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1. Introduction

Partially massless (PM) fields of spin-2 have been subject to renewed attention in
recent years after the important advances made in the understanding of massive gravity
[1, 2]. In four-dimensional de Sitter (dS4) spacetime with (positive) cosmological constant
Λ , a PM graviton has a mass given by m2

PM = 2Λ/3 and a corresponding gauge invariance
that removes the degree of freedom associated with the spin-zero mode of the particle. A
consistent theory of PM gravity would be very attractive given its relevance in the context of
cosmology and the fact that a PM spin-2 field is not subject to the same strict experimental
constraints as a generic massive graviton, e.g. the bounds on fifth-force experiments or on
dispersion of gravitational waves.

In spite of their potentially interesting phenomenology, complete and physically realis-
tic models involving PM fields are currently lacking. A crucial hurdle one encounters when
attempting to construct such a PM theory beyond linear level is the requirement of gauge
invariance of the interactions. Indeed, this condition is restrictive enough to rule out theo-
ries of a single self-interacting PM spin-2 particle, see e.g. [3, 4, 5]. Such no-go results beg
the question of whether a fundamental obstruction exists for the construction of non-trivial
PM models. A first step in order to address this question is to precisely understand what
are the assumptions that lead to the existing negative results. In order to do so, we use the
cohomological reformulation [6] in the BV formalism [7, 8] of the deformation procedure
[9]. Indeed, this method allows to classify all the possible interactions starting from a given
theory which relies on clearly defined assumptions.

In the recent work [10] we have shown that, by relaxing the requirement of classical
unitarity1, one can in fact construct a complete theory for a multiplet of PM gravitons
around (A)dS4 space, as we review in the following. This is an interesting outcome as it
demonstrates that gauge invariance itself is not a fundamental obstacle for the existence
of a non-trivial interacting PM spin-2 theory.

2. BRST-BV deformation procedure

The cohomological reformulation of the deformation procedure exposed in [9] was pro-
posed in [6]. It exploits the antifield formalism [7, 8] for gauge theories. A detailed and
accessible introduction to the BRST-BV deformation procedure can be found in [12]; see
also the introduction of [13]. Here we reproduce the essential aspects in order to fix the
necessary notation and describe the main steps of our approach in a self-contained manner
as possible.

Consider a theory for a set of gauge fields ϕi defined by an action S[ϕi] that is invariant
under the infinitesimal gauge symmetries

δεϕ
i =Riα ε

α , (2.1)
1Actually, PM fields can be defined around D-dimensional Anti-de Sitter (AdSD) spacetime where they

are classically non-unitary. This can be seen explicitly by writing the action, which is real for both signs of
the cosmological constant, in the Stueckelberg formulation [11].
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gh antifld puregh

Fields ϕi 0 0 0

Ghosts Cα 1 0 1

Antifields ϕ∗i −1 1 0

Ghost antifields C∗α −2 2 0

Table 1: Ghost, antifield and pureghost quantum numbers.

where, using De Witt’s notation, a summation over repeated indices also means that an
integral over an omitted dummy coordinate is implied, so that (2.1) gives a local relation
depending on the gauge parameters εα and their derivatives up to some finite order. The
operator Riα may depend on the gauge fields and some of their successive derivatives.

In the BRST formalism [14, 15], one proceeds by associating a ghost field Cα to every
gauge parameter εα , with a shift in the Grassmann parity: |Cα|= |εα|+ 1 (mod 2). If the
theory is reducible, such as for p -form gauge theories with p > 1 , one also introduces a
hierarchy of higher-degree ghosts (ghosts of ghosts). We will not discuss these cases here
and stick to irreducible gauge theories. In the antifield extension of the BRST formalism
due to Batalin and Vilkovisky, to the gauge fields ϕi and the BRST ghosts Cα one associates
the antifields ϕ∗i and C∗α , respectively. For concreteness we will take both the fields ϕi and
the gauge parameters εα to be bosonic, thereby excluding the discussion of supergravity
theories (see [16, 17] for examples in that case), although the general case can be treated in
much the same way modulo some obvious changes (see for example the pedagogical review
[18]). In this situation the ghost antifields are Grassmann-even or commuting variables as
well, while the ghosts Cα and antifields ϕ∗i are Grassmann-odd or anticommuting. Next
we introduce two gradings, the ghost number “gh” and the antifield number “antifld”,
according to table 2. It is also useful to keep track of the number of differentiated or
undifferentiated ghosts (not counting the associated antifields), via the pureghost number
“puregh”. We collectively denote the fields and ghosts by the variables ΦA , while their
associated antifields are denoted by Φ∗A .

