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Higher curvature theories are theories of the general form R+Rn, where R is the Ricci scalar
describing Einstein gravity and Rn denotes nth power of the Weyl, Riemann and Ricci tensors and
the curvature scalar [1, 2, 3, 4, 5, 6, 7, 8]. This class of models has also been explored in [9]. In
particular, as has been noted in [1], the inclusion of quadratic curvature terms in the action makes
the theory renormalizable. But there is a price to be paid namely the appearance of a massive
ghost states. This ghost state originates from the square of the Riemann, the Ricci or the Weyl
tensor. A particular class of such models, the R+R2 supergravity has been studied [10] and it is
connected to the inflationary dynamics of the Starobinsky model [11]. This models propagates the
usual massless graviton and a massive spin-0 state, the “scalaron". The latter can be identified with
the inflaton field. Therefore, in the R+R2 theory, inflation is driven entirely by the gravity itself,
without the need for an extra scalar and thus making the theory quite appealing. In addition, the
theory can easily be embedded in N = 1 supergravity, and its spectrum in has been determined in
[13] and [14].

However, the R+R2 theory should also include only the square of the Weyl tensor which is
also quadratic in the curvature since terms quadratic in the Riemann (or Ricci) tensor are related
to the square of the Weyl or the scalar curvature by the 4D Gauss-Bonnet topological term. The
inclusion of the Weyl tensor now leas to a considerable problem: the theory now propagates a
ghost spin-2 massive state [1]. It should be noted here that such states leads to the impossibility of
maintain at one shot both unitarity and propagation of positive energy states. Indeed, using a +iε
choice, opposite to the stanfdard one, one may achieve unitarity but in this case, negative energies
are propagaiting forward in time.

Here we will describe the massive Weyl2 theory, which contains also the standard Einstein-
Hilbert action, and its supersymmetric extensions. The latter are the N -extended Weyl2 super-
gravities. The inclusion of the Einstein-Hilbert action can be regarded as a mass deformation of the
massless theory. In addition, the maximal N = 8 of Poincare supergravity corresponds to N = 4
Weyl supergravity [15].

An interesting limit is the massless limit m→ 0 of the m2R+Weyl2 theory [16, 17, 18] of the
conformal supergravity [19, 20, 21]. These theories are very interesting although they propagate
ghost sates as in the massless limits, i.e. no Einstein-Hilbert term, they are simple examples of
superconformal theories with four derivative terms.

Let us now discuss the linearized super-Weyl2 theory. The super-Weyl tensor Wαβγ is a chi-
ral superfield, where α,β ,γ = 1,2 are standard SL(2,C) spinor indices. The spin of the highest
component of the Weyl superfield Wαβγ is a fermionic spin-3/2 field and therefore, the spin of the
Weyl multiplet is is (3

2 ,0). It also contains the spin-two field gµν with five degrees of freedom and
it satisfies

Wαβγ = W(αβγ) , (Wαβγ)
∗ = W

α̇β̇ γ̇
, D

δ̇
Wαβγ = 0 , (1)

Its bosonic content follows from

DγWδεα |=
1
6

(
i
4

εγδ Dεε̇Aε̇
α −

1
4

ε
β

εε
ρ

γWδβαρ

)
+(δ ε α) , (2)

where Wδβαρ and Aε̇
α are the Weyl tensor and the vector auxiliary of the N = 1 supergravity

(in spinorial notation). (δ ε α) denotes the additional five terms from the symmetrization of the
fermionic indices δ , ε and α [31].
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It turns out that the supersymmetric action of the massive Weyl gravity is

LΦ,W =
∫

d2
Θ2E R+4

∫
d2

Θ2E τ W 2 + c.c., (3)

where we have denoted as τ the complex coupling

τ =
1
g2 + iα. (4)

The bosonic sector of (3) turns out to be

e−1LW =
1
2

R+
1
3

AµAµ− 1
3

uu+
α

2

(
1
2

R2
HP−

2
3

FµνFρσ ε
µνρσ

)
+

1
2g2

(
W µνρσWµνρσ −

4
3

FµνFµν

)
,

(5)
where R2

HP = Wµνκλ εκλρσW µν

ρσ is the topological Hirzebruch-Pontryagin term, Fµν = ∂µAν −
∂νAµ is the field strength of the "auxiliary" Aµ and u is the auxiliary scalar. Note however, that the
vector "auxiliary" Aµ is dynamical in Weyl supergravity.

