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1. Introduction

There are many well known exact solutions in general relativity (see, e.g. [1]). To give physical
interpretation of any solution to Einstein’s equation, we must know not only the metric satisfying
equations of general relativity but the global structure of space-time. By this we mean a pair (M,g),
where M is the four-dimensional space-time manifold and g is the metric on M such, that manifold
M is maximally extended along geodesics: any geodesic line on M either can be continued to
infinite value of the canonical parameter in both directions, or it ends up at a singular point, where
one of the geometric invariants becomes infinite. The famous example is the Kruskal–Szekeres
extension [2, 3] of the Schwarzschild solution. In this case, the space-time M is globally the
topological product of a sphere (spherical symmetry) with the two-dimensional Lorentzian surface
depicted by the well known Carter–Penrose diagram. The knowledge of this global structure of
space-time allows one to introduce the notion of black and white holes.

The famous Reissner–Nordström solution [4, 5], which is the spherically symmetric solution
of Einstein’s equations with electromagnetic field, is also known globally. There are three types of
Carter–Penrose diagrams: the Reissner-Nordström black hole, extremal black hole and naked sin-
gularity. The type of the Carter–Penrose diagram depends on the relation between mass and charge
parameters. The spherically symmetric exact solution of Einstein’s equations with electromagnetic
field and cosmological constant is known locally but not analyzed in full detail globally. Recently,
we give complete classification of global spherically symmetric solutions of Einstein’s equations
with electromagnetic field and cosmological constant, which depends on relations between three
parameters: mass, charge, and cosmological constant [6]. We showed that there are 16 different
Carter–Penrose diagrams in the spherically symmetric case.

In fact, more general classification is given. We do not assume that solutions have any sym-
metry from the very beginning. Instead, we require the space-time to be the warped product of
two surfaces: M = U×V, where U and V are two two-dimensional surfaces with Lorentzian and
Euclidean signature metrics, respectively. As the consequence of the equations of motion, at least
one of the surfaces must be of constant curvature. In this paper, we consider the cases when (i) both
surfaces U and V are of constant curvature and when (ii) only surface V is of constant curvature.
In the latter case, there are three possibilities: V is the sphere S2 (the spherical SO(3) symmetry),
the Euclidean plane (the Poincare ISO(2) symmetry), and the two-sheeted hyperboloid H2 (the
Lorentzian SO(1,2) symmetry). We see that the symmetry of solutions is not assumed from the
beginning but arise as the consequence of the equations of motions. This effect is called “sponta-
neous symmetry emergence”. All global solutions are classified by drawing their Carter–Penrose
diagrams for surface U depending on relations between mass, charge, and cosmological constant
[6]. Totally, there are 4 different Carter–Penrose diagrams in case (i) and 33 globally different
solutions in case (ii).

Moreover, we prove that there is the additional fourth Killing vector field in case (ii). This is
a generalization of Birkhoff’s theorem stating that any spherically symmetric solution of vacuum
Einstein’s equations must be static. The existence of extra Killing vector field is proved for SO(3),
ISO(2), and SO(1,2) symmetry groups.

Global structure of space-times in general relativity and 2d-gravity was analyzed, e.g. in [7–
11]. In particular, global planar and Lobachevsky plane solutions in general relativity were de-
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scribed in [12, 13, 14]. Though many solutions in the paper are known globally, some of them
seem to be new. For example, the Carter–Penrose diagram with triple horizon and geodesically
complete central point is new to the best of our knowledge. It describes changing topology of
space in time and discussed in some detail.

The paper [6] follows the classification of global warped product solutions of general relativ-
ity with cosmological constant (without electromagnetic field) given in [15]. The Carter–Penrose
diagrams are constructed using the conformal block method described in [16].

As in [15], we assume that space-time M is the warped product of two surfaces: M= U×V,
where U and V are surfaces with Lorentzian and Euclidean signature metrics, respectively. Local
coordinates on M are denoted by x̂i, i = 0,1,2,3, and coordinates on the surfaces by Greek letters
from the beginning and middle of the alphabet:

(xα) ∈ U, α = 0,1, (yµ) ∈ V, µ = 2,3.

