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1. Introduction

The matrix regularization [1, 2] gives a regularization of the world volume theory of mem-
branes. Let Σ be a closed Riemann surface, which represents a membrane. In the light-cone gauge,
the Hamiltonian of the world volume theory is written in terms of the Poisson algebra of functions
on Σ with a Poisson bracket. The matrix regularization is an operation of replacing the Poisson
algebra by the Lie algebra of N ×N matrices. After this replacement, the world volume theory
becomes a quantum mechanical system with matrix variables and coincides with the BFSS matrix
model [3] which is conjectured to give a complete formulation of M-theory in the infinite momen-
tum frame. This coincidence suggests that the matrix regularization is not just a regularization of
the world volume theory but a fundamental formulation of M-theory1.

Although the original world volume theory has the world volume diffeomorphism symmetry,
it is restricted to area-preserving diffeomorphisms on Σ in the light-cone gauge. By the matrix
regularization, this residual gauge symmetry is replaced by the U(N) gauge symmetry which acts
on the matrix variables as unitary similarity transformations. However, we have not completely
understood how general diffeomorphisms on Σ act on the matrix variables2. Since diffeomorphisms
are essential in constructing a covariant formulation of M-theory, it is important to clarify the full
diffeomorphisms in the matrix model. The description of general diffeomorphisms in terms of
matrices may also enable us to formulate theories of gravity on noncommutative spaces [6, 7, 8, 9]
using the matrix regularization.

In this paper, we focus on automorphisms of C∞(Σ) induced by diffeomorphisms on Σ rather
than diffeomorphisms themselves. This is reasonable since the group of diffeomorphisms on Σ is
isomorphic to that of automorphisms of C∞(Σ). In the matrix regularization, automorphisms of
C∞(Σ) are mapped to transformations between matrices. From this correspondence, we study how
diffeomorphisms act on the space of the matrices.

For this purpose, we need to fix the scheme of the matrix regularization. A systematic scheme
is given by the Berezin-Toeplitz quantization [10, 11, 12]3, which is developed in the context of
the geometric and the deformation quantizations. In this paper, we construct the matrix regular-
ization of S2 in terms of the Berezin-Toeplitz quantization and investigate how diffeomorphisms
on S2, which are not necessarily are-preserving, act on the space of the matrices. In particular, for
holomorphic diffeomorphisms on S2, we explicitly construct one-parameter deformations of the
standard fuzzy S2. We also propose three kinds of approximate diffeomorphism invariants on the
fuzzy S2. These are exactly invariant under the unitary similarity transformations and also invariant
under general diffeomorphisms in the large-N limit. These results were firstly presented in [19].

The organization of this paper is as follows. In section 2, we review the Berezin-Toeplitz
quantization. In section 3, we define the action of diffeomorphisms on the space of matrices. In
section 4, we construct the matrix regularization of S2 based on the Berezin-Toeplitz quantization

1The matrix regularization is also applied to type IIB string theory and provides a matrix model for a nonperturbative
formulation of the string theory [4]

2In [5], it is shown that diffeomorphisms can be embedded into the unitary transformations, if one considers the
matrices as covariant derivative acting on an infinite dimensional Hilbert space. This formulation is different from the
matrix regularization, which we discuss in this paper.

3The same construction was also considered in the context of the tachyon condensation on D-branes [13, 14, 15]
(See also [16]). This method is also related to the lowest Landau level problem [17, 18].
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and then investigate the matrix version of holomorphic diffeomorphisms on S2. In section 5, we
propose the approximate invariants. In section 6, we summarize our results.

2. Berezin-Toeplitz quantization

In this section, we briefly review the Berezin-Toeplitz quantization. In the following, we
assume Σ to be a closed Riemann surface with a symplectic form ω and denote by {· , ·} the
poisson bracket induced by ω .

The matrix regularization is formally defined by a family of linear maps from functions on Σ
to N ×N matrices, {TN : C∞(Σ)→ MN(C)}N∈N, which satisfy

lim
N→∞

‖TN( f )TN(g)−TN( f g)‖= 0,

lim
N→∞

‖N[TN( f ),TN(g)]− iTN({ f ,g})‖= 0,
(2.1)

for any f ,g ∈ C∞(Σ) [20]. Here, ‖ · ‖ denotes the operator norm. These conditions and the lin-
earity of TN means that TN is approximately an algebra homomorphism and the accuracy of the
approximation improves as the matrix size tends to infinity.