To the initial theory with gauge-invariant action S[ϕi] , one associates a BV functional
W [ΦA,Φ∗A] in the following way:

W [ΦA,Φ∗A] = S[ϕi] +ϕ∗i R
i
αC

α+ 1
2 C
∗
γ f

γ
αβC

αCβ + 1
4 ϕ
∗
iϕ
∗
jM

ij
αβC

αCβ + · · · . (2.2)

By construction, as it is required to start with the classical action and to have definite ghost
number and Grassmann parity, the BV functional W is defined to be bosonic (Grassmann-
even) with ghost number zero. More importantly, it is required to satisfy what is called
the classical master equation:

(W,W ) = 0 , (2.3)
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where the antibracket, also called BV bracket, is defined by2

(A,B) = δRA

δΦA

δLB

δΦ∗A
− δ

RA

δΦ∗A
δLB

δΦA
. (2.4)

At zero antifield number, the master equation yields the Noether identities associated with
the original gauge symmetries of the action,

δS

δϕi
Riα = 0 . (2.5)

Next, the terms with antifield number one in (2.3) produce

Rjα
δRiβ
δϕj

−Rjβ
δRiα
δϕj

=Riγ f
γ
αβ + δS

δϕj
M ji
αβ , (2.6)

which is nothing but the gauge algebra of the transformations (2.1), which gives the in-
terpretation of fγαβ as “structure functionals”, since in general they are operators that
may depend on the fields. The presence of the term proportional to M ij

αβ implies that the
algebra will in general be “open”, meaning that two gauge transformations will only close
upon use of the equations of motion. Similarly, at the following order one finds the Jacobi
identity satisfied by the structure functionals, and continuing in this manner generates a
tower of consistency relations involving the higher order tensors — the ellipsis in (2.2) —
that characterize the gauge group of the theory. We refer to [18] for detailed discussions
and review.

The main idea of the deformation analysis is to revert this story. The full action S

and its gauge symmetries are unknown, and we seek to determine them by perturbatively
solving the master equation (2.3), knowing an initial action S0 invariant under the gauge
transformations

δ0ϕ
i =R0

i
α ε

α . (2.7)

The BV functional, as we recalled, encodes all the information about the gauge structure
of the theory. Hence the BV formalism is equivalent to other more direct approaches that
aim at determining a theory based on the action and gauge transformation, although we
will see that it is in many ways more powerful.

In order to solve the classical master equation, we consider the functional W as a
perturbation series in some overall deformation parameter g , i.e.,

W =W0 +gW1 +g2W2 + · · · . (2.8)

Here W0 corresponds to the BV functional associated with the theory that is already
known and that one wishes to deform perturbatively. In the scenario we will focus on, the

2Right and left functional derivatives are defined via

δA=
∫

δRA

δΦA
δΦA+

∫
δRA

δΦ∗
A

δΦ∗
A =

∫
δΦA δLA

δΦA
+
∫
δΦ∗

A
δLA

δΦ∗
A

.

The distinction between left and right derivatives of course only makes a difference when the derivative is
with respect to a fermionic (Grassmann-odd) variable.
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known theory will be free, so that the deformation procedure amounts to the study of the
consistent interaction vertices one can add to it. However, the formalism is not restricted
to this case, since for instance one can also apply it to known models which are themselves
already interacting, see for example [19, 20] for recent analyses.

