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1. Introduction

Starting from classical mechanics, there are at least thteesting ways to extend the theory
each of which introduces a constant of nature that is abseciassical mechanics: (1) at large
velocities with respect to the velocity of liglit the theory extends to special relativity; (2) at
small distances certain physical quantities get quantizedits of the reduced Planck’s constént
corresponding to quantum mechanics and (3) a gravitatfoneg can be introduced via Newton’s
constaniG leading to Newtonian gravity. There are two well-known waysombine two of these
extensions: (1) extending classical mechanics with higbcities and gravity leads to general
relativity and (2) extending classical mechanics to higlosiges and small distances leads to
qguantum field theory. Logically speaking, however, themetisird way, namely extending classical
mechanics to small distances and gravity. This would lead tioeory of non-relativistic (NR)
guantum gravity. Finally, the maximal extension to highoedies, small distances and gravity
leads to the long looked for theory of quantum gravity, seedb-called Bronstein cube [1] in
Figure 1.
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Figure 1: The Bronstein cube shows how classical mechanics can badedén three different ways to
(1) special relativity, (2) quantum mechanics and (3) N&idn gravity. Combining two of these extensions
leads to general relativity, quantum field theory or NR quangravity. Ultimately, combining all three
extensions leads to quantum gravity.

Usually, the issue of finding a consistent theory of quantuavity is approached either by
adding gravity to quantum field theory or by quantizing geheelativity. The Bronstein cube
suggests a third way to approach this issue: can quantunitygia viewed as the relativistic
extension of a self-consistent NR theory of quantum gr&vithis leads to the related question of
how essential relativity is in constructing a theory of guam gravity or, put differently, whether
one can take in a consistent way the NR limit of quantum gyawotivated by this we wish to
address the following intriguing question:

can one define a consistent NR theory of quantum gravity?

String theory is one approach to define a theory of quantumitgrdn this talk we wish to
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discuss the definition of a NR string theory including its ertging geometry and some of its basic
properties. We will first show how the geometry correspogdimNR string theory can be viewed
as a generalization of the well-known Newton-Cartan (N@ngetry that underlies NC gravity.

2. From NC Gravity to String NC Gravity
The independent fields @i-dimensional NC geometry are given tg=1,--- ,D —1)

{1, Ex® My} (2.1)

Here, 1, is the time-like Vierbein acting as the clock function afg? is the spatial Vierbein
acting as the ruler. The charge corresponding to the gaulgeMig is a central charge in the
Galilei algebra thereby extending it to the Bargmann algeBihese gauge fields transform under
(local) spatial rotations with parameterd,,, Galilean boosts with parameter8 and central charge
transformations with parameteras follows:

5‘[[_1 — O7
SE2 =A% EL + A%, (2.2)
5MIJ == 0“0-+AaE“a.
The spin-connection fieId§2uab corresponding to spatial rotations a@,® corresponding to
Galilean boosts are functions of , E;,* andM,,.

In NC gravity one cannot define a single non-degenerate arfetrihe full spacetime like the
Riemannian metric in general relativity. Instead, one cgiiné two degenerateetrics

that are invariant under the Bargmann transformations).(Z-&reE*, is the projective inverse
of E;,® which, unlike the spatial Vierbein, is invariant under Gl boosts. This means that the
combination

EuaEvbéab (2.4)

is not invariant under Galilean boosts and, for this reasannot be used as a metric. In order to
make a boost-invariant combination one often considersahgination

HIJV — EuaEVb5ab+ MIJTV + MVTIJ .