It is now straightforward to determine the spectrum of the massive N = 1 Weyl supergravity. It
contains the following states:

(i) The standard massless spin-2 graviton multiplet (h,qR) with helicity h and qR U(1)R charges,
with nB +nF = 4 dof:

gN =1 : (+2,0)+(+
3
2
,+

1
2
) , (6)

together with its CPT conjugate

(−3
2
,−1

2
)+(−2,0) . (7)

(ii) A massive spin-two supermultiplet in the non-standard sector. This is the massive N = 1
super-Weyl multiplet [33] with nB +nF = 16 dof:

wN =1 : Spin(2)+2×Spin(3/2)+Spin(1) . (8)

The massive states in N = 1 supergravity are arranged in USp(2) representations.

Therefore, the massive super-(Weyl)2 gravity theory contains a total of nB +nF = 20 dof.

Similarly, the spectrum of the all existing N -extended Weyl2 supergravities (N = 1,2,3,4)
in 4D can be determined. The physical spectrum of the various Weyl-supergravity theories is
summarized in the following table. The top helicities of each multiplet together with its CPT
conjugate are denoted in the first column [16, 17]:
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N = 4 N = 3 N = 2 N = 1

hmax = 2 2
hCPT

max = 0 2
hmax = 3/2 4
hCPT

max = 1/2 4

hmax = 2 2
hCPT

max =−1/2 2
hmax = 3/2 3
hCPT

max = 0 3
hmax = 1 1

hCPT
max = 1/2 1

hmax = 2 2
hCPT

max =−1 2
hmax = 3/2 2

hCPT
max =−1/2 2
hmax = 1 1
hCPT

max = 0 1

hmax = 2 2
hCPT

max =−3/2 2
hmax = 3/2 1
hCPT

max =−1 1
hmax = 1 1

hCPT
max =−1/2 1

(9)

The bosonic massive Weyl2 gravity theory in four dimensions is described by has the following
action

S =
∫

d4x
√
−g
(a

2
WµνρσW µνρσ +κ

2R
)
, (10)

where Wµνρσ = Rµνρσ − gµ[σ Rρ]ν − gµ[ρRσ ]ν −R/3gµ[ρgσ ]ν is the Weyl tensor. The Weyl2-term
is conformal invariant since under the conformal transformation

gµν → ĝµν = Ω
2gµν , (11)

the Weyl tensor is inert

Ŵ µ

νρσ =W µ

νρσ . (12)

Contrary, the Einstein-Hilbert term transforms under conformal transformations, as

R̂ = Ω
−2R−6Ω

−3gµν
∇µ∇νΩ. (13)

and thus, it can be regarded as a mass term in the theory.
The eom can be written as

Bµν +
2κ2

a
Gµν = 0, (14)

3



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
5
2

Highe Curvature SUGRA A. Kehagias

where Gµν is the Einstein tensor and the Bach tensor Bµν is given by

Bµν = ∇
ρ

∇σW σ
µρν +

1
2

RρσWρµσν . (15)

The Bach tensor transforms covarinatly under conformal transformations

B̂µν = Ω
−2Bµν . (16)

It is also symmetric and traceless due to conformal invariance as well as divergence-free due to
diff-invariance

Bµ

µ = 0, ∇
µBµν = 0. (17)

To find the spectrum of the theory one should determine the poles in the propagators. It turns
out that we have [1]

(i) A helicity-±2 massless standard graviton gµν .

(ii) A massive spin-two particle wµν with mass κ2/a. It is due to the Weyl2 term and it is is a ghost
for a > 0 or a tachyon for a < 0. This is the non-standard sector of the theory.

Therefore, the massive (Weyl)2 gravity theory contains seven propagating dof.
An alternative way to identify the spectrum of the bosonic massive Weyl theory is to express

it as a bimetric gravity theory with two spin-2 fields gµν and wµν . Consider for example the action

S =
∫

M
d4x
√
−g
(

M2
PR+ c1WµνρσW µνρσ + c2R2

)
. (18)

Now, let us introduce a second symmetric tensor field wµν . It can be shown that the two-derivative
action

S =
∫

M
d4x
√
−g
(

M2
PR(g)+

2
gW

Gµν(g)wµν − (wµνwµν −aw2)
)
. (19)

where Gµν = Rµν −1/2Rgµν is the Einstein tensor for the metric gµν and the last term describes
a mass term for wµν is classically equivalent to (18). Indeed, using the equation of motion for wµν