The master equation approach becomes particularly powerful when rephrased as a
cohomological problem [6]. The BV functional W0 for the free theory S0 is viewed as the
generator of BRST transformations, in the sense that

sA := (W0,A) , (2.9)

for any local functional A , with s denoting the BRST differential of the free theory. By a
local functional A , one means the integral

∫
a of a D -form a that depends on the fields (in-

cluding the ghosts), their associated antifields and their derivatives up to some arbitrary but
finite order, which we indicate by the notation a= a([Φ], [Φ∗],dx) . Moreover, in this work
we assume that all the fields and their derivative vanish at infinity, or alternatively that
they have compact support, which enables us to discard all boundary terms. With this as-
sumption, any local D -form a([Φ], [Φ∗],dx) is equivalent to a([Φ], [Φ∗],dx)+db([Φ], [Φ∗],dx)
where b([Φ], [Φ∗],dx) is a local (D− 1) -form and where d is the total exterior differential
d= dxµ∂µ , where ∂µ = ∂

∂xµ +∂µz
M ∂
∂zM

+ . . . is the total derivative that takes into account
the spacetime dependence of the fields and antifields that we have collectively denoted by
zM := (ΦA,Φ∗A) . We use conventions whereby s anticommutes with d , or equivalently, for
the type of theories we will deal with, dxµCα +Cαdxµ = 0 and dxµϕ∗i +ϕ∗i dx

µ = 0 . One
has the following isomorphism of cohomological classes, Hg(s) ∼= Hg,D(s|d) , where Hg(s)
denotes the cohomology of s in the class of ghost number g local functionals and Hg,D(s|d)
is the cohomology of the differential s , at ghost number g , in the space of local D -forms. In
other words, the cohomology class in Hg,D(s|d) is defined up to the ∼ equivalence relation
by a representative solution ag,D of

sag,D +dag+1,D−1 = 0, ag,D ∼ ag,D +sbg−1,D +dbg,D−1. (2.10)

The first superscript refers to the ghost number and the second one to the form degree.
The basic properties of the BRST differential s then follow from the properties of the

antibracket; in particular the nilpotency, s2 = 0 , is a consequence of the (graded) Jacobi
identity and of the master equation (W0,W0) = 0 .

Given a free theory with action S0[ϕi] invariant under irreducible gauge symmetries as
in (2.7), we can write the effect of a BRST transformation on the fields by decomposing
s= γ+ δ , such that

γϕi =R0
i
αC

α , δϕ∗i = δS0
δϕi

, δC∗α = ϕ∗i R0
i
α , (2.11)

while the action of γ and δ on the variable not shown is by definition zero. It follows
immediately that

γ2 = 0 , δ2 = 0 , γδ+ δγ = 0 , (2.12)

which together again amount to the nilpotency of s . We recall that, with our conventions,
{γ,d}= 0 = {δ,d} . Observe that δ decreases the antifield number by one unit, while γ does

4
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not change it. From eqs. (2.3) and (2.8), one has that the master equation, up to order g2 ,
yields

sW0 = 0 , (2.13)
sW1 = 0 , (2.14)
sW2 =−1

2(W1,W1) . (2.15)

The first of this holds trivially of course since the free action S0 and its gauge invariance
is known. The second equation then states that the first order deformation of the BV
functional is BRST-closed. Any BRST-exact expression W1 = sB for a local functional
B at ghost number −1 is of course a solution, but it is trivial in that it can be obtained
from W0 by means of a generalized non-linear field redefinition, where by “generalized” we
mean one that may involve the ghosts and antifields as well. At the level of the original
action such transformations translate into redefinitions of the field variables and/or gauge
parameters. This leads to the conclusion that non-trivial first order (in the deformation
parameter g) solutions of the master equation belong to the local cohomological group of s
at ghost number zero, denoted by H0,D(s|d) . The same considerations apply to all higher
order deformations. For instance W2 now satisfies an inhomogeneous equation, but once
a particular solution is found the homogeneous part will admit trivial terms arising from
field redefinitions of W2 .

3. Set-up

We will classify all the consistent deformations of the free theory describing an arbitrary
number of PM spin-2 fields: haµν , a= 1, . . . ,n . This theory is defined via the action

S0[haµν ] =
∫
dDx

√
−ḡ kab

(
−1

4F
aλµνF bλµν + 1

2F
aλF bλ

)
, (3.1)

where ḡµν is the metric of the background that we choose to be (A)dSD space, F aλµν :=
2∇[λh

a
µ]ν are the field strengths of the fields haµν , F aλ := ḡµνF

λµν and kab is a metric in the
internal space of the PM spin-2 fields. Redefining the fields by means of the Gram-Schmidt
process, one can take (kab) = diag(+ · · ·+) for an unitary theory, which is only possible in
dSD space, and (kab) = diag(+ · · ·+−·· ·−) for a non-unitary one. The field strengths and
thus the action are invariant under the gauge transformations

δ(0)
ε haµν =∇µ∇νεa− σ

L2 ḡµν ε
a , (3.2)

where L is the (A)dSD radius related to the cosmological constant via Λ = − (D−1)(D−2)
2σL2 .

