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1. Introduction

Starting from classical mechanics, there are at least threeinteresting ways to extend the theory
each of which introduces a constant of nature that is absent in classical mechanics: (1) at large
velocities with respect to the velocity of lightc the theory extends to special relativity; (2) at
small distances certain physical quantities get quantizedin units of the reduced Planck’s constantℏ

corresponding to quantum mechanics and (3) a gravitationalforce can be introduced via Newton’s
constantG leading to Newtonian gravity. There are two well-known waysto combine two of these
extensions: (1) extending classical mechanics with high velocities and gravity leads to general
relativity and (2) extending classical mechanics to high velocities and small distances leads to
quantum field theory. Logically speaking, however, there isa third way, namely extending classical
mechanics to small distances and gravity. This would lead toa theory of non-relativistic (NR)
quantum gravity. Finally, the maximal extension to high velocities, small distances and gravity
leads to the long looked for theory of quantum gravity, see the so-called Bronstein cube [1] in
Figure 1.

Figure 1: The Bronstein cube shows how classical mechanics can be extended in three different ways to
(1) special relativity, (2) quantum mechanics and (3) Newtonian gravity. Combining two of these extensions
leads to general relativity, quantum field theory or NR quantum gravity. Ultimately, combining all three
extensions leads to quantum gravity.

Usually, the issue of finding a consistent theory of quantum gravity is approached either by
adding gravity to quantum field theory or by quantizing general relativity. The Bronstein cube
suggests a third way to approach this issue: can quantum gravity be viewed as the relativistic
extension of a self-consistent NR theory of quantum gravity? This leads to the related question of
how essential relativity is in constructing a theory of quantum gravity or, put differently, whether
one can take in a consistent way the NR limit of quantum gravity. Motivated by this we wish to
address the following intriguing question:

can one define a consistent NR theory of quantum gravity?

String theory is one approach to define a theory of quantum gravity. In this talk we wish to
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discuss the definition of a NR string theory including its underlying geometry and some of its basic
properties. We will first show how the geometry corresponding to NR string theory can be viewed
as a generalization of the well-known Newton-Cartan (NC) geometry that underlies NC gravity.

2. From NC Gravity to String NC Gravity

The independent fields ofD-dimensional NC geometry are given by(a= 1, · · · ,D−1)

{τµ ,Eµ
a
,Mµ} . (2.1)

Here, τµ is the time-like Vierbein acting as the clock function andEµ
a is the spatial Vierbein

acting as the ruler. The charge corresponding to the gauge field Mµ is a central charge in the
Galilei algebra thereby extending it to the Bargmann algebra. These gauge fields transform under
(local) spatial rotations with parametersλ a

b, Galilean boosts with parametersλ a and central charge
transformations with parameterσ as follows:

δτµ = 0,

δEµ
a = λ a

bEµ
b+λ aτµ ,

δMµ = ∂µσ +λaEµ
a
.

(2.2)

The spin-connection fieldsΩµ
ab corresponding to spatial rotations andΩµ

a corresponding to
Galilean boosts are functions ofτµ ,Eµ

a andMµ .
In NC gravity one cannot define a single non-degenerate metric for the full spacetime like the

Riemannian metric in general relativity. Instead, one can definetwo degeneratemetrics

τµν = τµτν and hµν = Eµ
aEν

bδ ab (2.3)

that are invariant under the Bargmann transformations (2.2). HereEµ
a is the projective inverse

of Eµ
a which, unlike the spatial Vierbein, is invariant under Galilean boosts. This means that the

combination
Eµ

aEν
bδab (2.4)

is not invariant under Galilean boosts and, for this reason,cannot be used as a metric. In order to
make a boost-invariant combination one often considers thecombination

Hµν = Eµ
aEν

bδab+Mµτν +Mντµ .