δS
δwµν

⇒ wµν =
1

gW

(
Rµν(g)−

1
6

gµνR
)
, (20)

in the action (19), it turns out that the theory is classically equivalent to (18) since

WµνρσW µνρσ = GB+2(RµνRµν − 1
3

R2), (21)

where GB is the Gauss-Bonnet term. In fact we find that

c1 =
1

2g2
W
, c2 =

a−1
4a−1

1
3g2

W
. (22)

Therefore, for a = 1 the scalar mode associated to the R2 term is absent and in this case, (19)
describes massive Weyl gravity.
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Eq.(19) describes a massless spin-2 gµν together with massive spin-2 wµν (for α = 1). Note
that the kinetic term for the massive spin-2 wµν is implicit in the in mixed term Gµν(g)wµν . In order
to explicitly see this, let us consider fluctuations hµν = gµν −ηµν around Minkowski spacetime
(metric ηµν ). Then we find that to quadratic order we have

S2 =
∫

d4x
√
−g
{
−M2

P

2
hµνE αβ

µν hαβ +
1

gW
wµνE αβ

µν hαβ −
(

wµνwµν −w2
)}

, (23)

where gW = MW/MP and E αβ

µν is as usual the tensor

E αβ

µν hαβ =−1
2

{
�hµν −2∂(µ∂αhα

ν)+∂µ∂νh−ηµν

(
�h−∂α∂β hαβ

)}
. (24)

Let us now define a new field

hµν = hµν −
2

gW M2
P

wµν , (25)

in tersm of which, the quadratic action (23) turns out to be written as

S2 =
∫

d4x
√
−g
{
−M2

P

2
h

µν
E αβ

µν hαβ +
1

g2
W M2

P
wµνE αβ

µν wαβ −
(

wµνwµν −w2
)}

. (26)

The field hµν is clearly the massless graviton and wµν is a second massive spin-2 tensor field.
Note however that the wrong sign (compared to hµν ) of the kinetic term of wµν indicating that the
second spin-2 tensor mode is actually a ghost. The bimetric gravity theory (19) may be turned into
a ghost-free theory by the inclusion of an infinite number of terms. This procedure has been shown
in [34] to be equivalent to adding an infinite number of higher derivative terms.

Another way to remove the ghost stae is the following. Let us add to the action (19) a term of
the form

cwµνE ab
µνwab (27)

with
c <− 2

g2
wM2

P
(28)

This term clearly removes the ghost, and, thus the theory will contain a graviton and a massive
spin-2 particle with canonical kinetic term. The action in this case reads

S =
∫

d4x
√
−g
(

M2
P R+

2
gw

Gµνwµν −
(
wµνwµν −w2)+ cwµνE ab

µνwab

)
(29)

Notice that the derivatives and the metric that appear in the definition of E are now covariant
derivatives and the full metric gµν in the previous action. The new EOM read

1
gw

Gµν −wµν +wgµν −
c
2

[
�wµν −2∇(µ∇

awν)a +∇µ∇νw−gµν

(
�w−∇a∇bwab

)]
= 0 (30)

or

1
gw

Gµν =
[
δ

a
µδ

b
ν −gµνgab +

c
2

(
�δ

a
µδ

b
ν −∇µ∇

a
δ

b
ν −∇ν∇

a
δ

b
µ +∇µ∇νgab−gµνgab�+gµν∇

a
∇

b
)]

wab

(31)
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and

M2
P Gµν =

1
gw

[
�wµν −∇σ ∇µwσ

ν −∇σ ∇νwσ
µ +Rµνw−Rwµν +∇(µ∇ν)w

− 2
(
Ga

µwνa +Ga
νwµa

)
+gµν

(
Gabwab− gw

2

(
wabwab−w2

)
+∇a∇bwab−�w

)]

+ 2
(

wa(µwa
ν)−wwµν

)
−2cwκλ

[
δ

δgµν

(
gκσ gλτE ab

στ

)]
wab +

c
2

gµνwκλ E ab
κλ

wab (32)

Flat space-time gµν = ηµν along with wµν = 0 remains a solution to (31) and (32). Linearizing
(31) around this background yields

