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1. Introduction

The connection between symmetries and conserved quantities discovered by Emmy Noether
in 1918 [1] had profound impact on the development of physics in the twentieth century. Conser-
vation laws are related to symmetries and phase space and in 1987 Crnković and Witten gave a
general construction for a symplectic structure on the space of solutions of general relativity [2].
This was generalised by Wald and Lee to a general diffeomorphic invariant field theory [3, 4]. In
this talk we re-formulate Lee and Wald’s formulation in the language of differential forms on the
infinite dimensional space of solutions of the equations of motion. This leads to a double differ-
ential complex involving differential forms and exterior derivatives on space-time entwined with
differential forms and exterior derivatives on the space of solutions of the equations of motion. We
show that the same differential complex arises in the discussions of quantum anomalies in gauge
theories and general relativity [5, 6, 7].

2. Noether’s theorem

We first give a quick review of Noether’s Theorem for internal in differential form language
before going on to consider diffeomorphism invariance. For internal symmetries Noether’s theorem
is quickly obtained from Stokes’ theorem. Consider a system in D+1 dimensions with dynamical
fields F I , which may or may not include a metric, governed by a Lagrangian L(F I,∂µF) which is
a (D+1)-form on space-time. Under an arbitrary variation of the fields

δL(F I) = EJ(F I)δFJ +dθθθ(F I,δF I)

where EI(F I) = 0 are the equations of motion.

If T generates a symmetry of L, then under a variation δT = εT , δT L = 0 for any field
configuration F I . For a configuration SI which is a solution of the equations of motion,

dθθθ(SI,δT SI) = 0

on shell. We shall denote the set of all field configurations that satisfy the equations of motion by
S , so SI ∈S .

Thus θθθ(SI,δT SI) is exact and, integrating over space-time M

∫
M

dθθθ = 0.

Assuming that the fields fall off fast enough at space-like infinity (the time-like tube TTT in the figure
below) M is effectively bounded by hypersurfaces Σ and Σ′.
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Σ

Σ

T

t

t’

We then have ∫
M

dθθθ =
∫

Σ

θθθ −
∫

Σ′
θθθ = 0.

With θθθ = ∗ jjj (θµνρ = εµνρσ jσ ) the Noether charge Q is now defined as

Q =
∫

Σ

∗ jjj =
∫

Σ′
∗ jjj

(
=
∫

Σ
jµdΣµ

)
3. Phase space formulation

The D-form θθθ is also central to constructing the phase space formulation of a field theory.
Under a second variation define (again on-shell SI ∈S ) define a

ωωω(SI,δ1SI,δ2SI) := δ1θθθ 2−δ2θθθ 1 (3.1)

where θθθ 1 = θθθ(SI,δ1SI) and θθθ 2 = θθθ(SI,δ2SI). We can now define a symplectic form on the phase-
space of solutions ΩΩΩ via

ΘΘΘ =
∫

Σ

θθθ , ΩΩΩ = δδδ ΘΘΘ =
∫

Σ

ωωω

where δδδ is the exterior derivative on the (infinite dimensional) space of solutions, δδδ 2 = 0. As we
shall see if there are gauge symmetries ΩΩΩ is a pre-symplectic from, in the sense defined below,
rather than a true symplectic form.

There are now two exterior derivatives, d acting on differential forms on finite-dimensional
space-time and δδδ acting on differential forms on the infinite dimensional space of solutions of the
equations of motion. These commute dδδδ = δδδ d.

The pre-symplectic form ΩΩΩ is unaffected if the Lagrangian is changed by adding a total deriva-
tive,

LLL→ LLL+dααα ⇒ θθθ → θθθ +δδδ ααα

and ΩΩΩ = δδδ ΘΘΘ is invariant since δδδ 2 = 0.
The simplest case is that of a free scalar field φ with Lagrangian density

LLL =−1
2

dφ ∧∗dφ −m2
φ

2 ∗1.
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In this case θθθ =−(δδδ φ)∧∗dφ and the conjugate momentum is π = φ̇ giving

ωωω = (δδδ φ)∧∧∧∗d(δδδ φ).