The parameter σ is defined to be +1 when the background is AdSD and −1 when it is
dSD . In this way the commutator of Lorentz-covariant derivatives on (A)dSD acting on a
(co-)vector is given by

[∇µ,∇ν ]Vα =− 2σ
L2 ḡα[µVν] . (3.3)

In the BRST-BV formalism, we introduce the ghosts Ca associated with the gauge
parameters εa as well as the conjugate antifields {Φ∗I} := {h∗µνa ,C∗a} canonically paired to

5
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the fields {ΦI} := {haµν ,Ca} . The variance of the fields and antifields with respect to the
color indices is by definition as displayed above up to raising or lowering indices thanks to
the internal metric kab .

The BV functional of this theory is written as

W0 = S0 +
∫
dDx

√
−ḡ
[
h∗µνa

(
∇µ∇νCa− σ

L2 ḡµνC
a
)]
, (3.4)

and satisfies the classical master equation (2.3) as desired. We are then able to deduce the
action of the BRST differential s= γ+ δ on the fields and antifields:

shaµν = γhaµν =
√
−ḡ
(
∇µ∇νCa− σ

L2 ḡµνC
a
)
, (3.5)

sh∗µνa = δh∗µνa =
√
−ḡ(∇λF bλ(µν)− ḡµν∇λF bλ+∇(µF ν)b)kab , (3.6)

sC∗a = δC∗a =
√
−ḡ
(
∇µ∇νh∗µνa − σ

L2h
∗
a

)
, (3.7)

and 0 on the other ones.
The cohomology of the differential γ, which will be helpful in the following, is given by

H(γ)∼=
{
f
(
[F aλµν ] , Ca , ∇µCa , [Φ∗I ]

)}
. (3.8)

4. Cubic deformations

The goal of this section is the classification of the first-order deformation of the BV
functional W1 which has to satisfy the master equation to first order (2.14). Expanding
the first-order BV functional according to the antifield number

W1 =
∫
dDx

√
−ḡ(a0 +a1 +a2) , (4.1)

the master equation to first order is equivalent to the following descent equations3

δa1 +γa0 = t.d. , (4.2)
δa2 +γa1 = t.d. , (4.3)

γa2 = 0 . (4.4)

4.1 Deformations of the gauge algebra

We will start the classification of the deformations by listing all the possible deforma-
tions of the gauge algebra a2 ∈H(γ) , because a2 has to be γ-closed in order to solve the
equation (4.4) but not γ-exact in order not to be related to a trivial redefinition of the
gauge parameters. Without any restriction on the number of derivatives, the complete list
of candidates is given by

a
(1)
2 = C∗aC

bCcma
bc , ma

bc =ma
[bc] , (4.5)

a
(2)
2 = C∗a∇µCb∇µCcnabc , nabc = na[bc] , (4.6)

3Here t.d. = ∂µj
µ for some vector jµ . Since one can always rewrite jµ =

√
−ḡ j̃µ this implies ∂µjµ =√

−ḡ∇µj̃µ and the t.d. represents up to a
√
−ḡ factor a total derivative using a Lorentz-covariant derivative

of the background. We will thus always write t.d. although this can mean ∂µjµ or ∇µjµ depending on the
context.

6
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and the total deformation of the algebra that solves the last equation of the descent (4.4)
is a linear combination of all these candidates

a2 = α(1)a
(1)
2 +α(2)a

(2)
2 . (4.7)

We now have to solve the second equation of the descent (4.3) with the a2 just defined.
The calculation of the two contributions to δa2 gives

1√
−ḡ δa

(1)
2 = t.d.− 1√

−ḡγ
[
h∗µνa ma

bch
b
µνC

c
]

+ma
bc(2h∗µνa ∇µCb∇νCc+ σ

L2 h
∗
aC

bCc) , (4.8)
1√
−ḡ δa

(2)
2 = t.d.− 1√

−ḡγ
[
2nabch∗µνa

(
∇µhbνρ∇ρCc+hbµρ∇ν∇ρCc+ σ

L2h
b
µνC

c
)]

(4.9)

+ σ
L2 n

a
bc

(
2h∗µνa ∇µCb∇νCc+ σ

L2h
∗
aC

bCc
)
− σ

L2h
∗
an

a
bc∇µCb∇µCc .