The Berezin-Toeplitz quantization gives a systematic way of generating the linear maps sat-
isfying (2.1). The basic data required for the Berezin-Toeplitz quantization are zero modes of a
certain Dirac operator. Our setup is as follows. We choose a metric g which is compatible with ω
and the standard complex structure on Σ. We denote by ea (a = 1,2) an orthonormal frame with
respect to g and by θ a the dual basis of ea. We also define a spin connection Ωab by

Ωab +Ωba = 0,

Ωa
b ∧θ b +dθ a = 0.

(2.2)

Let A be a U(1) gauge connection such that it satisfies dA = 2πωV−1 where V =
∫

Σ ω is the
symplectic volume. In this set up, we consider spinor fields with two components and define a
Dirac operator acting on them by

D = iσaeµ
a

(
∂µ +

1
4

Ωab
µ σaσb − iNAµ

)
, (2.3)

where σa are the Pauli matrices and N is a positive integer corresponding to the charge of the spinor
fields. Then, it follows that dimKerD = N from the Atiyah-Singer index theorem and the vanishing
theorem [21].

Let ψi (i = 1,2, . . . ,N) be the orthonormal basis of KerD with respect to the inner product
defined by

(ψ,ϕ)≡
∫

Σ
ω ψ† ·ϕ , (2.4)

where · denotes the contraction of the spinor indices. Using these zero modes, we define the so-
called Toeplitz operator for f ∈C∞(Σ) by

〈i|TN( f )| j〉= (ψ j, f ψi), (2.5)
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where {|i〉 | i= 1,2, · · · ,N} is an orthonormal basis of CN corresponding to ψi. In this construction,
the operator TN( f ) indeed satisfies the conditions (2.1) because of the asymptotic expansion [12],

TN( f )TN(g) = TN(C0( f ,g))+
1
N

TN(C1( f ,g))+O(N−2) (2.6)

for any f ,g ∈C∞(Σ), where C0( f ,g) = f g and C1( f ,g)−C1(g, f ) = i{ f ,g}.

3. Matrix diffeomorphisms

In this section, we define the action of diffeomorphisms in the configuration space of matrices
following [19].

Let Σ be a closed Riemann surface. We denote by Diff(Σ) the group of diffeomorphisms from
Σ to itself. Let φ ∈ Diff(Σ). For f ∈C∞(Σ), φ induces a new function on Σ defined by

φ∗ f = f ◦φ, (3.1)

where φ∗ is the pullback by φ . Then, the map f 7→ φ∗ f defines an automorphism of C∞(Σ). In-
versely, an arbitrary automorphism of C∞(Σ) is expressed in the form (3.1) using a diffeomorphism.
This means that Diff(Σ) is isomorphic to the group of automorphisms of C∞(Σ) 4.

For the automorphism f 7→ φ∗ f , we define a transformation of N ×N matrices by

TN( f ) 7→ TN(φ∗ f ). (3.2)

We call this transformation a matrix diffeomorphism corresponding to φ .
It is well-known that area-preserving diffeomorphisms are realized as unitary similarity trans-

formations in the matrix regularization. This can also be seen by comparing the symmetries of the
light-cone membrane and the matrix model. The definition (3.2) also realizes this correspondence.
The infinitesimal transformation of f induced by an are-preserving diffeomorphism can be written
as δ f = { f ,α} with a function α on Σ. From (2.6), one can see that this transformation is mapped
to the infinitesimal matrix diffeomorphism,

δTN( f ) = TN(δ f ) =−iN[TN( f ),TN(α)]+O(N−1). (3.3)

This is nothing but the infinitesimal form of a unitary similarity transformation.
Conversely, if (3.3) holds, then δ f is an area-preserving diffeomorphism. This is shown as

follows. Suppose that (3.3) holds for a certain α ∈ C∞(Σ). Then, because of (2.1), we have
TN(δ f −{α, f}) = O(N−1). This is satisfied if and only if δ f −{α, f} = 0 [20]. Hence, δ f
is area-preserving. These arguments show that for non-area-preserving diffeomorphisms, the cor-
responding matrix diffeomorphisms cannot be written in the form of (3.3).