1
gw

δGµν =
[
δ

a
µδ

b
ν −ηµνη

ab +
c
2

(
�δ

a
µδ

b
ν −∂µ∂

a
δ

b
ν −∂ν∂

b
δ

a
µ +∂µ∂νη

ab−ηµνη
ab�+ηµν∂

a
∂

b
)]

wab

(33)
with

δGµν =
1
2

(
∂µ∂

λ hνλ +∂ν∂
λ hµλ −�hµν −∂µ∂νh−ηµν∂

κ
∂

λ hκλ +ηµν�h
)

(34)

The linearized action is then given by

S(2) =
∫

d4x
[
−M2

P

2
h̄µνE ab

µν h̄ab−
1

ḡ2
wM2

P
wµνE ab

µνwab−
(
wµνwµν −w2)], (35)

where
− 1

ḡ2
wM2

P
= c+

2
g2

wM2
P

(36)

We can decompose h̄µν and wµν as

h̄µν = h̄⊥µν +∂µA⊥ν +∂νA⊥µ +

(
∂µ∂ν −

1
4

ηµν�

)
B+

1
4

ηµν h̄ (37)

wµν = w⊥µν +∂µC⊥ν +∂νC⊥µ +

(
∂µ∂ν −

1
4

ηµν�

)
D+

1
4

ηµνw (38)

where h̄⊥µν and w⊥µν are transverse traceless and C⊥ν is transverse. Then the action (35) becomes

S(2) =
∫

d4x
[M2

P

4

(
h̄⊥µν�h̄⊥µν −

3
8
(
h̄−�B

)
�
(
h̄−�B

))
+

1
2ḡ2

wM2
P

(
w⊥µν�w⊥µν −

3
8
(w−�D)�(w−�D)

)
+ 2C⊥µ �C⊥µ − 3

4
(w−�D)(w+�D)−w⊥µνw⊥µν

]
(39)

We introduce the following scalars

φ = h̄−�B , S = w−�D , S′ = w+�D (40)

so that (39) turns out to be

S(2) =
∫

d4x
[M2

P

4

(
h̄⊥µν�h̄⊥µν −

3
8

φ�φ

)
+

1
2ḡ2

wM2
P

(
w⊥µν�w⊥µν −

3
8

S�S
)
+2C⊥µ �C⊥µ − 3

4
SS′−w⊥µνw⊥µν

]
(41)
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There is no kinetic term for the field S′ and by using its EOM

S′ =− 1
2ḡ2

wM2
P
�S (42)

the action becomes

S(2)=
∫

d4x
[M2

P

4

(
h̄⊥µν�h̄⊥µν −

3
8

φ�φ

)
+

1
2ḡ2

wM2
P

(
w⊥µν�w⊥µν +

3
8

S�S
)
+2C⊥µ �C⊥µ−w⊥µνw⊥µν

]
(43)

Note that φ is the ghost of standard General Relativity. The propagating degrees of freedom are
therefore, a massless spin-2 field h̄⊥µν , a massive spin-2 field w⊥µν , a massless spin-1 field C⊥µ and a
scalar S.
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References

[1] K. S. Stelle, “Renormalization of Higher Derivative Quantum Gravity,” Phys. Rev. D 16 (1977) 953.
K. S. Stelle, “Classical Gravity with Higher Derivatives,” Gen. Rel. Grav. 9 (1978) 353.

[2] D. G. Boulware, G. T. Horowitz and A. Strominger, “Zero Energy Theorem for Scale Invariant
Gravity,” Phys. Rev. Lett. 50 (1983) 1726.

[3] F. David and A. Strominger, “On the Calculability of Newton’s Constant and the Renormalizability of
Scale Invariant Quantum Gravity,” Phys. Lett. B 143 (1984) 125.

[4] G. T. Horowitz, “Quantum Cosmology With a Positive Definite Action,” Phys. Rev. D 31 (1985) 1169.

[5] S. Deser and B. Tekin, “Shortcuts to high symmetry solutions in gravitational theories,” Class. Quant.
Grav. 20 (2003) 4877 [gr-qc/0306114]. “New energy definition for higher curvature gravities,” Phys.
Rev. D 75 (2007) 084032 [gr-qc/0701140].

[6] G. ’t Hooft, “A class of elementary particle models without any adjustable real parameters,” Found.
Phys. 41 (2011) 1829 [arXiv:1104.4543 [gr-qc]].