However, this combination is not invariant under central charge transformations. Nevertheless, it
is used in the construction of a NR particle action coupled toNC gravity in such a way that the
central charge gauge fieldMµ couples to the particle via a Wess-Zumino (WZ) term of the form

Mµ ẋµ (2.5)

wherexµ(τ) is an embedding coordinate. This leads to a particle Lagrangian that is invariant under
central charge transformations up to a total derivative. Wewill often call the symmetric tensorHµν

the transverse metric andτµν the longitudinal metric.
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The central charge gauge fieldMµ of NC gravity has a precursor in general relativity as an
Abelian gauge fieldM̂µ to be added to general relativity. The only difference is that the Poincaré
algebra does not get modified by the gauge fieldM̂µ . This gauge field plays a crucial role in con-
structing NR limits without divergencies. For instance, starting from the Klein-Gordon Lagrangian
coupled to general relativity one can only obtain the Schrödinger Lagrangian coupled to NC grav-
ity as a NR limit provided one extends general relativity with a fluxless Abelian gauge field̂Mµ

that couples to acomplexKlein-Gordon scalar. Similarly, one can only define a NR limit of a rel-
ativistic particle coupled to general relativity without divergencies provided the relativistic particle
couples toM̂µ via a WZ term of the form

M̂µ ẋµ
. (2.6)

It is instructive to give some details here. To define the NR limit we first express the Riemannian
metric of general relativity and the gauge fieldM̂µ in terms of the NC fields (2.1) and a contraction
parameterω . Next, after substituting these expressions into the action of the relativistic particle
coupled to general relativity, we take the limitω → ∞. This leads to a divergence linear inω
coming form the kinetic term that is cancelled by a similar divergent term coming from the WZ
term by expressinĝMµ in terms of the NC fields as follows:

M̂µ = ωτµ +mµ . (2.7)

Given the fact that a vector field only couples via a WZ term to aparticle, it is clear that one
cannot apply the same procedure to define the NR limit of a string. In this case, it is the Kalb-
Ramond 2-form gauge field̂Bµν that couples to the relativistic string via a WZ term of the form

εαβ ∂αxµ∂β xν B̂µν , (2.8)

where∂α (α = 0,1) is the derivative with respect to the world-sheet coordinatesσ α andxµ(σ α)

are the string embedding coordinates. It turns out that taking the NR limit of a string leads to a
divergence quadratic inω coming from the kinetic term. To cancel this quadratic divergence we
cannot work with a NC geometry since that contains only one clock functionτµ and there is no way
to express the Kalb-Ramond field in terms of this single clockfunction. To cancel the quadratic
divergence coming from the kinetic term we needtwo clock functionsτµ

A (A= 0,1) and write

B̂µν = ω2εABτµ
Aτν

B+Bµν , (2.9)

whereBµν is the NR Kalb-Ramond field. This leads to a new so-called SNC geometry that is char-
acterized bytwo special directions instead of the single Newtonian time direction in NC gravity.
The difference between particles and strings is that a particle sweeps out a one-dimensional time
direction whereas a sting sweeps out two directions longitudinal to the string: one time direction
and one spatial direction, see Figure 2.

Ignoring central extensions the algebra underlying the SNCgeometry is the so-called string
Galilei algebra where we distinguish between the two directionsA= 0,1 longitudinal to the string
and the remaining directionsa= 2, · · ·D−1 transverse to the string. We thus have

D flat indices→
{

2 longitudinal indices A

D-2 transverse indices a
(2.10)
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time

particle (closed) string

time

space

Figure 2: A particle (left) sweeps out a one-dimensional time direction whereas a string (right) sweeps out
two directions: one time and one spatial direction.

with the following symmetries and generators:

longitudinal translations HA (2.11a)

transverse translations Pa (2.11b)

string Galilei boosts GAb (2.11c)

longitudinal Lorentz rotations MAB (2.11d)

transverse spatial rotations Jab (2.11e)

This string Galilei algebra is extended to a so-called enhanced string Galilei algebra withtwo types
of non-central1 generators:

ZA and ZAB with ZA
A = 0. (2.12)

The independent string NC fields are

{τµ
A
,Eµ

a
,Mµ

A} (2.13)

For the construction of a NR string action we need both a longitudinal metricτµν and a transverse
metricHµν which are the following generalizations of the particle case given in eqs. (2.3) and (2.5),
respectively:

longitudinal metric: τµν ≡ τµ
Aτν

BηAB,

transverse metric: Hµν ≡ Eµ
aEν

bδab+
(

τµ
AMν

B+ τν
AMµ

B)ηAB.