Although diffeomorphisms can be regarded as automorphisms on the space of functions, ma-
trix diffeomorphisms are not necessarily an automorphism of MN(C), which can always be written
as a similarity transformation. This is because the Toeplitz operator is not an isomorphism from
C∞(Σ) to MN(C). In fact, the definition (3.2) contains a much broader class of transformations
than the similarity transformations. In the next section, we will explicitly construct some of those
transformations for fuzzy S2.

4See e.g. Section 1.3 in [22] for a precise proof.
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4. Matrix diffeomorphisms on fuzzy sphere

In this section, we consider the Berezin-Toeplitz quantization and matrix diffeomorphisms on
the fuzzy S2 [23]. We will explicitly construct matrix diffeomorphisms on the fuzzy S2 correspond-
ing to holomorphic diffeomorphisms and see that most of them can not be written as a similarity
transformation.

4.1 Berezin-Toeplitz quantization on S2

First, we construct the Berezin-Toeplitz quantization map for S2. We identify S2 with the
Riemann sphere Ĉ = C∪{∞} and cover it by two open subsets Uz ≡ Ĉ−{∞} and Uw ≡ Ĉ−{0}.
As a local coordinate on Uz, we choose the stereographic coordinate,

z ≡ x1 + ix2

1+ x3 (4.1)

where xA (A = 1,2,3) are the embedding coordinates from S2 to R3 which satisfy the equation
∑3

A=1 xAxA = 1. We also define a local coordinate on Uw by w ≡ 1/z. Then the coordinate transfor-
mation is given by a holomorphic map z 7→ 1/z.

We define a symplectic form ω on S2 by

ω = i
dz∧dz̄

(1+ |z|2)2 , (4.2)

such that V =
∫

S2 ω = 2π . We also define the standard complex structure J by J(∂z) = i∂z and
J(∂z̄) =−i∂z̄ and define a metric g by the compatible condition g( · , ·) = ω( · ,J ·) as

g = 2
dzdz̄

(1+ |z|2)2 . (4.3)

We also need a topologically nontrivial configuration of the U(1) gauge connection on S2 to
construct Toeplitz operators. We use the Wu-Yang monopole configuration,

A(z) =− i
2

z̄dz− zdz̄
1+ |z|2

, (4.4)

for Uz. On the overlap region Uz∩Uw, the gauge connection A(w) on Uw is related to (4.4) by a U(1)
gauge transformation, A(w) = A(z)−d arg(z). This gauge connection satisfies dA(z) = 2πωV−1.

In this set up, the Dirac operator (2.3) for S2 is given by

D =

(
0 D−

D+ 0

)
(4.5)

where the local form of D+ and D− on Uz are

D+ =
√

2i
{
(1+ |z|2)∂z̄ +

N −1
2

z
}
,

D− =
√

2i
{
(1+ |z|2)∂z −

N +1
2

z̄
}
,

(4.6)
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respectively.
In order to construct Toeplitz operators, we need the zero modes of D±. We can easily solve

the eigenvalue equations D±ψ± = 0 and obtain ψ± = (1+ |z|2)∓(N∓1)/2h±, where h+ and h− are
arbitrary holomorphic and anti-holomorphic functions on Uz, respectively. Note that the integral,∫

S2
ω |ψ−|2 = i

∫
S2

dzdz̄(1+ |z|2)(N−1)|h−|2, (4.7)

does not converge for N ≥ 1, unless h− = 0. Thus, we find that KerD− = {0} for N ≥ 1. The
similar integral for ψ+ converges when the degree of h+ is smaller than N. Such h+ is a holomor-
phic polynomial of degree N − 1, which can be expanded in terms of the basis 1,z,z2, . . . ,zN−1.
Therefore, we find that5 dimKerD+ = N. The Dirac zero modes can be written as

ψi(z, z̄) =

√
N
2π

(
〈i|z〉

0

)
, (4.8)

where {|i〉 | i = 1,2, · · · ,N} is an arbitrary orthonormal basis of CN , and |z〉 is the Bloch coherent
state with J = (N −1)/2 defined by

|z〉= 1
(1+ |z|2)J

J

∑
r=−J

zJ−r
(

2J
J+ r

)1/2

|Jr〉 . (4.9)

Here, {|Jr〉 | r = −J,−J + 1, . . . ,J} is the standard basis of the (2J + 1)-dimensional irreducible
representation space of SU(2). By using the resolution of identity, N