[7] J. Maldacena, “Einstein Gravity from Conformal Gravity,” arXiv:1105.5632 [hep-th].

[8] H. Lu, C. N. Pope, E. Sezgin and L. Wulff, “Critical and Non-Critical Einstein-Weyl Supergravity,”
JHEP 1110, 131 (2011) [arXiv:1107.2480 [hep-th]].

7



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
5
2

Highe Curvature SUGRA A. Kehagias

[9] L. Alvarez-Gaume, A. Kehagias, C. Kounnas, D. Lüst and A. Riotto, “Aspects of Quadratic Gravity,”
Fortsch. Phys. 64 (2016) no.2-3, 176 [arXiv:1505.07657 [hep-th]].

[10] S. Cecotti, “Higher Derivative Supergravity Is Equivalent To Standard Supergravity Coupled To
Matter. 1.,” Phys. Lett. B 190 (1987) 86.
S. Cecotti, S. Ferrara, M. Porrati and S. Sabharwal, “New Minimal Higher Derivative Supergravity
Coupled To Matter,” Nucl. Phys. B 306, 160 (1988).

[11] R. Kallosh and A. Linde, “Superconformal generalizations of the Starobinsky model,” JCAP 1306,
028 (2013) [arXiv:1306.3214 [hep-th]];
J. Ellis, D. V. Nanopoulos and K. A. Olive, “No-Scale Supergravity Realization of the Starobinsky
Model of Inflation,” Phys. Rev. Lett. 111, 111301 (2013) Erratum: [Phys. Rev. Lett. 111, no. 12,
129902 (2013)] arXiv:1305.1247 [hep-th]; JCAP 1310, 009 (2013) [arXiv:1307.3537 [hep-th]];
F. Farakos, A. Kehagias and A. Riotto, “On the Starobinsky Model of Inflation from Supergravity,”
Nucl. Phys. B 876, 187 (2013) [arXiv:1307.1137 [hep-th]];
S. Ferrara, R. Kallosh, A. Linde and M. Porrati, “Minimal Supergravity Models of Inflation,” Phys.
Rev. D 88, no. 8, 085038 (2013) [arXiv:1307.7696 [hep-th]];
R. Kallosh, A. Linde and D. Roest, “Superconformal Inflationary α-Attractors,” JHEP 1311, 198
(2013) [arXiv:1311.0472 [hep-th]];
J. Alexandre, N. Houston and N. E. Mavromatos, “Starobinsky-type Inflation in Dynamical
Supergravity Breaking Scenarios,” Phys. Rev. D 89, no. 2, 027703 (2014) [arXiv:1312.5197 [gr-qc]];
S. Ferrara and M. Porrati, “Minimal R+R2 Supergravity Models of Inflation Coupled to Matter,”
Phys. Lett. B 737, 135 (2014) [arXiv:1407.6164 [hep-th]];
A. Ceresole, G. Dall’Agata, S. Ferrara, M. Trigiante and A. Van Proeyen, “A search for an N = 2
inflaton potential,” Fortsch. Phys. 62, 584 (2014) [arXiv:1404.1745 [hep-th]];
C. Kounnas, D. Lüst and N. Toumbas, “R2 inflation from scale invariant supergravity and anomaly
free superstrings with fluxes,” Fortsch. Phys. 63, 12 (2015) [arXiv:1409.7076 [hep-th]];
I. Dalianis, F. Farakos, A. Kehagias, A. Riotto and R. von Unge, “Supersymmetry Breaking and
Inflation from Higher Curvature Supergravity,” JHEP 1501, 043 (2015) [arXiv:1409.8299 [hep-th]];
T. Terada, Y. Watanabe, Y. Yamada and J. Yokoyama, “Reheating processes after Starobinsky inflation
in old-minimal supergravity,” JHEP 1502, 105 (2015) [arXiv:1411.6746 [hep-ph]];
S. Ferrara and A. Kehagias, “Higher Curvature Supergravity, Supersymmetry Breaking and Inflation,”
Subnucl. Ser. 52, 119 (2017) [arXiv:1407.5187 [hep-th]];
S. Ferrara, A. Kehagias and A. Sagnotti, “Cosmology and Supergravity,” Int. J. Mod. Phys. A 31, no.
25, 1630044 (2016) [arXiv:1605.04791 [hep-th]].