Choosing a t = const hypersurface Σ,

ΩΩΩ =
∫

Σ

(δδδ φ)∧∧∧∗δδδ (dφ) =
∫

Σ

(δδδ φ)∧∧∧(δδδ π) ∗̃1

where ∗̃1 is the volume form on the D-dimensional hypersurface Σ. The symplectic structure here
is of exactly the form one would expect from Darboux’s theorem.

In general the variation δδδ SI on the space of solutions S can include gauge transformations
and diffeomorphisms, G . When this is the case we must project ΩΩΩ from the space of solutions
S to the space of solutions modulo gauge transformation and/or diffeomorphisms, Ŝ = S /G .
There must then be a symplectic 2-form Ω̂ΩΩ on T ∗Ŝ which pulls-back to ΩΩΩ on T ∗S under this
projection. Under these circumstances we expect that ΩΩΩ is degenerate and ΩΩΩ =

∫
Σ

ωωω must vanish if
one of the field variations is a diffeomorphism. Diffeomorphisms generated by a vector field ~X are
represented by Lie derivatives L~X and it is convenient to introduce a constant 1-form εεε on T ∗S
which anti-commutes with δδδ , εεε δδδ = −δδδ εεε and commutes with d, dεεε = εεε d. With this notation a
variation corresponding to a diffeomorphism is written as1

δδδ ~X SI = εεε L~X SI = εεε di~X SI.

We expect that ΩΩΩ will vanish if one of the variations in (3.1) is a diffeomorphism and this will be
the case if

ωωω = d
(
εεε∧∧∧ηηη(~X)

)
for some field dependent (D− 1)-form space-time ηηη(~X) (which is a 1-form on T ∗S ). Provided
field variations vanish on ∂Σ, the boundary of Σ, we will have [2, 3]

ΩΩΩ =
∫

Σ

ωωω = εεε ∧
∫

Σ

dηηη(~X) = εεε ∧
∫

∂Σ

ηηη(~X) = 0.

In particular if a Hamilton h(~X) exists that generates the flow ~X on phase space then

dηηη(~X) = δδδ h(~X)

and
ωωω =−δδδ

(
εεε h(~X)

)
= d
(
εεε∧∧∧ηηη(~X)

)
⇒ ΩΩΩ = 0

when one of the variations is a diffeomorphism vanishing at spatial infinity.
When such a hamiltonian exists we can define

H [~X ] :=
∫

Σ

h(~X)

and
δδδ H [~X ] =

∫
Σ

δδδ h(~X) =
∫

∂Σ

ηηη(~X) = 0

if ~X vanishes on ∂Σ. For example in general relativity, for a time-like vector field ~X , H [~X ] = 0 is
a constraint.

1i~X denotes contraction of a differential from with the vector ~X and L~X = di~X + i~X d on forms.
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4. Killing symmetries

If ~X = ~K is a Killing vector then L~KSI either vanishes or is a gauge transformation and we
assume the symplectic density is invariant, ωωω = 0, in which case ηηη is d-closed

dηηη(~K) = 0.

However ~K need not vanish on ∂Σ and this can lead to non-trivial conserved quantities.. If Σ has
an inner and an outer boundary, ∂Σ = σ1∪σ2

then ∫
Σ

dηηη(~K) =
∫

σ2

ηηη(~K)−
∫

σ1

ηηη(~K) = 0

and
∫

σ
ηηη(~K) is independent of the surface σ . Furthermore if εεε∧∧∧ηηη(~K) = δδδ ψψψ(~K) is δδδ -exact for

some ψψψ (which might not be the case — this depends crucially on the specific Lagrangian) then an
invariant can be constructed [4]. Let

ψψψ(~K) = εεε ∗J (~K)

where J is a 2-form on space-time — the Noether 2-form. Then

Q(~K) =
∫

σ

∗J

is independent of the (D− 1)-dimensional surface σ on which it is evaluated. Of course Q(~K)

does depend on the solution, changing the solution of the equations of motion does change Q in
general and

∫
σ

ηηη(~K) = δδδ Q[~K].
To summarise we have a (pre)-symplectic form ΩΩΩ =

∫
Σ

ωωω . which is a 2-form on T ∗S . If
one of the field variations is a diffeomorphism generated by a vector field ~X which vanishes on the
boundary of Σ then

ωωω = εεε∧∧∧dηηη(~X).