∫
S2 ω |z〉〈z|/2π = 1N , one can

check that {ψi | i = 1,2, · · · ,N} is an orthonormal basis of KerD.
In the above setup, the Toeplitz operators (2.5) are written as

〈i|TN( f )| j〉= N
2π

∫
S2

ω 〈i|z〉 f (z, z̄)〈z|i〉 . (4.10)

Let us focus on the embedding coordinates xA from S2 to R3, which are smooth real valued func-
tions on S2. From (4.1), we have

x1 =
z+ z̄

1+ |z|2
,

x2 =
i(z̄− z)
1+ |z|2

,

x3 =
1−|z|2

1+ |z|2
.

(4.11)

It is easy to find that the Toeplitz operators of xA are given by

TN(xA) =
LA

J+1
, (4.12)

where LA are the N-dimensional irreducible representation of the generators of SU(2). This is the
well-known configuration of the fuzzy S2.

5Note that these results are consistent with the vanishing theorem and the index theorem, IndD = N.
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4.2 Holomorphic matrix diffeomorphisms

We consider the matrix diffeomorphisms (3.2) for XA ≡ TN(xA). Since there are infinitely
many diffeomorphisms even for the simple manifold S2, we restrict ourselves to the holomorphic
diffeomorphisms in the following.

Any holomorphic diffeomorphism on S2 is expressed as a Möbius transformation, which is
defined by

φ(z) =
az+b
cz+d

, (4.13)

where a,b,c,d are complex numbers such that ad − bc 6= 06. We define φ(∞) = ∞ for c = 0 and
φ(∞) = a/c for c 6= 0. Since multiplying a,b,c,d by a common number does not change the value
of (4.13), we can fix ad −bc = 1. We focus on the four special transformations,

Rθ (z) = eiθ z,

Dλ (z) = eλ z,

Tη(z) = z+η ,

Sζ (z) =
z

ζ z+1
,

(4.14)

where θ ,λ ∈ R and η ,ζ ∈ C. These are a rotation, dilatation, translation and special confor-
mal transformation, respectively. Note that any Möbius transformation can be constructed as the
composition of these special transformations7. Note also that Rθ preserves the symplectic form
(4.2) and the compatible metric (4.3), while the other three transformations are neither isometries
nor area-preserving diffeomorphisms. We consider one-parameter groups, {Rtθ}t∈R, {Dtλ}t∈R,
{Ttη}t∈R and {Stζ}t∈R, which generate the vector fields

uR = iθ(z∂z − z̄∂z̄),

uD = λ (z∂z + z̄∂z̄),

uT = η∂z + η̄∂z̄,

uS =−ζ z2∂z − ζ̄ z̄2∂z̄,

(4.15)

respectively.

For a diffeomorphism generated by a vector field u, the infinitesimal variation of the embed-
ding function xA is given by the Lie derivative LuxA. Correspondingly, the variation of the matrices
are given by δXA = TN(LuxA). Let X± = TN(x±) = TN(x1± ix2). After some calculations, we easily

6The condition ad −bc 6= 0 ensures that φ is not a constant function. For ad −bc = 0, we have φ(z) = b/d.
7In fact, for c = 0, the Möbius transformation is linear and is given by a composition of Rθ , Dλ and Tη . For c 6= 0,

it is expressed as φ(z) = (T(a−1)/c ◦Sc ◦T(d−1)/c)(z).
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find that the infinitesimal variations of XA for the vector fields (4.15) are given by [19]

δRX+ = iθX+,

δRX− =−iθX−,

δRX3 = 0,

(4.16)

δDX+ = λX3X++O(N−1),

δDX− = λX3X−+O(N−1),

δDX3 =−λX+X−+O(N−1),

(4.17)

δT X+ =
1
2

η(1N +X3)2 − 1
2

η̄(X+)2 +O(N−1),

δT X− =
1
2

η̄(1N +X3)2 − 1
2

η(X−)2 +O(N−1),

δT X3 =−1
2
(1N +X3)(η̄X++ηX−)+O(N−1),

(4.18)

δSX+ =
1
2

ζ̄ (1N −X3)2 − 1
2

ζ (X+)2 +O(N−1),

δSX− =
1
2

ζ (1N −X3)2 − 1
2

ζ̄ (X−)2 +O(N−1),

δSX3 =
1
2
(1N −X3)(ζ X++ ζ̄ X−)+O(N−1).