That is (x̂i) := (xα ,yµ). Geometrical notions on four-dimensional space-time are marked by the hat
to distinguish them from notions on surfaces U and V, which appear more often.

We do not assume any symmetry of solutions from the very beginning.
Four-dimensional metric of the warped product of two surfaces has block diagonal form by

definition:

ĝi j =

(
k(y)gαβ (x) 0

0 m(x)hµν(y)

)
, (1.1)

where gαβ (x) and hµν(y) are some metrics on surfaces U and V, respectively, k(y) ̸= 0 and m(x) ̸= 0
are scalar (dilaton) fields on V and U. Without loss of generality, signatures of two-dimensional
metrics gαβ and hµν are assumed to be (+−) and (++), respectively. In a rigorous sense, metric
(1.1) is a doubly warped product. It reduces to a warped product in the usual sense for k = const or
m = const.

The Ricci tensor components for metric (1.1) are

R̂αβ = Rαβ +
∇α ∇β m

m − ∇α m∇β m
2m2 +

gαβ ∇2k
2m

R̂αµ = R̂µα =−∇α m∇µ k
2mk

R̂µν = Rµν +
∇µ ∇ν k

k − ∇µ k∇ν k
2k2 +

hµν ∇2m
2k ,

(1.2)

where, for brevity, we introduce notation

∇2m := gαβ ∇α∇β m, ∇2k := hµν ∇µ∇νk. (1.3)

Here and in what follows symbol ∇ denotes covariant derivative with the corresponding Christof-
fel’s symbols. The four-dimensional scalar curvature is

R̂ =
1
k

R(g)+2
∇2m
km

− (∇m)2

2km2 +
1
m

R(h)+2
∇2k
km

− (∇k)2

2k2m
, (1.4)

where
(∇m)2 := gαβ ∂αm∂β m, (∇k)2 := hµν∂µk∂νk. (1.5)

Scalar curvatures of surfaces U and V are denoted by R(g) and R(h), respectively.
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2. Solution for electromagnetic field

We assume that electromagnetic field is minimally coupled to gravity. Then the action takes
the form

S =
∫

d4x
√

|ĝ|
(

R̂−2Λ− 1
4

F̂2
)
, (2.1)

where R̂ is the scalar curvature for metric ĝi j, ĝ := det ĝi j, Λ is a cosmological constant, and F̂2 is
the square of electromagnetic field strength:

F̂2 := F̂i jF̂ i j, F̂i j := ∂iÂ j −∂ jÂi.

Here, Âi are components of electromagnetic field potential. For brevity, gravitational and electro-
magnetic coupling constants are set to unity.

Variation of action (2.1) with respect to metric yields four-dimensional Einstein’s equations:

R̂i j −
1
2

ĝi jR̂+ ĝi jΛ =−1
2

T̂EMi j, (2.2)

where
T̂EMi j :=−F̂ikF̂j

k +
1
4

ĝi jF̂2 (2.3)

is the electromagnetic field energy-momentum tensor. Variation of the action with respect to elec-
tromagnetic field yields Maxwell’s equations:

∂ j
(√

|ĝ|F̂ ji)= 0, (2.4)

where
ĝ = k2m2gh, g := detgαβ , h := dethµν .

To simplify the problem, we assume that the four-dimensional electromagnetic potential con-
sists of two parts:

Âi =
(
Aα(x),Aµ(y)

)
,

where Aα(x) and Aµ(y) are two-dimensional electromagnetic potentials on surfaces U and V, re-
spectively. Then the electromagnetic field strength becomes block diagonal:

F̂i j =

(
Fαβ 0

0 Fµν

)
, (2.5)

where
Fαβ (x) := ∂αAβ −∂β Aα , Fµν(y) := ∂µAν −∂νAµ

are strength components for two-dimensional electromagnetic potentials.
In what follows, the raising of Greek indices from the beginning and middle of the Greek

alphabet is performed by using the inverse metrics gαβ and hµν . Therefore

F̂αβ =
1
k2 Fαβ , F̂µν =

1
m2 Fµν ,

3
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where k(y) and m(x) are dilaton fields entering four-dimensional metric (1.1). The square of four-
dimensional electromagnetic field strength is

F̂2 =
1
k2 Fαβ Fαβ +

1
m2 FµνFµν .