However, this combination is not invariant under centrarge transformations. Nevertheless, it
is used in the construction of a NR particle action coupleti@ gravity in such a way that the
central charge gauge fieM,, couples to the particle via a Wess-Zumino (WZ) term of thenfor

M % (2.5)

wherex*(T) is an embedding coordinate. This leads to a particle Lagaartbat is invariant under
central charge transformations up to a total derivative villleoften call the symmetric tensadt;,
the transverse metric artgl, the longitudinal metric.
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The central charge gauge fieldl, of NC gravity has a precursor in general relativity as an
Abelian gauge fieId?Iu to be added to general relativity. The only difference ig tha Poincaré
algebra does not get modified by the gauge ﬂ&Ld This gauge field plays a crucial role in con-
structing NR limits without divergencies. For instancersihg from the Klein-Gordon Lagrangian
coupled to general relativity one can only obtain the Scimgel Lagrangian coupled to NC grav-
ity as a NR limit provided one extends general relativityhndt fluxless Abelian gauge fielﬁp
that couples to @omplexKlein-Gordon scalar. Similarly, one can only define a NR tiofia rel-
ativistic particle coupled to general relativity withouvergencies provided the relativistic particle
couples tavl, via a WZ term of the form

M3 . (2.6)

It is instructive to give some details here. To define the Nittlive first express the Riemannian
metric of general relativity and the gauge fidﬁ@, in terms of the NC fields (2.1) and a contraction
parametero. Next, after substituting these expressions into the adafathe relativistic particle
coupled to general relativity, we take the limit — . This leads to a divergence linear
coming form the kinetic term that is cancelled by a similaredgent term coming from the WZ
term by expressing?l,l in terms of the NC fields as follows:

Given the fact that a vector field only couples via a WZ term tuadicle, it is clear that one
cannot apply the same procedure to define the NR limit of agstrin this case, it is the Kalb-
Ramond 2-form gauge fiew that couples to the relativistic string via a WZ term of thenfo

£%P 9o xH Ipx By , (2.8)

whered, (a = 0,1) is the derivative with respect to the world-sheet coordisat” andx" (o)
are the string embedding coordinates. It turns out thahtpaktie NR limit of a string leads to a
divergence quadratic im coming from the kinetic term. To cancel this quadratic diesrce we
cannot work with a NC geometry since that contains only oaelcfunctiont,, and there is no way
to express the Kalb-Ramond field in terms of this single clagiction. To cancel the quadratic
divergence coming from the kinetic term we nea clock functionst,” (A= 0,1) and write

whereB,,, is the NR Kalb-Ramond field. This leads to a new so-called Sbi@etry that is char-
acterized bytwo special directions instead of the single Newtonian timeddion in NC gravity.
The difference between particles and strings is that ag@rsiweeps out a one-dimensional time
direction whereas a sting sweeps out two directions lodgial to the string: one time direction
and one spatial direction, see Figure 2.

Ignoring central extensions the algebra underlying the $@metry is the so-called string
Galilei algebra where we distinguish between the two dinestA = 0,1 longitudinal to the string
and the remaining directiorss= 2, - -- D — 1 transverse to the string. We thus have

2 longitudinal indices A

D flat indices— (2.10)
D-2 transverse indices a
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Figure 2: A particle (left) sweeps out a one-dimensional time diattivhereas a string (right) sweeps out
two directions: one time and one spatial direction.

with the following symmetries and generators:

longitudinal translations  Ha (2.11a)
transverse translations P; (2.11b)

string Galilei boosts  Gap (2.11¢)
longitudinal Lorentz rotations Mag (2.11d)
transverse spatial rotations Jap (2.11e)

This string Galilei algebra is extended to a so-called eobdrstring Galilei algebra wittwo types
of non-central generators:

Za and Zag With ZAA =0. (2.12)
The independent string NC fields are
{t," E& MM (2.13)

For the construction of a NR string action we need both a tadgal metrict,, and a transverse
metricHy, which are the following generalizations of the particleecgiven in egs. (2.3) and (2.5),
respectively:

longitudinal metric: 1, = 1,”1,%Nas,

transverse metric: Hyy = E,2E,"8ap+ (1, My B + 1AM, B) nas.

3. Non-rélativistic String Theory

We are now in a position to construct the action of NR strireptly in a general SNC gravity
background. For flat spacetime the action was already givengatime ago and reads [2, 3]

1
Stat = _47'[(,‘{’

1we call a generator non-central if it only has non-zero comaiaus due to its index structure.