(4.19)

The rotation (4.16) can be written as δRXA =−iN[XA,θX3/2]+O(N−1). This is the infinitesimal
transformation of a unitary similarity transformation. We also notice that the other three matrix
diffeomorphisms are not unitary similarity transformations. For example, let us check the case of
δDXA. If δDX3 is a similarity transformation, we have δDX3 ∝ [U,X3] with U a certain matrix.
Then, we will have

〈Jr|δDX3|Jr〉= 0, (4.20)

for all r. However, 〈Jr|δDX3|Jr〉 = −λ (J + r)(J − r+ 1)/(J + 1)2 is not zero for r 6= −J. Thus,
the matrix diffeomorphism corresponding to Dtλ is not a similarity transformation.

Our definition of the matrix diffeomorphisms also works for finite transformations. As an
example, let us consider the dilatation. The finite diffeomorphism transforms of (4.11) are given
by

D∗
tλ x1 =

etλ (z+ z̄)
1+ e2tλ |z|2

,

D∗
tλ x2 =

ietλ (z̄− z)
1+ e2tλ |z|2

,

D∗
tλ x3 =

1− e2tλ |z|2

1+ e2tλ |z|2
.

(4.21)

In the following, we set λ = 1 and t ≥ 0 for simplicity. For example, the matrix elements of
TN(D∗

t x3) with respect to the basis |Jr〉 reduces to the following integral,

I ≡
∫

S2
ω

zJ−r z̄J−r′

(1+ |z|2)2J
1− e2t |z|2

1+ e2t |z|2
. (4.22)

7
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After integrating out the argument of z and exchanging the integral variable from |z|2 to y = 1/(1+
|z|2), we obtain

I = 2πδrr′(1+ e−2t)
∫ 1

0
dyyJ+r+1(1− y)J−r{1− (1− e−2t)y}−1

−2πδrr′

∫ 1

0
dyyJ+r(1− y)J−r{1− (1− e−2t)y}−1.

(4.23)

For a while, we suppose that t 6= 0. For t > 0, we have |1− e−2t |< 1. Using the integral represen-
tation of Gauss’s hyper geometric function F(α,β ,γ;s) for |s|< 1 and 0 < α < γ ,

F(α,β ,γ;s) =
Γ(γ)

Γ(α)Γ(γ −α)

∫ 1

0
dyyα−1(1− y)γ−α−1(1− sy)−β , (4.24)

we can rewrite (4.23) as

I = 2πδrr′(1+ e−2t)
Γ(J+ r+2)Γ(J− r+1)

Γ(2J+3)
F(J+ r+2,1,2J+3;1− e−2t)

−2πδrr′
Γ(J+ r+1)Γ(J− r+1)

Γ(2J+2)
F(J+ r+1,1,2J+2;1− e−2t).

(4.25)

The calculations of the Toeplitz operators for D∗
t x+ and D∗

t x− also reduce to similar integrals. After
evaluating the integrals, we find that the matrix elements of TN(D∗

t xA) are given as [19]

〈Jr|TN(D∗
t x+)|Jr′〉= δr−1r′

e−t

J+1

√
(J− r+1)(J+ r)F(J+ r+1,1,2J+3;1− e−2t),

〈Jr|TN(D∗
t x−)|Jr′〉= δr+1r′

e−t

J+1

√
(J+ r+1)(J− r)F(J+ r+2,1,2J+3;1− e−2t),

〈Jr|TN(D∗
t x3)|Jr′〉= δrr′

1
2(J+1)

{(1+ e−2t)(J+ r+1)F(J+ r+2,1,2J+3;1− e−2t)

−2(J+1)F(J+ r+1,1,2J+2;1− e−2t)}.

(4.26)

Since F(α,β ,γ : 0) = 1, we have TN(D∗
0xA) = XA. Thus, the supposition of t 6= 0 can be removed.

Again, we can check that the map XA 7→ TN(D∗
t xA) is not a unitary similarity transformation

by comparing the eigenvalue set of TN(D∗
t x3) and that of X3 numerically [19].