In the case under consideration, Maxwell’s Eqs. (2.4) for i = α lead to equality

1
|k|
√

|h|∂β

(
|m|
√

|g|Fβα
)
= 0.

A general solution to these equations has the form

|m|
√

|g|Fαβ = 2ε̂αβ Q, Q = const, (2.6)

where ε̂αβ is the totally antisymmetric second rank tensor density. The factor 2 is introduced in
the right hand side of general solution for simplification of subsequent formulae. This solution is
rewritten as

Fαβ =
2Q
|m|

εαβ , (2.7)

where εαβ := ε̂αβ/
√

|g| is now the totally antisymmetric second rank tensor.
If i = µ , then Maxwell’s Eqs. (2.4) yield the equality

1
|m|
√

|g|∂µ

(
|k|

√
hFµν

)
= 0.

Its general solution is

Fµν =
2P
|k|

εµν , P = const. (2.8)

Now the four-dimensional electromagnetic energy-momentum tensor (2.3) is easily calculated.
It is block diagonal:

T̂i j =

(
T̂αβ 0

0 T̂µν

)
, (2.9)

where

T̂αβ =
2gαβ

km2 (Q2 +P2), T̂µν =−
2hµν

k2m
(Q2 +P2).

Now we have to solve Einstein’s Eqs. (2.2) with right hand side (2.9). Since energy-momentum
tensor depends only on the sum Q2 +P2, we set P = 0 to simplify formulae. In the final answer,
this constant is easily reconstructed by substitution Q2 7→ Q2 +P2.

In what follows, we consider only the case Q ̸= 0, because the case Q = 0 was considered in
[15] in full detail.

3. Einstein’s equations

The right hand side of Einstein’s Eqs. (2.2) is defined by general solution of Maxwell’s equa-
tions, which leads to electromagnetic energy-momentum tensor (2.9). The trace of Einstein’s equa-
tions can be easily solved with respect to the scalar curvature: R̂ = 4Λ. After elimination of the
scalar curvature, Einstein’s equations are simplified:

R̂i j − ĝi jΛ =−1
2

T̂EMi j. (3.1)
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For indices values (i j) = (α,β ), (µν), and (α,µ), these equations yield the following system of
equations:

Rαβ +
∇α∇β m

m
−

∇αm∇β m
2m2 +gαβ

(
∇2k
2m

− kΛ+
Q2

m2k

)
= 0, (3.2)

Rµν +
∇µ∇νk

k
−

∇µk∇νk
2k2 +hµν

(
∇2m
2k

−mΛ− Q2

k2m

)
= 0, (3.3)

−
∇αm∇µk

2mk
= 0, (3.4)

where Rαβ and Rµν are Ricci tensors for two-dimensional metrics gαβ and hµν , respectively, ∇α

and ∇µ are two-dimensional covariant derivatives with Christoffel’s symbols on surfaces U and
V, ∇2 := gαβ ∇α∇β or ∇2 := hµν∇µ∇ν , which is clear from the context. Sure, the equalities
∇αm = ∂αm and ∇µk = ∂µk hold. But we keep the symbol of covariant derivative for uniformity.