/ 20 (9XE X8+ A IX + A OX) (3.1)
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with
X =x0+xt, X =x0—xt (3.2)

and similar for the Lagrange muItipIieVs,X. A special feature of NR string theory is that the
(perturbative) spectrum only contains winding stringsiglthe compack® direction [2].

The presence of the Lagrange multipliers can be understedtearesult of taking the NR
limit of the relativistic string action in Polyakov form. This best explained by considering the
following relativistic particle action coupled to generalativity in Polyakov form:

Spol = —%/dr{ —EEHAX“EVBXVnA3+Mze—ZMMux“}.

Hereeis the worldline Einbein ani¥ is a mass parameter. Expanding the general relativity fields
in terms of the SNC background fields one encounters thewlp quadratic divergence that is
not cancelled by the Kalb-Ramond field in the Wess-Zuminmter

Srol(w :——/dr w? [T xH — mq (3.3)

It should be noted that this is an artefact of the Polyakomfdation. In the Nambu-Goto formula-
tion there is no quadratic divergence left. The quadratierdience given in (3.3) is not fatal. The
reason for this is that it is the square of something and therean be re-written, using a Lagrange
multiplier A as follows:

Spor (@ :——/dr A (T3 —me) — —— A 2} (3.4)

42
Written in this form, the limit thatv — c can be taken and one ends up with the following NR
Polyakov action:

Sol(NR) = —%/dr%{X“XVHHerA(T“X“—me)}. (3.5)

Integrating out the Lagrange multiplidrone finds that

1
TuX
m

e= (3.6)

Substituting this back into the Polyakov action (3.5) ontaots the following NR particle action
in Nambu-Goto form:

x“xV
Sue (NR) /d e 3.7)

One can now take a similar limit of the relativistic Polyalgixing. We thus find the following
expression for a NR string in a (matter-coupled) SNC baakgud4, 5]:2

Ssne = ——/d2 V—hhP 3 xHdpx’Hyy + £7P (A earu+)\earu)03x“}

- /dza £%B 93 IpxX" By + E/dza\/—h R(®-1InG), (3.8)

2For other recent work on non-relativistic strings in a carbackground, see [6, 7, 8, 9, 10, 11, 12].
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whereT is the string tensiong® are the world-sheet coordinatds,z = eaaeﬁbnab is the world-
sheet metric with Zweibeine,2,R? is the Ricci scalar defined with respecthgg andx (o),
u=0,1--- D—1 are the string embedding coordinates. The action (3.8)d®scribes the cou-
pling to the background Kalb-Ramond fieB},, and the dilatond. FurthermoreA and A are
two world-sheet Lagrange multiplier fields whose equatiohsotion allow us to solve for the
world-sheet metridi, g in terms of the pullback of the longitudinal metrg, as follows:

The definition ofG occurring in the string sigma model action (3.8) in termdHaf, and 7,” is
given by
Finally, the lightcone componentg , T, of r,lA ande, , e, of e, are defined in [4, 5].

Upon integrating out the Lagrange multipliers, one can sti@t/the string action is invariant

under Galilean boosts with parameta¥®, non-central charge transformations with parameters
A~ and second non-central charge transformations with paess@®g (with 0”a = 0):

5TIJA == 07

SEN = - TP, (3.11)
HereD,(w) is the Lorentz-covariant derivative with respect to thegitudinal Lorentz rotations.
Note that the gauge field corresponding to the second namateharge transformation does not

occur in the string action. The invariance under the firstoentral charge transformations is valid
provided that the following zero torsion constraint hoftis:

Dy (w)1,* =0. (3.12)

Part of this constraint contains the spin-connection ﬁqde, enabling one to solve this connection
field in terms ofr,” and its derivative. The remaining part is a geometric caigtigiven by the
projection of (3.12) that does not contain the spin-corinact

ec1,80,1,° =0. (3.13)

An important feature of the NR action (3.8), which is absenthe relativistic case, is that
the action is invariant under certain Stiickelberg symregwi the background fields implying that
some of the components only occur in special combinationsinar thing happens for the NR
Nambu-Goto particle coupled to a vector gauge fild

m XHXY :
&G(N.R.):—E/dT{WHW—BHX“}, (3.14)
o

3At the classical level there is another way to achieve iavaré of the action under the first non-central charge
transformations by assigning to the Kalb-Ramond field araexéntral charge transformation that is proportional & th
torsion [12].