5. Approximate diffeomorphism invariants

In this section, we construct three kinds of approximate invariants for the matrix diffeomor-
phisms on the fuzzy S2 proposed in [19]. These are functions I(X) of the Toeplitz operators
XA = TN(xA) which satisfy

I(X +δX) = I(X)+O(N−1), (5.1)

for any infinitesimal matrix diffeomorphism δX on the fuzzy S2. In particular, if δX is an infinites-
imal unitary transformation, then they satisfy I(X +δX) = I(X).

8
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5.1 Invariants from matrix Dirac operator

For N×N matrices XA (A= 1,2,3) and the embedding function xA defined in (4.11), we define
a Dirac type operator,

D̂ =
3

∑
A=1

σA ⊗ (XA − x̂A). (5.2)

Here, we put a hat on xA to emphasize that x̂A are kept fixed when we discuss the variation of
approximate invariants, (5.1) (x̂A are equal to xA as functions, x̂A = xA). We also introduce the
eigenstates of D̂ as

D̂ |n〉= En |n〉 , (5.3)

where the eigenvalues shall be labeled such that |E0| ≤ |E1| ≤ |E2| ≤ · · · . Note that D̂, |n〉 and
En depend on local coordinates on S2 through x̂A, although the dependences are not written ex-
plicitly. Apart from the fixed embedding function, the operator (5.2) depends only on the matrices
XA. In this sense, En and |n〉 are functions of XA. The eigenvalues En are not invariant for gen-
eral transformations of matrices XA 7→ X

′A, but are exactly invariant under the unitary similarity
transformations.

In the following, we consider the case in which XA are given by the Toeplitz operators of the
embedding function (4.11). By solving the eigenvalue problem for this case [24, 25, 26], one can
find that E0 and |0〉 are given by

E0 =
J

J+1
−1 = O(N−1),

|0〉=U2

(
1
0

)
⊗ |z〉 .

(5.4)

Here, U2 = ezσ−
e−σ3log(1+|z|2)e−z̄σ+

is a local rotation matrix and |z〉 is the Bloch coherent state
(4.9).

The eigenvalue E0, which has the smallest absolute value, gives our first example of the ap-
proximate invariants. Under an infinitesimal variation XA 7→ XA +δXA, E0 transforms as8

δE0 =
3

∑
A=1

〈0|σA ⊗δXA|0〉 . (5.5)

We again emphasize that here x̂A are kept fixed and we consider only the variation of the matrices.
Now, suppose that δXA is given by a matrix diffeomorphism, which can be written as

δXA =
N
2π

∫
S2

ω |w〉δxA(w)〈w| , (5.6)

where δxA is the variation of xA under a diffeomorphism. Then, (5.5) is evaluated as

δE0 =
3

∑
A=1

xAδxA +O(N−1). (5.7)

8This is just the first order formula of the perturbation theory in quantum mechanics.
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In deriving (5.7), the following property of the Bloch coherent state is useful:

| 〈z|w〉 |2 = |1+wz̄|4J

(1+ |z|2)2J(1+ |w|2)2J

= exp
[

2J log
{

1− |z−w|2

(1+ |z|2)(1+ |w|2)

}]
,

=
π
2J

(1+ |z|2)2δ (2)(z−w)+O(N−2).

(5.8)

Since ∑A xAxA = 1, the first term of (5.7) is vanishing. Thus, E0 is indeed invariant under the matrix
diffeomorphism up to the 1/N corrections.

In [27], it was proposed that the matrix Dirac operator can be used to find effective shapes of
fuzzy branes. Here, the loci of the zero eigenvalue of the matrix Dirac operator are identified with
the effective shape embedded in the flat target space. See also [24, 28, 29]. The same method was
also independently proposed in the context of the tachyon condensation in string theory [14, 15, 25].

These invariants have the information of the induced metric for the embedding x̂A. As shown
in [30], by considering variations of x̂A, we can construct from E0 the Levi-Civita connection and
the Riemann curvature tensor for the induced metric.

5.2 Invariants of information metric

By using the eigenstate |0〉 defined in the previous subsection, we introduce a density matrix,

ρ = |0〉〈0| . (5.9)

This gives an embedding of S2 into the space of density matrices [26]. Then, the pullback h of the
so-called information metric in the space of density matrices,

hµνdσ µdσν = Trdρdρ, (5.10)

gives a metric structure on S2, where σ µ are the local coordinates on S2.
In our setup, the definition of h depends on the choice of XA and x̂A. However, in the setup of

[27], x̂A are just thought of as three real parameters and the structure of embedding appears after
solving the eigenvalue problem. The underlying space can be defined as the loci of zeros of the
matrix Dirac operator. In this sense, the definition of h depends only on the matrices XA and it
gives a good geometric object defined in terms of the matrix variables.