For subsequent analysis of Einstein’s equations, we extract the traces and traceless parts from
Eqs. (3.2) and (3.3). Then the full system of Einstein’s equations takes the form

∇α∇β m−
∇αm∇β m

2m
− 1

2

(
∇2m− (∇m)2

2m

)
= 0, (3.5)

∇µ∇νk−
∇µk∇νk

2k
− 1

2

(
∇2k− (∇k)2

2k

)
= 0, (3.6)

R(g)+
∇2m

m
− (∇m)2

2m2 +
∇2k
m

−2kΛ+
2Q2

m2k
= 0, (3.7)

R(h)+
∇2k

k
− (∇k)2

2k2 +
∇2m

k
−2mΛ− 2Q2

k2m
= 0, (3.8)

∇αm∇β k = 0, (3.9)

where (∇m)2 := gαβ ∇αm∇β m, (∇k)2 := gµν∇µk∇νk, R(g) and R(h) are scalar curvatures of two-
dimensional surfaces U and V for metrics g and h, respectively. In the above formulae, we used
equalities Rαβ = 1

2 gαβ R(g) and Rµν = 1
2 hµνR(h) valid in two dimensions.

The last Eq. (3.9), which corresponds to mixed values of indices (i j) = (αµ) in Einstein’s
equations results in strong restrictions on solutions. Namely, as in the case without electromagnetic
field, there are only three cases:

A : k = const ̸= 0, m = const ̸= 0,
B : k = const ̸= 0, ∇αm ̸= 0,
C : ∇µk ̸= 0, m = const ̸= 0.

(3.10)

We shall see in what follows, that this leads to “spontaneous symmetry emergence”.
Now we consider the first two cases in detail.

4. Product of constant curvature surfaces

The most symmetric solutions of Einstein’s equations with electromagnetic field in the form
of the product of two constant curvature surfaces arise in case A (3.10), when both dilaton fields are

5
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constant. If k and m are constant, then Eqs. (3.5) and (3.6) are identically satisfied, and Eqs. (3.7)
and (3.8) take the form

R(g) = 2kΛ− 2Q2

m2k
=−2K(g), R(h) = 2mΛ+

2Q2

k2m
=−2K(h), (4.1)

where

K(g) :=−k
(

Λ− Q2

k2m2

)
, K(h) :=−m

(
Λ+

Q2

k2m2

)
are Gaussian curvatures of surfaces U and V, respectively. It means that both surfaces are of con-
stant curvature in case A. The metric on each surface is invariant under three-dimensional transfor-
mation group.

In stereographic coordinates on both surfaces, the metric of four-dimensional space-time takes
the form

ds2 = kgαβ dxαdxβ +mhµνdyµdyν =

= k dt2−dx2[
1+K(g)

4 (t2−x2)
]2 +m dy2+dz2[

1+K(h)
4 (y2+z2)

]2 ,
(4.2)

where (xα) := (t,x) and (yµ) := (y,z).
We can put k =±1 and m =±1 by rescaling coordinates. One has also to redefine the constant

of integration Q2/(k2m2) 7→ Q2. We choose k = 1 and m = −1 for the metric signature to be
(+−−−). Then the Gaussian curvatures are

K(g) = Q2 −Λ, K(h) = Q2 +Λ. (4.3)

There are four qualitatively different cases for topologically inequivalent global solutions depend-
ing on relations between cosmological constant and charge:

Λ <−Q2 : K(g) > 0, K(h) < 0, M= L2 ×H2,

Λ =−Q2 : K(g) > 0, K(h) = 0, M= L2 ×R2,

−Q2 < Λ < Q2 : K(g) > 0, K(h) > 0, M= L2 ×S2,

Λ = Q2 : K(g) = 0, K(h) > 0, M= R1,1 ×S2,

Λ > Q2 : K(g) < 0, K(h) > 0, M= L2 ×S2,

(4.4)

where L2 is the one sheet hyperboloid (more precisely, its universal covering) embedded in three-
dimensional Minkowskian space R1,2, H2 is the Lobachevsky plane (the upper sheet of the two-
sheeted hyperboloid embedded in R1,2), and S2 is the two-dimensional sphere. From topological
point of view the third and fifth cases in Eq. (4.4) coincide. Therefore there are only four topo-
logically inequivalent global solutions of Einstein’s equations in the form of direct product of two
constant curvature surfaces. Note that for Q = 0, there are only three topologically inequivalent
solutions [15].