[12] A. A. Starobinsky, “A New Type of Isotropic Cosmological Models Without Singularity,” Phys. Lett.
B 91, 99 (1980).
V. F. Mukhanov and G. V. Chibisov, “Quantum Fluctuation and Nonsingular Universe. (In Russian),”
JETP Lett. 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)].

[13] S. Ferrara, M. T. Grisaru and P. van Nieuwenhuizen, “Poincare and Conformal Supergravity Models
With Closed Algebras,” Nucl. Phys. B 138, 430 (1978).

[14] B. de Wit, J. W. van Holten and A. Van Proeyen, “Transformation Rules of N=2 Supergravity
Multiplets,” Nucl. Phys. B 167 (1980) 186.

[15] B. de Wit and S. Ferrara, “On Higher Order Invariants in Extended Supergravity,” Phys. Lett. 81B
(1979) 317.

[16] S. Ferrara, A. Kehagias and D. LÃijst, “Aspects of Weyl Supergravity,” JHEP 08 (2018), 197,
arXiv:1806.10016[hep-th]

8



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
5
2

Highe Curvature SUGRA A. Kehagias

[17] S. Ferrara, A. Kehagias and D. LÃijst, “Bimetric, Conformal Supergravity and its Superstring
Embedding,” JHEP 05 (2019), 100, arXiv:1810.08147 [hep-th].

[18] S. Ferrara, A. Kehagias and D. LÃijst, “Aspects of Conformal Supergravity,” arXiv:2001.04998
[hep-th].

[19] S. Ferrara, M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, “Gauging the Graded Conformal
Group with Unitary Internal Symmetries,” Nucl. Phys. B 129 (1977) 125.

[20] M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, “Superconformal Unified Field Theory,” Phys.
Rev. Lett. 39 (1977) 1109.
M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, “Properties of Conformal Supergravity,” Phys.
Rev. D 17 (1978) 3179.

[21] D. Z. Freedman and A. Van Proeyen, “Supergravity,” Cambridge University Press, 2012.

[22] J. M. Cline, S. Jeon and G. D. Moore, “The Phantom menaced: Constraints on low-energy effective
ghosts,” Phys. Rev. D 70, 043543 (2004) [hep-ph/0311312].

[23] H. Johansson and J. Nohle, “Conformal Gravity from Gauge Theory,” arXiv:1707.02965.
H. Johansson, G. Mogull and F. Teng, “Unraveling conformal gravity amplitudes,” arXiv:1806.05124
[hep-th].

[24] A. Salvio, “Quadratic Gravity,” arXiv:1804.09944 [hep-th].

[25] S. Ferrara and B. Zumino, “Structure of Linearized supergravity and Conformal Supergravity,” Nucl.
Phys. B 134 (1978) 301.

[26] R. J. Riegert, “The Particle Content Of Linearized Conformal Gravity,” Phys. Lett. A 105, 110 (1984).

[27] A. Balfagon and X. Jaen, “Review of some classical gravitational superenergy tensors using
computational techniques,” Class. Quant. Grav. 17, 2491 (2000) [gr-qc/9912060].

[28] L. Bel, CR Acad. Sci. Paris, 247 (1958) 1094, 248 (1959) 1297; I. Robinson, unpublished Kings
College Lectures (1958); Class. Quant. Grav. 14, 4331 (1997).

[29] C. Bachas and I. Lavdas, “Massive Anti-de Sitter Gravity from String Theory,” arXiv:1807.00591
[hep-th].

[30] N. Boulanger, “A Weyl-covariant tensor calculus,” J. Math. Phys. 46, 053508 (2005)
[hep-th/0412314].

[31] F. Farakos, S. Ferrara, A. Kehagias and D. Lüst, “Non-linear Realizations and Higher Curvature
Supergravity,” Fortsch. Phys. 65, no. 12, 1700073 (2017) [arXiv:1707.06991 [hep-th]].

[32] S. Ferrara, C. A. Savoy and B. Zumino, “General Massive Multiplets in Extended Supersymmetry,”
Phys. Lett. 100B (1981) 393.

[33] S. Ferrara and B. Zumino, “Transformation Properties of the Supercurrent,” Nucl. Phys. B 87 (1975)
207.
S. Ferrara and B. Zumino, “Structure of Conformal Supergravity,” Nucl. Phys. B 134 (1978) 301.

[34] B. Gording and A. Schmidt-May, “Ghost-free infinite derivative gravity,” arXiv:1807.05011 [gr-qc].

9


