = g2

2
√
I

√
−2e2α sinh6α, (2.13)

where I > 0 is an integration constant which plays exactly the same role as the integration
constant for N = 4 Janus. The classical mechanics problem is now stated in terms of

X =−2e6α sinh6α, (2.14)

for which the effective potential is

Veff =−16(1−X)1/3X2
√
I

(√
I−2

√
X(1−X)

)
. (2.15)
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The remaining analysis closely follows the N = 4 case with two exceptions. First the AdS
asymptotic region is now located at X → 0, and second the equation for X can not be
analytically solved. Numerically, however, the solution is straightforward to obtain when
we express the radial coordinate as a function of X

r(X) = rtp±
∫ X

Xtp

2dx
g
√
−Veff(x)

, (2.16)

where Xtp is the turning point and is obtained as the first zero of the effective potential.
Regular Janus solutions (for which there is a turning point) restrict the range I ≤ 1. The
radial location of the turning point, rtp, can be chosen to vanish for simplicity. Next the
dilaton is obtained in much the same way as before via the equation

ϕ(X) = ϕ0±
∫ X

Xtp

(3−2x)x√
I(1−x)4/3 + 2(1−x)5/6x3/2

dx√
−Veff

. (2.17)

Once again I refer to [13] for much more detailed analysis as well as the uplift to ten
dimensions of these solutions.

2.3 N = 1 Janus

Finally we review the construction of N = 1 Janus solutions in five-dimensional su-
pergravity which was first carried out in [11]. The solutions there can be uplifted to ten
dimensions [10] resulting in Janus solutions which were independently constructed directly
in ten dimensions [9].

It was realized in [15] that the scalar truncation relevant for holographic duals to
N = 1 interfaces in N = 4 SYM is a part of minimal N = 2 gauged supergravity coupled
to a single hypermultiplet. From this perspective the N = 1 Janus we now review is a
universal solution dual to an interface of any holographic N = 1 SCFT in four dimensions
with a marginal coupling (the latter being dual to the hypermultiplet). We will return to
this interpretation at the end of the section.

My treatment follows closely [13] and [15] which uses a different parametrization of
the scalar manifold than in [11]. This means that a gauge can be chosen such that only
two scalars (χ,ϕ) out of four scalars have a non-trivial profile as explained above. The
superpotential is

W =−3g
2 cosh2χ. (2.18)

As before, the BPS equations exhibit constants of motion which essentially reduce the
problem to a classical mechanics problem of a single particle. Here

I = 9g2

55/3 e2A sinh2/3χ, X =−1
3 logsinhχ (2.19)

and the effective potential experienced by X is

Veff = 4e−2X
( 9

55/3I
− e−4X cosh2 3X

)
. (2.20)
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The asymptotic AdS region is located at X →∞, and the requirement to have a turning
point forces 0 < I ≤ 1. The classical mechanics problem is not analytically solvable but
r(X) can be written as a simple integral as for the N = 2 Janus. The dilaton is then also
found via a similar integral

ϕ= ϕ0±
∫ X

Xtp

9e−x

55/6
√
I cosh3x

dx√
−Veff(x)

. (2.21)

As before, these Janus configurations can be explicitly embedded as solution to type
IIB supergravity on S5[10, 13]. The ten dimensional metric takes the simple form

ds2
10 = coshχ ds2

5 + 4
g2

(ds2
CP2

coshχ + coshχ ζ2
)
, (2.22)

where ds2
5 is the five-dimensional supergravity metric (2.1) and ζ = dφ+ σ is the U(1)

bundle over the CP2 base. The Kähler form J is the exterior derivative of ζ. The SU(3)
symmetry of the Janus is realized as the isometry group of CP2. For vanishing χ (as
X →∞) the terms in the bracket in (2.22) reduce to the round metric on S5

ds2
S5 = ds2

CP2 + ζ2 , (2.23)

with unit radius. The remaining ten-dimensional fields are all determined either by five-
dimensional supergravity data or in terms of geometric forms on CP2.

Arbitrary five-dimensional Sasaki-Einstein manifolds can be used to construct AdS5
solution of type IIB supergravity in complete analogy with AdS5×S5. Here the metric on
the five-sphere is directly replaced by the Einstein metric on the Sasaki-Einstein manifold.
The dual field theory is in this case the theory on D3 branes probing the singularity at
the apex of the cone over that Sasaki-Einstein manifold. These are strongly coupled,
often non-Lagrangian, SCFTs that all share the feature of having at least one marginal
deformation (dual to the ten-dimensional axion-dilaton). As explained in [15], the five-
dimensional Janus solution with N = 1 supersymmetry just reviewed can be uplifted to
type IIB supergravity not only on S5, but on any of those Sasaki-Einstein manifolds.
Explicitly we use the fact that metric on Sasaki-Einstein manifolds can be written as U(1)
fibration over a Kähler-Einstein base. The metric (2.22) is then only modified in that ds2

CP2

is replaced by the metric on the Kähler-Einstein base in question and ζ is replaced by the
corresponding fiber. The remaining supergravity fields receive similar modest adjustments.
This shows that any holographic N = 1 SCFT with a marginal coupling can be deformed
to include a Janus interface just like N = 4 SYM.