The obstructions 2h∗µνa ma
bc∇µCb∇νCc+ σ

L2 h
∗
am

a
bcC

bCc ∈H(γ) and 2h∗µνa nabc∇µCb∇νCc

+ σ
L2h

∗
an

a
bcC

bCc ∈H(γ) can be cancelled by relating α(2) to α(1) and nabc toma
bc . However,

because of the obstruction σ
L2h

∗
an

a
bc∇µCb∇µCc ∈H(γ) arising in the calculation of δa(2)

2 ,
there exists no linear combination such that all the obstructions vanish. This implies that
there is no solution to the inhomogenous (with a2 6= 0) equation (4.3) and therefore we set
α(1) = 0 =α(2) . In conclusion, the cubic deformations of “colored” PM fields are necessarily
abelian.

4.2 Abelian deformations of the gauge transformation

We can still solve the homogeneous (a2 = 0) equation (4.3) by classifying all the possible
abelian deformations of the gauge transformations ā1 ∈ H(γ) . In terms of coefficients
f a

(i)bc , i= 1, . . . ,6 , there are six candidates containing up to two derivatives:

ā
(1)
1 = h∗µνa f a

(1)bc∇µF
b
ν C

c , ā
(2)
1 = h∗µνa f a

(2)bcF
b
µ∇νCc , (4.10)

ā
(3)
1 = h∗µνa f a

(3)bc∇
σF bσµνC

c , ā
(4)
1 = h∗µνa f a

(4)bcF
b
σµν∇σCc , (4.11)

ā
(5)
1 = h∗a f

a
(5)bc∇σF

bσCc , ā
(6)
1 = h∗a f

a
(6)bcF

bσ∇σCc . (4.12)

An important aspect to remark is that not all combinations of these candidates are
non-trivial because some combinations are δ-exact. For example, the combination ā

(1)
1 +

ā
(3)
1 − ā

(5)
1 is δ-exact when fa(3)bc = fa(5)bc = fa(1)bc and kadf

a
(1)bc = ka[df

a
(1)b]c . Those particular

combinations have to be removed from the possible non-trivial deformations.

4.3 Cubic vertices

We have to solve the first equation of the descent (4.2) with a1 being the linear combi-
nation of all the non-trivial candidates written above. In the cases of, respectively, a single,
two or three PM fields, there are 6, 48 or 162 candidates written in (4.10)–(4.12) (minus the
δ-exact combinations). The resolution of the equation (4.2) has been done systematically
by listing all the possible vertices entering in a0 containing no more than two derivatives
and then searching for a set of solutions to the equation.4

4Note that allowing for more derivatives we can trivially construct Born-Infeld type vertices; they
contain at least three derivatives and do not deform the gauge transformation laws of the free theory.
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We find that, provided D = 4 , the general solution is given by a vertex of the type
“gauge field × conserved current”:

D = 4 : a0 = haµνJ
µν
a , a= 1, . . . ,n , (4.13)

where

Jµνa :=
(
F b(µ|ρσF c|ν)

ρσ− 1
4 ḡ
µνF bρσλF cρσλ−F b(µ|F c|ν) +F b(µ|σ|ν)F cσ + 1

2 ḡ
µνF bλF

cλ
)
fbc,a .

(4.14)
This vertex solves the descent equation with

a1 = ā
(4)
1 = h∗µνa fab,cF

b
σµν∇σCc . (4.15)

We write the coefficients fab,c in this way because they have to satisfy

fab,c = f(ab),c (4.16)

in order to be related to a non-trivial solution of (4.2). The easiest way to see that is by
noticing that the current Jµνa is on-shell5 equivalent to

J ′µνa =
(
F b(µ|ρσF c|ν)

ρσ− 1
4 ḡ

µνF bρσλF cρσλ

)
fbc,a ≈ Jµνa , (4.17)

from which we see that the constants fab,c are projected on f(ab),c . The conclusions on
the existence of vertices related to the current J ′µνa are unchanged if we use the current
Jµνa , but it is important to use the unprimed one in order to have a two-derivative gauge
transformation. We remark that this primed current was already known in the case of a
single PM field in the context of couplings to a massless spin-2 field [21]. The number of
deformation parameters of this solution is thus given by the number of parameters encoded
in fab,c , that is to say, n

2(n+1)
2 .