3. Non-relativistic String Theory

We are now in a position to construct the action of NR string theory in a general SNC gravity
background. For flat spacetime the action was already given along time ago and reads [2, 3]

Sflat =− 1
4πα ′

∫

d2σ
(

∂xa ∂xbδab+λ ∂X+λ ∂X
)

(3.1)

1We call a generator non-central if it only has non-zero commutators due to its index structure.
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with
X = x0+x1

, X = x0−x1 (3.2)

and similar for the Lagrange multipliersλ , λ̄ . A special feature of NR string theory is that the
(perturbative) spectrum only contains winding strings along the compactx1 direction [2].

The presence of the Lagrange multipliers can be understood as the result of taking the NR
limit of the relativistic string action in Polyakov form. This is best explained by considering the
following relativistic particle action coupled to generalrelativity in Polyakov form:

SPol. =−1
2

∫

dτ
{

− 1
e

Êµ
Âẋµ Êν

B̂ẋν ηÂB̂+M2e−2MM̂µ ẋµ
}

.

Heree is the worldline Einbein andM is a mass parameter. Expanding the general relativity fields
in terms of the SNC background fields one encounters the following quadratic divergence that is
not cancelled by the Kalb-Ramond field in the Wess-Zumino term:

SPol.(ω2) =−1
2

∫

dτ
1
e

ω2[τµ ẋµ −me
]2
. (3.3)

It should be noted that this is an artefact of the Polyakov formulation. In the Nambu-Goto formula-
tion there is no quadratic divergence left. The quadratic divergence given in (3.3) is not fatal. The
reason for this is that it is the square of something and therefore can be re-written, using a Lagrange
multiplier λ as follows:

SPol.(ω2) =−1
2

∫

dτ
1
e

{

λ (τµ ẋµ −me)− 1
4ω2λ 2

}

. (3.4)

Written in this form, the limit thatω → ∞ can be taken and one ends up with the following NR
Polyakov action:

SPol.(N.R.) =−1
2

∫

dτ
1
e

{

ẋµ ẋνHµν +λ
(

τµ ẋµ −me
)

}

. (3.5)

Integrating out the Lagrange multiplierλ one finds that

e=
τµ ẋµ

m
. (3.6)

Substituting this back into the Polyakov action (3.5) one obtains the following NR particle action
in Nambu-Goto form:

SN.G.
(N.R.) =−m

2

∫

dτ
ẋµ ẋν

τρ ẋρ Hµν . (3.7)

One can now take a similar limit of the relativistic Polyakovstring. We thus find the following
expression for a NR string in a (matter-coupled) SNC background [4, 5]:2

SSNC=−T
2

∫

d2σ
[√

−hhαβ ∂αxµ∂β xνHµν + εαβ(λ eα τµ + λ̄ ēα τ̄µ
)

∂β xµ
]

− T
2

∫

d2σ εαβ ∂αxµ∂β xνBµν +
1

4π

∫

d2σ
√
−hR

(

Φ− 1
4 lnG

)

, (3.8)

2For other recent work on non-relativistic strings in a curved background, see [6, 7, 8, 9, 10, 11, 12].
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whereT is the string tension,σ α are the world-sheet coordinates,hαβ = eα
aeβ

bηab is the world-
sheet metric with Zweibeineeα

a
,R(2) is the Ricci scalar defined with respect tohαβ andxµ(σ),

µ = 0,1, · · · ,D−1 are the string embedding coordinates. The action (3.8) also describes the cou-
pling to the background Kalb-Ramond fieldBµν and the dilatonΦ. Furthermore,λ and λ are
two world-sheet Lagrange multiplier fields whose equationsof motion allow us to solve for the
world-sheet metrichαβ in terms of the pullback of the longitudinal metricτµν as follows:

hαβ = ∂αxµ∂β xν τµν . (3.9)