All solutions have exactly six Killing vector fields and belong to type D in Petrov’s classifica-
tion.

The cases of other signatures of four-dimensional metric for k =±1 and m =±1 are analysed
similarly. Qualitative properties of global solutions are the same.

We see that symmetry properties in this case are not imposed from the very beginning but
arise as the result of solution of equations of motion. This effect is called “spontaneous symmetry
emergence”.

6
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5. Solutions with spatial symmetry

The dilaton field k is constant in second case B (3.10). Without loss of generality, we put k = 1.
Then Einstein’s equations (3.5)–(3.9) take the form

∇α∇β m−
∇αm∇β m

2m
− 1

2
gαβ

[
∇2m− (∇m)2

2m

]
= 0, (5.1)

R(h)+∇2m−2mΛ− 2Q2

m
= 0, (5.2)

R(g)+
∇2m

m
− (∇m)2

2m2 −2Λ+
2Q2

m2 = 0. (5.3)

Consider Eq. (5.2). The scalar curvature R(h) depends on coordinates y on surface V, whereas
all other terms depend on coordinates x on surface U. For this equation to be fulfilled, it is necessary
that equation R(h) = const holds. It means that surface V must be of constant curvature as the
consequence of Einstein equations. Therefore the four-dimensional metric of space-time has at
least three independent Killing vector fields. So, there is spontaneous symmetry emergence.

Let us put R(h) :=−2K(h) = const. Then Eq. (5.2) is

∇2m−2mΛ−2K(h)− 2Q2

m
= 0. (5.4)

Excluding the case A considered in the previous section, we proceed further assuming ∇αm ̸=
0 on the whole U.

Proposition 5.1. Equation (5.4) is the first integral of Eqs. (5.1) and (5.3).

The proof is given in [6]. As the consequence, it is sufficient to solve Eqs. (5.1) and (5.4), Eq. (5.3)
being satisfied automatically.

To solve Eqs. (5.1) and (5.4) explicitly, we fix the conformal gauge for metric gαβ on Lorentzian
surface U:

gαβ dxαdxβ = Φdξ dη , (5.5)

where Φ(ξ ,η) ̸= 0 is the conformal factor depending on light cone coordinates ξ := τ +σ , η :=
τ −σ on U. The respective four dimensional metric is

ds2 = Φdξ dη +mdΩ2, (5.6)

where dΩ2 is the metric on the Riemannian surface of constant curvature V= S2, R2, or H2. The
sign of the conformal factor Φ is not fixed for the present.

For Φ > 0 and m < 0 the signature of metric (5.6) is (+−−−). If we change the sign of
m, the signature of the metric becomes (+−++). The same transformation of the signature can
be achieved by changing the overall sign of the metric ĝi j 7→ −ĝi j, and interchanging the first two
coordinates, τ ↔ σ . Einstein’s equations with cosmological constant and electromagnetic field
(3.1) are not invariant with respect to these transformations with simultaneous changing the sign of
the cosmological constant, because the right hand side changes its sign. Therefore, for Φ > 0, we
have to consider two cases:

m < 0 ⇔ sign ĝi j = (+−−−) and m > 0 ⇔ sign ĝi j = (−+++).

7
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This is the difference for Einstein’s equations without electromagnetic field considered in [15]. If
the change of signature (+−−−) 7→ (−+++) is followed by the change of signs in front of R̂, Λ,
and F̂2 in action (2.1), then both choices become equivalent. In our presentation, it is more natural
to fix the sign of F̂2 in action (2.1) and consider different signatures, because signs of dilaton fields
are not fixed.

For Φ > 0 and m < 0, the metric signature is (+−−−), and we introduce convenient param-
eterization

m :=−q2, q(ξ ,η)> 0. (5.7)

Afterwards, we obtain the full system of equations:

−∂ 2
ξ ξ q+

∂ξ Φ∂ξ q
Φ

= 0, (5.8)

−∂ 2
ηη q+

∂ηΦ∂ηq
Φ

= 0, (5.9)

−2
∂ 2

ξ η q2

Φ
−K(h)+Λq2 +

Q2

q2 = 0. (5.10)

The first two equations which do not depend on the electromagnetic field imply the following
assertion.