Note that h is exactly invariant under unitary similarity transformations XA 7→ U†XAU . Be-
low, we show that the information metric is also approximately covariant under general matrix
diffeomorphisms. First, because E0 → 0 (N → ∞), we have 〈0|D̂2|0〉 → 0. This implies that
(XA − x̂A) |0〉 → 0 for A = 1,2,3. Let δxA be a polynomial of xA with the degree much less than N.
Then, we also have

(δXA −δxA) |0〉 → 0 (5.11)

as N → ∞, where δXA is the Toeplitz operator of δxA. Let δxA be a Lie derivative of xA and δXA

the corresponding matrix diffeomorphism. Under the matrix diffeomorphism XA 7→ XA +δXA, the

10
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state |0〉 transforms as

δ |0〉= ∑
n 6=0

3

∑
A=1

|n〉〈n|σA ⊗δXA |0〉
E0 −En

+ iδλ |0〉 ,

= ∑
n6=0

3

∑
A=1

|n〉〈n|σA |0〉δxA

E0 −En
+ iδλ |0〉+O(N−1),

(5.12)

where δλ is a real number and we used (5.11) to obtain the last expression. We again emphasize
that we fix x̂A and consider only the variation of XA. On the other hand, from the infinitesimal
variation of the local coordinates, we obtain

∂µ |0〉=− ∑
n6=0

3

∑
A=1

|n〉〈n|σA |0〉∂µxA

E0 −En
+ iAµ |0〉 , (5.13)

where A = −i〈0|d|0〉 is the Berry connection. For a diffeomorphism δxA = uµ∂µxA, from (5.12)
and (5.13), we find

δρ =−uµ∂µρ +O(N−1). (5.14)

This means that the embedding function ρ transforms as a scalar field under matrix diffeomor-
phisms. Thus, the induced metric h is also covariant:

δhµν =−∇µuν −∇νuµ +O(N−1). (5.15)

Diffeomorphism invariants (in the usual sense) defined in terms of h are also approximately
invariant under matrix diffeomorphisms. For example, the volume integral

∫
S2

√
h or the Einstein-

Hilbert action
∫

S2

√
hR gives an approximate invariant.

In general, the information metric is different from the induced metric discussed in the previous
subsection. For Kähler manifolds, the information metric gives a Kähler metric compatible with
the field strength of the Berry connection [31] and hence has intrinsic information on the manifold,
which does not depend on the embedding.

5.3 Heat kernel on fuzzy sphere

For a 2n-dimensional closed Riemannian manifold (M,g), the heat kernel,

K(t) = Tre−t∆, (5.16)

for the Laplacian, ∆ =−(1/
√

g)∂µ(
√

ggµν∂ν), generates diffeomorphism invariants on M as coef-
ficients of the asymptotic expansion in t →+0:

K(t) =
1

(4πt)n

∫
M

√
g+

1
(4π)ntn−1

∫
M

√
g

R
6
+ · · · . (5.17)

Similarly, we define the heat kernel on the fuzzy S2 as

K̂(tN , p) = Tre−tN ∆̂. (5.18)

11
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Here, ∆̂ is the matrix version of the Laplacian defined by

∆̂ = (J+1)2
3

∑
A=1

[XA, [XA, · ]] =
3

∑
A=1

[LA, [LA, · ]], (5.19)

where XA = TN(xA) is given in (4.12). See [32, 33] for the properties of K̂ for finite size matrices.
It is well-known that the spectrum of ∆̂ coincides with that of the standard Laplacian on S2

up to a UV cutoff given by the matrix size. The eigenstates of ∆̂ are given by the fuzzy spherical
harmonics Ŷlm [23, 34, 35, 36, 37, 38]. See [37, 38] for the definition of Ŷlm, that we use in the
following. For Ŷlm, l runs from 0 to N −1 and m runs from −l to l. The eigenvalue of ∆̂ is l(l +1)
for Ŷlm, which coincides with the spectrum of the spherical harmonics on S2, except that the angular
momentum l has a cutoff N −1 for the fuzzy spherical harmonics.