The definition ofG occurring in the string sigma model action (3.8) in terms ofHµν andτµ
A is

given by

G= detHµν det
(

τρ
AHρσ τσ

B)
. (3.10)

Finally, the lightcone componentsτµ ,τ µ of τµ
A andeα , ēα of eα

a are defined in [4, 5].
Upon integrating out the Lagrange multipliers, one can showthat the string action is invariant

under Galilean boosts with parametersλ AA′
, non-central charge transformations with parameters

λ A and second non-central charge transformations with parametersσA
B (with σA

A = 0):

δτµ
A = 0,

δEµ
A′

= −λA
A′

τµ
A
, (3.11)

δmµ
A = Dµ(ω)λ A+λ A

A′Eµ
A′
+σA

Bτµ
B
.

HereDµ(ω) is the Lorentz-covariant derivative with respect to the longitudinal Lorentz rotations.
Note that the gauge field corresponding to the second non-central charge transformation does not
occur in the string action. The invariance under the first non-central charge transformations is valid
provided that the following zero torsion constraint holds:3

D[µ(ω)τν ]
A = 0. (3.12)

Part of this constraint contains the spin-connection fieldωµ
AB, enabling one to solve this connection

field in terms ofτµ
A and its derivative. The remaining part is a geometric constraint given by the

projection of (3.12) that does not contain the spin-connection:

εC
(Aτ[µ B)∂ν τρ ]

C = 0. (3.13)

An important feature of the NR action (3.8), which is absent in the relativistic case, is that
the action is invariant under certain Stückelberg symmetries of the background fields implying that
some of the components only occur in special combinations. Asimilar thing happens for the NR
Nambu-Goto particle coupled to a vector gauge fieldBµ :

SNG(N.R.) =−m
2

∫

dτ
{ ẋµ ẋν

τρ ẋρ Hµν −Bµ ẋµ
}

, (3.14)

3At the classical level there is another way to achieve invariance of the action under the first non-central charge
transformations by assigning to the Kalb-Ramond field an extra central charge transformation that is proportional to the
torsion [12].
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in which case the Stückelberg symmetries are given by

Hµν → Hµν +
1
2

(

τµCν + τνCµ
)

, Bµ →Cµ . (3.15)

In terms of the Stückelberg-invariant combinations the NR particle action (3.14) reads

SNG(N.R.) =−m
2

∫

dτ
{EA′

EB′δA′B′

τ
+ τ(H00−B0)+EA′

(H0A′ −BA′)
}

, (3.16)

where we have used flat indices and where we have defined

τ ≡ ẋµτµ , EA′ ≡ ẋµ Eµ
A′
. (3.17)

Similarly, one finds that the NR string action (3.8) is invariant under the following Stückelberg
symmetries

Hµν → Hµν − (Cµ
AτB

ν +Cν
Aτµ

B )ηAB, (3.18)

Bµν → Bµν +(Cµ
AτB

ν −Cν
Aτµ

B )εAB (3.19)

in terms of an arbitrary parameterCµ
A(x).

4. T-duality

Relativistic T-duality relates relativistic string theory compactified on a small radius to string
theory compactified on a large radius. It is a perturbative symmetry that can also relate different
string theories. T-duality is a stringy phenomenon, but, aswe will see in this section, it does not
depend on the relativistic nature of string theory. For the convenience of the reader, we will first
briefly review the relativistic case since the procedure to derive the NR T-duality rules is very
similar. Our starting point is the relativistic Polyakov string action given by

S=−T
2

∫

d2 σ{√γ γαβ ∂αxµ∂β xνĜµν + εαβ ∂αxµ∂β xν B̂µν + (4.1)

+
1

4π

∫

d2σ
√
−hR

(

Φ̂− 1
4 ln(−Ĝ)

)