Let us check that the vertex (4.13) is indeed consistent and how to reconstruct the
gauge transformation (4.15). Since the current is manifestly gauge invariant because it is
built out of the field strength, we have

1√
−ḡγa0 = (∇µ∇νCa− σ

L2 ḡµνC
a)Jµνa = t.d.+Ca(∇µ∇νJµνa − σ

L2 ḡµν J
µν
a ) . (4.18)

This implies through (4.2) that a necessary and sufficient6 condition to the consistency of
the cubic vertex is that the current is conserved in the sense of the free PM gauge symmetry

∇µ∇νJµνa − σ
L2Ja ≈ 0 . (4.19)

Using the consequences of the equations of motion , mainly

F νa =− σL2

D−2∇µ
δS0
δhaµν

≈ 0 , (4.20)

∇σF σµνa = δS0
δhaµν

− σL2

D−2 ḡ
µν∇λ∇σ

δS0
δhaλσ

+ σL2

D−2∇
ν∇σ

δS0
δhaµσ

≈ 0 , (4.21)

∇σFµνσa = 2σL2

D−2∇
[µ∇σ

δS0
δhaν]σ

≈ 0 , (4.22)

5We use the symbol ≈ for on-shell equalities, that is to say equalities on the surface of the equations of
motion of the free theory.

6The condition is sufficient if one allows for higher-derivative terms in the gauge transformation.
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one finds that the current is on-shell divergenceless ∇µJµνa ≈ 0 in arbitrary spacetime
dimension as soon as the constants fab,c are projected on f(ab),c . Hence, since the current
is divergenceless on-shell, it is required to be also traceless on-shell in order to solve (4.19).
The trace of the current is given by

Ja =
(
1− D

4

)
F bµρσF

cµρσfbc,a+
(
D
2 −2

)
F bµF

cµfbc,a (4.23)

which turns out to be identically traceless only when D = 4 , and on-shell tracefull for
D 6= 4 .

In order to have access to ā1 one needs to express all the on-shell terms arising in the
calculation of the LHS of equation (4.19) using the consequences of the equations of motion
(4.20)–(4.22) and δS0

δhaµν
= 1√

−ḡ δh
∗µν
a . One can show that

∇µJµνa = 1√
−ḡ δh

∗bρσF cνρσ fbc,a+∇µA[µν]
a , (4.24)

A[µν]
a := σL2

2(D−2)∇
α

(
δS0
δhαρb

)
F cνµρ fbc,a. (4.25)

It is remarkable that all the higher-derivative terms in ∇µJµνa appear as ∇µA[µν]
a and this

is due to the on-shell terms present in the current. Then one can reconstruct ā1 via (4.2)
to get

1√
−ḡγa0 = t.d.−∇νCa∇µJµνa = t.d.−∇νCa

(
1√
−ḡ δh

∗bρσF cνρσ fbc,a+∇µA[µν]
a

)
= t.d.− 1√

−ḡ δ
(
h∗aµνF bσµν∇σCcfab,c

)
︸ ︷︷ ︸

=:a1

+∇µ∇νCaA[µν]
a︸ ︷︷ ︸

=0

. (4.26)

4.4 Global symmetries of the free PM action

Each infinitesimal consistent deformation of the BV action that modifies the gauge
transformation can be viewed as the gauging of a global symmetry of the undeformed
theory as soon as there exists a Killing parameter of the initial theory. Thus we will
investigate if the deformation found only when the spacetime dimension is 4 is the gauging
of a rigid symmetry that is only present in dimension 4 or in arbitrary dimension.