Proposition 5.2. If ∂ξ q∂ηq > 0, then the function q(τ) depends only on timelike coordinate τ :=
1
2(ξ + η). If ∂ξ q∂ηq < 0, then the function q(σ) depends only on spacelike coordinate σ :=
1
2(ξ −η). And the following equality holds

|Φ|= |q′|, (5.11)

where prime denotes differentiation on the argument (either τ , or σ ).

This proposition provides a general solution to equations (5.8) and (5.9) up to conformal transfor-
mations. This statement is proved in [15, 17].

Thus, we can always choose coordinates in such a way that q and Φ depend simultaneously
on timelike or spacelike coordinate

ζ :=
1
2
(ξ ±η) =:

{
τ , ∂ξ q∂ηq > 0,
σ , ∂ξ q∂ηq < 0.

(5.12)

It means that two-dimensional metric (5.5) and consequently four-dimensional metric (5.6) have
the Killing vector ∂σ or ∂τ , as the consequence of equations (5.8) and (5.9). We call these so-
lutions homogeneous and static, respectively, though it is related to the fixed coordinate system.
The existence of additional Killing vector is the generalization of Birkhoff’s theorem [18] stat-
ing that arbitrary spherically symmetric solution of vacuum Einstein’s equations must be static.
(This statement was previously published in [19].) The generalization includes the addition of
electromagnetic field, and, in addition, the existence of extra Killing vector is proved not only for
spherically symmetric solution (K(h) = 1), but also for solutions invariant with respect to ISO(2)
(K(h) = 0) and SO(1,2) (K(h) =−1) transformation groups.
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We are left to solve equation (5.10). In static, q = q(σ), and homogeneous, q = q(τ), cases,
equation (5.10) takes the form

(q2)′′ = 2
(

K(h)−Λq2 − Q2

q2

)
Φ, q = q(σ), (5.13)

(q2)′′ =−2
(

K(h)−Λq2 − Q2

q2

)
Φ, q = q(τ). (5.14)

To integrate the derived equations, one has to express Φ through q using equation (5.11) and re-
moving the modulus sign.

We consider the static case q = q(σ), Φ > 0 and q′ > 0 in detail. Then Eq. (5.13) together
with Eq. (5.11) reduces to

(q2)′′ = 2
(

K(h)−Λq2 − Q2

q2

)
q′.

It can be easily integrated:

(q2)′ = 2
(

K(h)q− Λq3

3
−2M+

Q2

q

)
,

where M = const is an integration constant, which coincides with mass in the Schwarzschild solu-
tion. Differentiating the left hand side and dividing it by 2q > 0, we obtain equation

q′ = K(h)− 2M
q

+
Q2

q2 − Λq2

3
.

Since q′ = Φ in the case under consideration, it implies expression for the conformal factor through
variable q:

Φ(q) = K(h)− 2M
q

+
Q2

q2 − Λq2

3
. (5.15)

If q = q(σ), Φ > 0 and q′ < 0, then the similar integration yields

q′ =−Φ(q),

where the same conformal factor (5.15) stands in the right hand side. This case can be united with
the previous one by re-writing equation for q in the form

|q′|= Φ(q), q = q(σ), Φ > 0. (5.16)

The modulus sign in the left hand side means that if q(σ) is a solution, then the function q(−σ) is
also the solution.

The static case for Φ < 0 is integrated in the same way:

|q′|=−Φ(q), q = q(σ), Φ < 0. (5.17)

If solution is homogeneous, q = q(τ) and Φ > 0, q′ > 0, then integration of Eq. (5.14) yields
the equality

q′ =−
(

K(h)− 2M
q

+
Q2

q2 − Λq2

3

)
.