},

whereĜµν is the spacetime metric,̂Bµν is the Kalb-Ramond two-form,̂Φ is the dilaton field and
Ĝ= detĜµν . We split the embedding coordinates asxµ =

(

y,xi
)

wherey is a spacelike coordinate
and make a corresponding decomposition of the spacetime fields in the action (4.1). We then
assume thaty is an isometry direction and that the background fields are independent ofy. Next,
we replace∂αy by Vα introducing a Lagrange multiplier ˜y that inforces the following equation of
motion ofVα :

εαβ ∂αVβ = 0. (4.2)

One can solve (4.2) asVβ = ∂β y (ignoring possible non-contractible cycles on the worldsheet) and
substitute this solution back into the action to obtain the original action (4.1).
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Instead, one can solve for the equation of motion ofVα as

Vα =
1

Ĝyy
(Ĝyi∂β xiηαβ + εαβ B̂yi∂β xi + εαβ ∂β ỹ) (4.3)

and substitute this solution back into the action. The resulting action describes a relativistic string
dual sigma model in a dual background.4 The map between the background fields specified by
Ĝµν , B̂µν andΦ̂ as in eq. (4.1) and the dual background fieldsG̃µν , B̃µν andΦ̃ is given by the so-
called Buscher rules [13, 14]. The fact that these two backgrounds are T-dual to each other implies
that the original string sigma model (4.1), when reduced along a spatial target space direction, gives
the same theory that one obtains after a (dual) spacelike reduction of the dual string sigma model.
The T-duality transformation can also be used as a solution generating transformation in the sense
that the T-dual of a solution of the background field equationof motion produces a new solution of
the same set of equations of motion.

Now, we would like to perform the procedure described above to obtain the nonrelativistic
T-duality rules.5 The basic difference with the relativistic case is that in NRstring theory the lon-
gitudinal and transverse directions are not at the same footing. In the action (3.8), this asymmetry
is manifest in the terms with the Lagrange multipliers

εαβ(λ eα τµ + λ̄ ēα τ̄µ
)

, (4.4)

where the string only couples to the longitudinal vierbeinτµ , τ̄µ . This explains why there are
distinct T-dualities depending on the nature of the isometry direction. Here, we summarize the
results of three different T-dualities characterized by the isometry directiony:

i. Longitudinal Spatial T-duality relates NR string theory on a SNC background to relativistic
string theory on a Riemannian background with a null isometry K = ∂y:

(

τµ
A
,Hµν ,Bµν ,Φ

) T−→
(

G̃µν , B̃µν ,Φ̃
)

with G̃yy = 0. (4.5)

Note that the longitudinal spatial isometry becomes null inthe dual theory. There are fewer
fields in the NR string theory than in the relativistic stringtheory due to the presence of the
Stückelberg symmetries (3.18) in the NR case.

ii. Longitudinal Lightlike T-duality maps the NR string theory on a SNC background with a
longitudinal lightlike isometry to NR string theory on a T-dual SNC background.

iii. Transverse T-duality maps NR string theory on a SNC geometry with a transverse isometry
to a NR string theory on a dual SNC background. The longitudinal Vierbein τµ

A is inert
under this type of T-duality. The SNC fields transform to the dual SNC fields in a way that
is very similar to the Buscher’s rules in the relativistic case.

4The equation of motion ofVα does not determine how the dilaton field transforms. Its transformation is obtained
to compensate the shift in̂G under T-duality transformations. In the non-relativisticstring theory, one has to take into
account the contribution of the Lagrange multipliers to thedeterminantĜ if they are integrated out [4].

5In nonrelativistic string theory, one can derive the analogue of the Buscher rules in two ways. One either applies
the description above to the NR sigma model (3.8) [4] or takesa nonrelativistic limit of the Buscher rules [5]. These two
approaches produce the same results for the longitudinal T-duality and the transverse T-duality. However, if the isometry
direction is lightlike, the NR limit of the Buscher rules is singular.