The master equation to first order in deformation at antifield number 0 (4.2) is equiv-
alent to the fact that the deformed action is invariant under the deformed gauge transfor-
mation to first order in the deformation

δ0S1 + δ1S0 = 0 . (4.27)

Let us write δ0ϕ
i = R(0)i

αε
α , δ1ϕ

i = R(1)i
αε
α the gauge variations of the fields at order 0

and 1, and ε̄α the solutions of the Killing equations δ̄0ϕ
i =R(0)i

αε̄
α = 0 . Evaluating (4.27)

in the case where the gauge parameter is fixed to be a solution of the Killing equation
directly gives δ̄1S0 = 0 , implying that this is a global symmetry of the initial action.

In the case of the deformation of the section 4.3, one can extract the rigid transforma-
tion from (4.15) :

δ̄1h
a
µν = fab,cF

b
σµν∇σ ε̄c , (4.28)
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where ε̄c is a solution of the PM Killing equation

∇µ∇ν ε̄a− σ
L2 ḡµν ε̄a = 0 . (4.29)

Explicit solutions of this equation are constructed in [22] when the spacetime dimension is
4 but one can straigtforwardly extend the procedure to arbitrary dimension. Thus, because
we know that the deformation build in section 4.3 is consistent in 4 dimensions, this global
transformation is assured to be a symmetry of the action only in dimension 4.

In order to see if this global symmetry is present in arbitrary dimension or not, we will
look at the conserved charge associated with this global symmetry via Noether’s theorem.
According to it, a global symmetry is related to a current density J µ which is conserved
in the sense

∂µJ µ ≈ 0 . (4.30)

Then one can construct a conserved charge as

Q=
∫
t=cst

dD−1xJ 0 , (4.31)

which is conserved because of (4.30), Stokes’ theorem and the fact that the fields are
supposed to vanish at spatial infinity.

In the context of the deformation calculated in section 4.3, we have a current Jµνa that
is conserved not in the sense of Noether’s theorem but in the sense (4.19) of the PM gauge
symmetry. More precisely we showed that it satisfies

∇µJµνa ≈ 0 , (4.32)
Ja ≡ 0 , if D = 4 , (4.33)
Ja 6= 0 , if D 6= 4 . (4.34)

Using this, it is possible to build a true Noether current as

J µab :=
√
−ḡ Jµνa ∇ν ε̄b , (4.35)

where ε̄b is still a solution of (4.29). Indeed we have

∂µJ µab =
√
−ḡ∇µ (Jµνa ∇ν ε̄b)≈

√
−ḡ (Jµνa ∇µ∇ν ε̄b) = σ

L2

√
−ḡJaε̄b ,

which is 0 if and only if the spacetime dimension is 4. In conclusion one can build a
conserved charge via (4.31) only in 4 dimensions and the corresponding global symmetry
is given in (4.28).

5. Quartic deformations

The goal of this section is to solve the master equation to second order in deformation
(2.15). Expanding the second-order BV functional according to the antifield number W2 =∫
dDx
√
−ḡ(b0 + b1) , the master equation to second order is equivalent to the following

descent equations

δb1 +γb0 =−
√
−ḡ (a1,a0) + t.d. , (5.1)

γb1 =−1
2
√
−ḡ (a1,a1) + t.d. . (5.2)
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5.1 Descent equation at antifield number 1

Let us start with the calculation of −1
2(a1,a1) in order to solve the equation (5.2). We

have

1
2(a1,a1) = t.d.− 1√

−ḡγ
[
2h∗aµ[ν∇σ]CbF cρ(µν)h

d ρ
σ fae,bf

e
c,d

]
+ 2h∗aµ[ν∇σ]Cb∇σF cρ(µν)∇

ρCdfae,bf
e
c,d+ 3σ

2L2 h
∗aµν∇σCbCdF cσµνfae,bfec,d . (5.3)

The only way to kill the obstruction h∗aµν∇σCbCdF cσµνfae,bfec,d ∈H(γ) is by imposing the
constraints

fae,b f
e
c,d = 0 . (5.4)

Let us suppose that we have a solution to the constraints. Then it implies that there is no
second-order deformation of the gauge transformation (b1 = 0).