NR String Theory Eric A. Bergshoeff

in which case the Stiickelberg symmetries are given by
1
Hpv —>Huv+§(rucv+rvcu), By —Cyu. (3.15)

In terms of the Stlickelberg-invariant combinations the MRiple action (3.14) reads

m EAE® oup ,
SwNR)=—3 /dr{fAB + 1(Hoo— Bo) + E” (Hoa — BA,)} , (3.16)

where we have used flat indices and where we have defined
T=x'1,, EXN =x“E,N. (3.17)

Similarly, one finds that the NR string action (3.8) is ina@auti under the following Stlickelberg
symmetries

in terms of an arbitrary paramet€f,*(x).

4. T-duality

Relativistic T-duality relates relativistic string thgotompactified on a small radius to string
theory compactified on a large radius. It is a perturbativaragtry that can also relate different
string theories. T-duality is a stringy phenomenon, butwaswill see in this section, it does not
depend on the relativistic nature of string theory. For tbevenience of the reader, we will first
briefly review the relativistic case since the procedure ¢dve the NR T-duality rules is very
similar. Our starting point is the relativistic Polyakovisg action given by

+%T/d2m/—hR(&>—%ln(—é))},

whereéw is the spacetime metriBuV is the Kalb-Ramond two-formi) is the dilaton field and
G= detéuv. We split the embedding coordinatesxés= (y, xi) wherey is a spacelike coordinate
and make a corresponding decomposition of the spacetinus fielthe action (4.1). We then
assume thay is an isometry direction and that the background fields atependent of. Next,
we replaced,y by V, introducing a Lagrange multipligr that inforces the following equation of
motion ofVy:

€79,V = 0. (4.2)

One can solve (4.2) ag = dgy (ignoring possible non-contractible cycles on the wordgghand
substitute this solution back into the action to obtain thgioal action (4.1).
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Instead, one can solve for the equation of motiolphs

Ve = éi(éyiaﬁxin“ﬁ +&9PByidpx + eP 3 (4.3)
vy

and substitute this solution back into the action. The tegphction describes a relativistic string
dual sigma model in a dual backgroufidThe map between the background fields specified by
Gy, Buy and® as in eq. (4.1) and the dual background fieljs,, B, and® is given by the so-
called Buscher rules [13, 14]. The fact that these two bamkuis are T-dual to each other implies
that the original string sigma model (4.1), when reduced@bkspatial target space direction, gives
the same theory that one obtains after a (dual) spacelikectied of the dual string sigma model.
The T-duality transformation can also be used as a solutmeting transformation in the sense
that the T-dual of a solution of the background field equatibmotion produces a new solution of
the same set of equations of motion.

Now, we would like to perform the procedure described abavelitain the nonrelativistic
T-duality rules®> The basic difference with the relativistic case is that in $tfng theory the lon-
gitudinal and transverse directions are not at the samafpoln the action (3.8), this asymmetry
is manifest in the terms with the Lagrange multipliers

e (AeaTy+A&Ty), (4.4)

where the string only couples to the longitudinal vierbejnt,. This explains why there are
distinct T-dualities depending on the nature of the isoyndirection. Here, we summarize the
results of three different T-dualities characterized lg/ifometry directiory:

i. Longitudinal Spatial T-duality relates NR string theory on a SNC background to relativistic
string theory on a Riemannian background with a null isoynkte= d,:

(TIJAvH[JV7B[JV7q)) L) (éuv,éuv,&)) W|th éyy: 0 (45)

Note that the longitudinal spatial isometry becomes nuthimdual theory. There are fewer
fields in the NR string theory than in the relativistic stritingory due to the presence of the
Stlckelberg symmetries (3.18) in the NR case.