For finite N, the spectrum of ∆̂ is finite. Thus, the matrix heat kernel (5.18) has only a regular
expansion in tN →+0 as K̂ = Tr1N2 +O(tN), which looks trivial and seems not to have any inter-
esting information of the geometry. However, it is obvious that if we first take the large-N limit and
then take tN →+0, K̂ should behave similarly to K having a singular expansion. In other words, by
putting tN = N−α , where α is a small positive number, the heat kernel should have the expansion,

K̂(tN = N−α ,N) =
1
tN

c0 + c1 +O(tN) (5.20)

in the large-N limit. It follows from the Euler-Maclaurin formula that the coefficients are given
by c0 = 1 and c1 = 1/3 for the Laplacian (5.19). The values of c0 and c1 just coincide with the
coefficients of the heat kernel expansion (5.17) for S2. Thus, in the double scaling limit, the matrix
heat kernel possesses geometric information of S2.

Now, we show that the matrix heat kernel (5.18) is approximately invariant under matrix dif-
feomorphisms. Let us consider a perturbation XA 7→ XA +δXA. Let δXA be a general infinitesimal
matrix for the moment. (In the end of the calculation, we will restrict δXA to be a matrix diffeo-
morphism.) The eigenvalues of ∆̂ are perturbed by δXA. Let δlm be the deviation of the eigenvalue
for the mode Ŷlm. From the first order formula of the perturbation theory, one obtains that

δlm =
(J+1)

N
Tr

3

∑
A=1

(
Ŷ †

lm[δXA, [LA,Ŷlm]]+ Ŷ †
lm[L

A, [δXA,Ŷlm]]
)
. (5.21)

The heat kernel (5.18) changes by

δ K̂ =−tN
N−1

∑
l=0

l

∑
m=−l

e−tN l(l+1)δlm. (5.22)

The matrix δXA can be expanded in terms of the vector fuzzy spherical harmonics as

δXA =
N−1

∑
l=0

l

∑
m=−l

1

∑
ρ=−1

δXlmρŶ A
lmρ . (5.23)

Again, see [37, 38] for the definition of Ŷ A
lmρ . After an easy calculation, we find that (5.22) is given

as

δ K̂ = 2itNδX00−1

√
J+1

J

N−1

∑
l=0

e−tN l(l+1)l(l +1)(2l +1). (5.24)

12



P
o
S
(
C
O
R
F
U
2
0
1
9
)
1
9
3

Diffeomorphisms and approximate invariants on fuzzy sphere Takaki Matsumoto

The important point is that the δ K̂ depends only on δX00−1. This is exactly the mode proportional
to LA9. This mode changes the radius of S2 in the target space, and ∑A(XA + δXA)2 will deviate
from the identity matrix even in the large-N limit. Here, any matrix diffeomorphism should keep
the relation

3

∑
A=1

XAXA = 1N +O(N−1) (5.25)

corresponding to the constraint ∑A xAxA = 1 since any diffeomorphism on S2 does not break this
constraint. The fluctuation of δX00−1 violates this constraint, so it is not a matrix diffeomorphism.
Therefore, for matrix diffeomorphisms, the matrix heat kernel is invariant. The coefficients in the
expansion (5.20) give approximate invariants on fuzzy S2.

The matrix Laplacian corresponds to the operator −∑A{xA,{xA, ·}}, because of (2.1). This
operator can be written as −gνσ ∂ν∂σ + · · · , where gνσ =W µνW ρσ ∑A(∂µxA∂ρxA) and W µν is the
Poisson tensor. The (inverse) metric gνσ is the open string metric [39] in the strong magnetic flux.
Thus, the invariants from the heat kernel are associated with the open string metric.

6. Summary

In this paper, we defined the action of diffeomorphisms on the space of matrices through the
matrix regularization following [19]. We first constructed the matrix regularization based on the
Berezin-Toeplitz quantization and then defined the matrix diffeomorphisms as the matrix regular-
ization of automorphisms of functions induced by diffeomorphisms. We also studies holomorphic
matrix diffeomorphisms on the fuzzy S2 and constructed three kinds of approximate invariants of
the matrix diffeomorphisms on it. They are associated with three different kinds of metrics, the in-
duced metric, Kähler metric and open string metric. Although, they are equivalent up to an overall
factor in the case of S2, this is not the case for general spaces as shown in [31, 26].
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