For a Killing vector ωωω = 0 and ηηη(~K) is d-closed but it is not necessarily the case that ~K 6= 0 on ∂Σ.
If in addition there exists a 2-from J on space-time such that ηηη is δδδ -exact, ηηη =−δδδ ∗J , then

Q[~K] =
∫

σ

∗J

is an invariant associated with the Killing vector ~K.

4.1 Example: Schwarzschild black-hole mass in General Relativity

Perhaps the simplest example exhibiting diffeomorphism invariance is that of a Schwarzschild
black-hole in General Relativity. The Einstein Lagrangian (with G = c2 = 1) is

L =
1

16π
Rab∧∗eab

where ea are orthonormal 1-forms, eab = ea∧eb and the curvature 2-forms are

Rab = dωab +ωac∧ω
c

b
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for torsion-free connection 1-forms ωab satisfying

dea +ω
a

b∧ eb = 0.

Under a field variation on finds [8]

θθθ = (δδδ ωab)∧∗eab

and
ηηη(~K) =

1
16π

(
i~Kθθθ +δδδ ∗dK

)
.

In particular the Schwarzschild metric

ds2 =−
(

1− 2m
r

)
dt2 +

dr2(
1− 2m

r

) + r2(dϑ
2 + sin2

ϑdϕ
2)

has a time-like Killing vector ~K = ∂

∂ t and under the metric variation m→ m+δδδ m one finds

ηηη(~K) =
1

4π

δδδ m
r2 eee23 ⇒ Q[~K] =

1
4π

∫
S2

m
r2 eee23 = m

where e2 = r dϑ , e3 = r sinϑdϕ and S2 is a sphere of constant radius surrounding the origin. Note
that any finite r will do, as long as it is outside the event horizon so that the S2 is space-like. It is
not necessary to take r→ ∞ to calculate the mass. It was shown in [9] that this procedure gives
the ADM mass [10] for a general stationary asymptotically flat black hole, provided the S2 lies
completely outside the mass distribution. It was shown in [11] that it also reproduces the Brown-
York mass [12] (which is a priori defined as a difference of two solutions so can be viewed as a
1-from δδδ m on the space of solutions) and the Bondi mass [13] when S2 is at a light-like separation
from the mass distribution.

5. Double differential complex

In Wald’s construction defined above there is a possible obstruction to defining Q[~K] if

εεε ∧∧∧ηηη(~K) 6= δδδ ψψψ(~K)

and this leads us into cohomology.
Let W p,q be the space of p-forms on T ∗M and q-forms on T ∗S and let

W r =
⊕

p+q=r
W p,q

be the space of forms of total degree r. Then the differential operator

DDD = δδδ +(−1)pd

maps W r to W r+1 with DDD2 = 0. We then have the double differential complex shown below [8]
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LLL+dααα
δδδ

// δδδ L = dθθθ
δδδ

// 0

ααα

d

OO

δδδ

// θθθ +δδδ α +dψψψ

d

OO

δδδ

// δδδ θθθ +δδδ dψψψ

= ωωω +dδδδ ψψψ

d

OO

δδδ

// 0

ψψψ

d

OO

δδδ

// δδδ ψψψ

d

OO

δδδ

// 0

a mathematical structure which is very powerful in cohomology analysis [14].

6. Anomalies

The constraint δδδ LLL = dθθθ is very reminiscent of the Stora-Zumino descent equations for quan-
tum anomalies in gauge theories [5, 6, 7]. The double differential complex structure is the same for
both classically conserved quantities and quantum anomalies.

Wald constructed a generalised Noether charge associated with any diffeomorphic invariant
field theory which is based on differential forms on the phase space of solutions. Depending on
the field theory there may be cohomological obstructions to defining conserved charges and the
mathematical framework is identical to that of the Stora-Zumino consistency conditions and their
role in the study of quantum anomalies.
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