ii. Longitudinal Lightlike T-duality maps the NR string theory on a SNC background with a
longitudinal lightlike isometry to NR string theory on a Ta SNC background.

ii. Transverse T-duality maps NR string theory on a SNC geometry with a transverseasgm
to a NR string theory on a dual SNC background. The longitidifierbein 7, is inert
under this type of T-duality. The SNC fields transform to tlialdSNC fields in a way that
is very similar to the Buscher’s rules in the relativisticea

4The equation of motion of @ does not determine how the dilaton field transforms. Itssfiamation is obtained
to compensate the shift i@ under T-duality transformations. In the non-relativisttcing theory, one has to take into
account the contribution of the Lagrange multipliers todieéerminan( if they are integrated out [4].

5In nonrelativistic string theory, one can derive the anaégf the Buscher rules in two ways. One either applies
the description above to the NR sigma model (3.8) [4] or takesnrelativistic limit of the Buscher rules [5]. These two
approaches produce the same results for the longitudidablity and the transverse T-duality. However, if the istgne
direction is lightlike, the NR limit of the Buscher rules isigular.
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Like in relativistic string theory, NR T-duality can be usasla tool to generate solutions of NR
string theory. Remarkably, the longitudinal T-dualityosis us to produce solutions of NR string
theory by taking the T-dual of relativistic string solut®equipped with a null isometry. There
is one restriction in this scenario. The non-relativisiignsa model requires the geometric con-
straints (3.13); therefore, the relativistic solution slioalso satisfy the T-dual of these geometric
constraints. In the next section we will give an explicit eyde of how to construct out of a known
solution of general relativity a new solution of SNC gravity

5. Equations of Motion

The equations of motion of the SNC background fields can beirdd by taking the NR
limit of the relativistic beta functions. Our starting pbia the set of relativistic string theory beta
functions which up t@®(a'?) are given by

~ ~ AN A A 1 ~ ~
B;?V = a/<RuV + ZDHDVCD_ ZH/Jpavaa> , (5.1a)
B ! 1eon PO
- D-26 T T Y AR
where
~ ~ 1 ~
F=0-2In(-0). (5.2b)

Following [15, 16, 5], making the following expansion in @arge powers of,

My =T0y+0(w?), (5.3a)
RPouy = RP oy + O(w 2), (5.3b)
Hyuvp = Huvp +O(w™?), (5.3¢)
Huvp = 3uByp + 0yBpy + pBuy, (5.3d)

it is possible to take they — oo limit of the equations above and the result defines the eaustf
motion of SNC gravity coupled to the B field and dilaton, wilte tfturther condition given by the
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geometric constraints (3.13). We thus find, u;ﬂ(m’z), the following SNC equations [5]

ENESB, = a'Pug, (5.4a)
ExESBi = a'Que, (5.4b)
TATS (N"®B, — £*%BR,) = o (N"®Pag — £"°Qug) (5.40)
Th EX/(éEB[TV + EABB;E?\;) = o (Pax +a%Qen) (5.4d)
D —26 / 1 / / 1 U=Ual
BF =———0d DA/DA¢+—RA/A —DA/q)DAq)——HA/B/C/HABC , (54e)
2 4 48
where
1 pa
1, R
QIJV — _ED HA/uv+|:| q)HA/uv. (5-5b)

Note that, due to the Stlickelberg symmetries (3.18), ther@e@equations of motion solely in the
longitudinal directions except for the single equationegivn eq. (5.4c)

We now wish to construct solutions to these SNC equations aifom by applying the NR
T-duality rules, discussed in the previous section, totgmig of the DSM. Acceptable solutions of
the DSM are much easier to find by taking a solution of genefativity that has a null isometry
direction and that satisfies the T-dual of the geometric tcaimés (3.13). A first interesting example
is given by thepp-wave solution of general relativit§:

ds’ = 2dudv+K(zg))diF + dZy), (5.6a)
B=0, (5.6b)
e =g, (5.6¢)

wherex! = {u, v, zg},u,v are two null-directions an&(zg) is a harmonic function of the

transverse coordinateg,. This solution has a null-isometry directigrand, as it turns out, satisfies
the T-dual of the geometric constraints (3.13). Thus, filfsilall the requirements to be a solution
of the DSM. We can therefore obtain a solution of SNC gravityabting on this pp-wave with an