5.2 Descent equation at antifield number 0

The calculation of the antibracket (a1,a0) gives

−(a1,a0) = (F bσµν∇σCcfab,c)
(
Jµνa + δJρλd

δhaµν
hdρλ

)
= Jµνa F bσµν∇σCcfab,c (5.5)

because the second term vanishes when the constraints (5.4) hold. The current Jµνa can
be expanded as (4.14) and then the identities (4.20)–(4.22) can still help to rewrite terms
containing a trace (F aµ ) or a divergence (∇µFµνσa or ∇σFµνσa ) of the field strength as δ-
exact terms. Those δ-exact terms actually come from a solution b̄1 of the homogeneous
equation (5.2): γb̄1 = 0 . Using this trick one can write

−(a1,a0) = 1√
−ḡ δb̄1 +F aµρλF bνρλF

c
σµν∇σCd f

e
ab, fec,d (5.6)

for some b̄1 whose explicit form is not needed, except for the fact that it is proportional to
f e
ab, fec,d if one renames properly the color indices. The last term is generically a non-trivial
element of the cohomology of γ modulo d and modulo other δ-exact terms. Indeed, one
can remove the freedom of having a total derivative by taking a variational derivative with
respect to the ghost Cd , which will produce some δ-exact terms when the derivative will
act as a divergence of the field strength but also other terms manifestly in the cohomology
of γ . As a consequence they represent obstructions that are killed by imposing a second
set of constraints

f e
ab, fec,d = 0 . (5.7)

If one is able to solve the 2 sets of constraints (5.4)–(5.7), it implies that the theory closes
at cubic order and is fully consistent with respect to the gauge structure. Indeed, in that
case, b̄1 = 0 and the equation (5.1) is solved with b0 = 0 .
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5.3 Solutions to the constraints

This section is devoted to the resolution of the two sets of constraints

fam,b fnc,d k
mn = 0 , (5.8)

fab,m fnc,d k
mn = 0 . (5.9)

Unfortunately these have no solution when the internal metric kab is Euclidean. This
can be seen by analyzing the constraints for the indices c= a= ā and d= b= b̄ fixed and
kab = δab :

fām,b̄ fnā,b̄ δ
mn =

n∑
e=1

(
fāe,b̄

)2
= 0 =⇒ fāe,b̄ = 0 , ∀ā, e, b̄ . (5.10)

It is also direct that there is no solution for a single PM field and this is related to the fact
that the known [23] self-interaction of a PM spin-2 field is obstructed to second order [4].
The fact that the internal metric kab cannot be Euclidean implies that some fields must
carry negative energy and the theory is therefore classically non-unitary.

Totally symmetric solutions.—An explicit solution of the quadratic constraints, Eqs.
(5.8) and (5.9), is given by

fab,c = (N −1)(ng)abc/2 , (5.11)

for the choice of internal metric kab = diag(+1, . . . ,+1,−1) , and where (ng)abc ∈ {0,1,2,3}
denotes the number of times that the index “N” (corresponding to the “ghostly” field in
our convention) appears in fab,c ; for instance fNN,N = (N −1)3/2 .

Another simple particular solution that is valid for all even N is fab,c = 1 , ∀a,b,c ∈
{1, . . . ,N} , with metric kab = diag(+1, . . . ,+1,−1, . . . ,−1) that has the same number of
“+1” and “−1” in its entries. Notice that both these solutions give a totally symmetric
fab,c , in which case the two constraints (5.8) and (5.9) are in fact equivalent.

For N = 2 fields these two solutions reduce to fab,c = 1 , ∀a,b,c ∈ {1,2} , with metric
kab = diag(+1,−1). In this case we can moreover show that this solution is unique modulo
rescalings of the fields and the gauge parameters. We remark that for N ≥ 3 the constants
(5.11) lead to cubic vertices that couple three distinct fields, so that it is not a trivial
extension of the N = 2 solution.

Mixed symmetric solutions.—For N = 2 the unique solution to the constraints was
totally symmetric under the exchange of the three indices. However, for N ≥ 3 , there also
exist solutions for mixed-symmetric constants fab,c. For example, when N = 3 and the
metric is kab = diag(+1,+1,−1) , one such solution is given by

f11,1 = f22,2 = 1 ,
f11,2 =−f12,1 = f22,1 =−f12,2 = 1 ,
f13,1 = f13,2 =−f23,1 =−f23,2 =

√
2 ,

f33,1 = f33,2 = 2 ,
fab,3 = 0 ∀a,b ∈ {1,2,3} .

(5.12)
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