3. J-folds

For the three classes of Janus solutions we were able to reduce the BPS equations to
that of a classical mechanics system of a particle in a potential with zero energy. The Janus
solution correspond to a trajectory for the particle where it bounces of the potential much
like an unbounded null geodesic in the Schwarzschild geometry. In all cases, however, the
effective potential Veff has a critical point with zero potential energy for I = 1. There is

8
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therefore an exact solution to the BPS equations where instead of the bouncing dynamics,
the particle simply sits stationary on the critical point. This is analogous to the unstable
photon ring in the Schwarzschild problem. In the current case, these stationary solutions
are not unstable. One way of understaning this is the unstable direction appears as a
tachyon in AdS4. This tachyon has a mass that is above the four-dimensional BF bound.
This class of solutions is a particularly simple limiting case of the Janus solutions I have
reviewed. Since X is constant, the metric is in a product form R×AdS4 and all scalars
except the dilaton are constant. The dilaton is linear. It is important to note that these
solutions can not be interpreted as Janus solutions unless we glue to this linear region a
dynamical part where the classical mechanics particle arrives from the asymptotic region
and leaves to it again. Without these asymptotic pieces, the solutions are a priori singular
(as the dilaton diverges as r→±∞) and should be dismissed. If it were not for the dilaton
we could compactify this solution and view it as a new AdS4×S1 background in type IIB
supergravity.

Even if the dilaton is not constant or periodic, there is a way to compactify the radial
direction using the SL(2,R)S symmetry of the five-dimensional supergravity [20, 16]. Es-
sentially we follow an old procedure of compactifying supergravity solutions using global
symmetries as introduced by Scherk and Schwarz [29]. This introduces a monodromy for
the dilaton as we go around the compactified direction. These compactified solutions are
called J-fold backgrounds as they are essentially S-folds originating from a Janus construc-
tion. Since the symmetry group of type IIB string theory is SL(2,Z) and not SL(2,R)
the radius of compactification is quantized which is an important fact when making holo-
graphic predictions. Now that we have managed to compactify the R direction we have
obtained a bone-fide AdS4 background of type IIB string theory. These should be dual
to three-dimensional N = 1,2,4 SCFTs. In order to make connection to those SCFTs, we
compute the S3 free energy using holography, the results are listed in table 3. For the

N Free energy (FS3)

4 N2

2 arccosh(n/2)

2 N2

2 arccosh(n/2)

1 55/2N2

4×33 arccosh(n/2)

Table 3: The three-sphere free energy of the J-fold SCFTs associated with N = 4 SYM, computed
using holography. The integer n= 2,3,4, · · · is related to the radius of compactification of the S1.

N = 4 J-fold, the dual field theory was identified and an independent computation of the
free energy using localization revealed a perfect match with the supergravity prediction
[16]. Similar success has not been acheived for less supersymmetric J-folds but they should
explain the surprising fact that N = 4 and N = 2 J-folds have the same free energy. Pos-
sible explanations for this fact are offered in [13]. As expected, the N = 1 J-fold can be
embedded as a solution of type IIB on any five-dimensional Sasaki-Einstein manifold and

9
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the free energy can be computed to be [15]

FS3 = 55/2

33 a4d arccosh(n/2) , (3.1)

where a4d it he central charge of the parent four-dimensional N = 1 SCFT.
Finally, it should be noted that the J-fold backgrounds can be constructed directly

without first finding the full Janus solution as we have done here. In this case a natural
starting point is a four-dimensional supergravity obtained as a consistent truncation of
type IIB on S5×R. This approach was taken in [21, 22, 23] leading to the J-fold solutions
discussed here as well as some novel ones I have not mentioned.

4. Conclusion

In this contribution I have sketched the construction of holographic Janus backgrounds
in type IIB supergravity using five-dimensional supergravity. Remarkably the BPS equa-
tions exhibit the same structure regardless the amount of supersymmetry and a full classi-
fication of solutions is possible. An obvious future direction is to relax the global symmetry
imposed for the less supersymmetric Januses. The scalar truncation is then expected to be
considerably more complicated. It is still possible that the structure we encountered for the
Janus reviewed here could show itself again leading to solvable equations. Another ambi-
tious, but worthwhile direction is to attempt to classify the J-fold backgrounds in type IIB
on S5×S1. This is essentially equivalent to classifying the vacua of the four-dimensional
supergravity used in [21, 22, 23]. As we have seen in recent months, the techniques of
machine learning could be invaluable in this direction [30, 31, 27, 28]. Another direction
is to analyze non-conformal Janus solutions in supergravity. As far as I am aware this is a
largely unexplored territory perhaps not unexpectedly since it requires dealing with PDEs
rather than ODEs even in five dimensions.
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