(inverse) NR T-duality along the null isometry directienin this way we obtain the following NR

fundamental string solution of SNC gravity:

1,%d% = dx¥, (5.7a)
1,tdx =dy, (5.7b)
Huydx'dx’” = K(zg))(dX°)? +dZy), (5.7¢)
By =0, (5.7d)

e? =g, (5.7¢€)

6Actually, this solution is arindependent truncation of gp-wave solution.

10
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wherexH = {X2, y, Zg)} andy is the image under the inverse map of theirection defining the
spatial direction along the fundamental string. Takilg= 10, a null reduction of thep p-wave
solution generates a 0-brane solution in nine dimensiongmFm T-dual point of view, the same
9D O-brane solution can be obtained by a dimensional resluaf the NR fundamental string
solution along the longitudinal spatial direction, seeurig3.

SNC T-duality DSM
10D fundamental pp-wave
string

9D 0-brane

Figure 3: The pp-wave solution in the DSM is mapped under T-duality along kiisametry direction to
the fundamental string solution in SNC gravity. This impli@at a null reduction of thpp-wave leads to
the same nine dimensional 0-brane solution as the one ebitéiy a double dimensional reduction of the
SNC fundamental string.

In the NR solution that we have obtained not all the companehthe SNC fields are specified.
This signals the fact that the NR string only couples to asubkthe (matter coupled) SNC fields,
i.e. the string only couples to those combinations of fieldd are invariant under the Stiickelberg
symmetries given in eq. (3.18). We furthermore note thaposjte to the relativistic case, the
NR fundamental string solution has a zero dilaton. This wasetexpected from the T-dual point
of view: the NR fundamental string is the image under T-duadf the pp-wave in the DSM
and, according to Figure 3, thjgsp-wave should reduce to the same 9D 0-brane solution as the
fundamental string. However, the reduction of thp-wave along a null isometric direction
produces a zero dilaton since the corresponding KaluzaxisiealarG,, is identically zero in the
DSM. This explains why also the fundamental string solutias a zero dilaton.

These and other particular properties of the fundamentiigsand the existence of more
solutions will be discussed in more detail in a forthcomindplpcation.

6. Conclusions

In this talk we showed how NC geometry, which is the naturaharfor NR patrticles, should
be extended to what we called SNC geometry in order to incatpahe notion of NR strings. In
fact, we gave the explicit expression for the Polyakov forfmra dNR string moving in a general
SNC background [4, 5] thereby extending the case of a flatgrvacdkd [2, 3] and of special curved
backgrounds [17]. We gave both the action and the symmaetrasform the underlying SNC
algebra. A special feature is that there are additionalkettierg symmetries which are related to
the fact that not all components of the (matter coupled) Sk@ity couple to the string. As an
example of this phenomenon we discussed the NR particleandhsimilar thing happens.

11
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After presenting the NR string action we discussed how thegivestic T-duality could be
extended to a NR T-duality. A crucial difference with theatalistic case is that there exist differ-
ent T-dualities depending on the direction of the isometrgation with respect to the directions
longitudinal to the string. We discussed three differentkiof NR T-dualities.

We finally discussed the equations of motion of the (mattepted) SNC background fields
and showed how the NR T-duality can be used to produce outafRkrsolutions of general rel-
ativity that satisfy certain restrictions new solutionsSMC gravity. As an example we gave the
pp-wave solution of general relativity that gave us the sdéedafundamental string solution of
SNC gravity.

We hope that further investigations of the NR string theamgspnted in this talk will finally
answer the question whether the vertex in the Bronstein,@gdmeFigure 1, representing NR quan-
tum gravity can be given a meaning independent of relatitigory and, in particular, whether
there exist an independent notion of non-relativistic gadphy.
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