8
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Like in relativistic string theory, NR T-duality can be usedas a tool to generate solutions of NR
string theory. Remarkably, the longitudinal T-duality allows us to produce solutions of NR string
theory by taking the T-dual of relativistic string solutions equipped with a null isometry. There
is one restriction in this scenario. The non-relativistic sigma model requires the geometric con-
straints (3.13); therefore, the relativistic solution should also satisfy the T-dual of these geometric
constraints. In the next section we will give an explicit example of how to construct out of a known
solution of general relativity a new solution of SNC gravity.

5. Equations of Motion

The equations of motion of the SNC background fields can be obtained by taking the NR
limit of the relativistic beta functions. Our starting point is the set of relativistic string theory beta
functions which up toO(α ′2) are given by

β Ĝ
µν = α ′

(

R̂µν +2∇̂µ∇̂νΦ̂− 1
4

Ĥµρσ Ĥν
ρσ

)

, (5.1a)

β B̂
µν = α ′

(

− 1
2

∇̂ρĤρµν + ∇̂ρΦ̂Ĥρµν

)

, (5.1b)

β F̂ =
D−26

2
−α ′

(

∇̂µ∇̂µΦ̂+
1
4

R̂− ∇̂µΦ̂∇̂µΦ̂− 1
48

ĤµνρĤµνρ
)

, (5.1c)

where

Ĥµνρ = ∂µ B̂νρ +∂ν B̂ρµ +∂ρB̂ν µ , (5.2a)

F̂ = Φ̂− 1
4

ln(−Ĝ) . (5.2b)

Following [15, 16, 5], making the following expansion in inverse powers ofc,

Γ̂ρ
µν = Γρ

µν +O(ω−2) , (5.3a)

R̂ρ
σ µν = Rρ

σ µν +O(ω−2) , (5.3b)

Ĥµνρ = Hµνρ +O(ω−2) , (5.3c)

Hµνρ = ∂µBνρ +∂νBρµ +∂ρBν µ , (5.3d)

it is possible to take theω → ∞ limit of the equations above and the result defines the equations of
motion of SNC gravity coupled to the B field and dilaton, with the further condition given by the

9
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geometric constraints (3.13). We thus find, up toO(α ′2), the following SNC equations [5]

Eµ
A′Eν

B′β H
µν = α ′PA′B′ , (5.4a)

Eµ
A′Eν

B′β B
µν = α ′QA′B′ , (5.4b)

τ µ
A τν

B(ηABβ H
µν − εABβ B

µν) = α
′
(ηABPAB− εABQAB) , (5.4c)

τ µ
B Eν

A′(δ B
A β H

µν + εA
Bβ B

µν) = α
′
(PAA′ + εA

BQBA′) , (5.4d)

β F =
D−26

2
−α ′

(

∇A′∇A′
Φ+

1
4

RA′A
′ −∇A′Φ∇A′

Φ− 1
48

HA′B′C′HA′B′C′
)

, (5.4e)

where

Pµν = Rµν +2∇µ∇νΦ− 1
4

HµρσHν
ρσ

, (5.5a)

Qµν =−1
2

∇A′
HA′µν +∇A′

ΦHA′µν . (5.5b)

Note that, due to the Stückelberg symmetries (3.18), there are no equations of motion solely in the
longitudinal directions except for the single equation given in eq. (5.4c)

We now wish to construct solutions to these SNC equations of motion by applying the NR
T-duality rules, discussed in the previous section, to solutions of the DSM. Acceptable solutions of
the DSM are much easier to find by taking a solution of general relativity that has a null isometry
direction and that satisfies the T-dual of the geometric constraints (3.13). A first interesting example
is given by thepp-wave solution of general relativity:6

ds2 = 2dudv+K(z(8))du2+dz2
(8) , (5.6a)

B̂= 0, (5.6b)

eφ̂ = gs , (5.6c)

wherexµ = {u, v, z(8)} , u,v are two null-directions andK(z(8)) is a harmonic function of the
transverse coordinatesz(8). This solution has a null-isometry directionv and, as it turns out, satisfies
the T-dual of the geometric constraints (3.13). Thus, it fulfills all the requirements to be a solution
of the DSM. We can therefore obtain a solution of SNC gravity by acting on this pp-wave with an
(inverse) NR T-duality along the null isometry directionv. In this way we obtain the following NR
fundamental string solution of SNC gravity:

τµ
0dxµ = dx0

, (5.7a)

τµ
1dxµ = dy, (5.7b)

Hµνdxµdxν = K(z(8))(dx0)2+dz2
(8) , (5.7c)

Bµν = 0, (5.7d)

eφ = gs , (5.7e)

6Actually, this solution is au-independent truncation of app-wave solution.
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wherexµ = {x0
, y, z(8)} andy is the image under the inverse map of thev direction defining the

spatial direction along the fundamental string. TakingD = 10, a null reduction of thepp-wave
solution generates a 0-brane solution in nine dimensions. From a T-dual point of view, the same
9D 0-brane solution can be obtained by a dimensional reduction of the NR fundamental string
solution along the longitudinal spatial direction, see Figure 3.

T-duality

9D

10D

0-brane

pp-wave

DSMSNC

d
ou
b
le
d
im
en
sion

al

red
u
ction

n
u
ll
re
d
u
ct
io
n

string
fundamental 10D

Figure 3: The pp-wave solution in the DSM is mapped under T-duality along a null isometry direction to
the fundamental string solution in SNC gravity. This implies that a null reduction of thepp-wave leads to
the same nine dimensional 0-brane solution as the one obtained by a double dimensional reduction of the
SNC fundamental string.

In the NR solution that we have obtained not all the components of the SNC fields are specified.
This signals the fact that the NR string only couples to a subset of the (matter coupled) SNC fields,
i.e. the string only couples to those combinations of fields that are invariant under the Stückelberg
symmetries given in eq. (3.18). We furthermore note that, opposite to the relativistic case, the
NR fundamental string solution has a zero dilaton. This was to be expected from the T-dual point
of view: the NR fundamental string is the image under T-duality of the pp-wave in the DSM
and, according to Figure 3, thispp-wave should reduce to the same 9D 0-brane solution as the
fundamental string. However, the reduction of thepp-wave along a null isometric directionv
produces a zero dilaton since the corresponding Kaluza-Klein scalarGvv is identically zero in the
DSM. This explains why also the fundamental string solutionhas a zero dilaton.

These and other particular properties of the fundamental string and the existence of more
solutions will be discussed in more detail in a forthcoming publication.

6. Conclusions

In this talk we showed how NC geometry, which is the natural arena for NR particles, should
be extended to what we called SNC geometry in order to incorporate the notion of NR strings. In
fact, we gave the explicit expression for the Polyakov form of a NR string moving in a general
SNC background [4, 5] thereby extending the case of a flat background [2, 3] and of special curved
backgrounds [17]. We gave both the action and the symmetriesthat form the underlying SNC
algebra. A special feature is that there are additional Stückelberg symmetries which are related to
the fact that not all components of the (matter coupled) SNC gravity couple to the string. As an
example of this phenomenon we discussed the NR particle where a similar thing happens.
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After presenting the NR string action we discussed how the relativistic T-duality could be
extended to a NR T-duality. A crucial difference with the relativistic case is that there exist differ-
ent T-dualities depending on the direction of the isometry direction with respect to the directions
longitudinal to the string. We discussed three different kinds of NR T-dualities.

We finally discussed the equations of motion of the (matter coupled) SNC background fields
and showed how the NR T-duality can be used to produce out of known solutions of general rel-
ativity that satisfy certain restrictions new solutions ofSNC gravity. As an example we gave the
pp-wave solution of general relativity that gave us the so-called fundamental string solution of
SNC gravity.

We hope that further investigations of the NR string theory presented in this talk will finally
answer the question whether the vertex in the Bronstein cube, see Figure 1, representing NR quan-
tum gravity can be given a meaning independent of relativitytheory and, in particular, whether
there exist an independent notion of non-relativistic holography.
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