9
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That is the conformal factor must be identified with the right hand side

Φ̂ =−
(

K(h)− 2M
q

+
Q2

q2 − Λq2

3

)
. (5.18)

We denote the expression for the conformal factor through q by hat because in homogeneous case
it differs by the sign. Thus, homogeneous solutions of Einstein’s equations can be written in the
form

|q′| = Φ̂(q), q = q(τ), Φ̂ > 0. (5.19)

|q′| =−Φ̂(q), q = q(τ), Φ̂ < 0. (5.20)

If the conformal factor is negative, then the signature of the metric is (−+−−). In this
case, we return to the previous signature (+−−−) after substitution τ ↔ σ . This transformation
allows us to unite static and homogeneous solutions by taking the modulus of the conformal factor
in the expression for metric (5.6). Then a general solution of vacuum Einstein’s equations with
electromagnetic field (2.2) in the corresponding coordinate system takes the form

ds2 = |Φ|(dτ2 −dσ2)−q2dΩ2, (5.21)

where the conformal factor Φ is given by Eq. (5.15). Here the variable q depends on σ (static local
solution) or τ (homogeneous local solution) through the differential equation∣∣∣∣ dq

dζ

∣∣∣∣=±Φ(q), (5.22)

where the sign rule holds:

Φ > 0 : ζ = σ , the sign+ (static local solution),
Φ < 0 : ζ = τ , the sign− (homogeneous local solution).

(5.23)

Thus the four-dimensional Einstein’s equations imply that there is the metric with one Killing vec-
tor field on surface U which was considered in full detail in [16]. Now we can construct global
solutions (maximally extended along geodesics) of vacuum Einstein’s equations using the confor-
mal block method. The number of singularities and zeroes of conformal factor (5.15) depends on
relations between constants K, M, Q, and Λ. Therefore there are many qualitatively different global
solutions.

Conformal factor (5.15) has one singularity: the second order pole at q = 0. Therefore ac-
cording to the rules formulated in [16, 17] every global solution correspond to one of the intervals
(−∞,0) or (0,∞). Because conformal factor Φ(q) is a smooth function for q ̸= 0, all arising
Lorentzian surfaces U and metrics on them are smooth. Totally, we have 33 topologically different
solutions in the case B which are classified in [6].

6. Changing topology of space in time

Here we consider one new global spherically symmetric solution which describes changing
topology of space sections during time evolution already at the classical level. It corresponds to the

10
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following values of constants:

K(h) = 1, Λ > 0, Q =
1

2
√

Λ
, M =

1
3

√
2
Λ
.

Now the conformal factor (5.15) is

Φ(q) =−

√
Λ
(

q− 1√
2Λ

)3(√
Λq+ 3√

2

)
3q2 .

It has triple zero at q = 1/
√

2Λ. The corresponding four dimensional metric in Schwarzschild-like
coordinates is

ds2 = Φ(q)dt2 − dq2

Φ(q)
−q2(dθ 2 + sin2 θdφ2), 0 < q < 1/

√
2Λ. (6.1)

The global solution is topologically the product M = U× S2 where the Lorentzian surface U is
depicted by the square Carter–Penrose diagram in Fig. 1. It has the de Sitter asymptotic at q →
±∞ where the surface is geodesically complete. The timelike boundaries q = 0 are singular and
geodesically incomplete. The very important fact is that the saddle point q = 1/

√
2Λ at the center

denoted by the filled circle is geodesically complete. It is the intersection point of triple horizons.

T

Figure 1: The Carter–Penrose diagram for triple horizon.

This Carter–Penrose diagram is interesting from physical standpoint. Namely, consider space
sections of this diagram. If a section does not cross the saddle point in the center, then it is an
interval of finite length with singular scalar curvature at the ends. If a section goes through the
center then it is the union of two semi-infinite intervals because the complete point in the center is
lying at space infinity. Now we introduce a global evolution parameter T , for example, vertical line
on the diagram. Then the topology of space sections changes during evolution: for some value of
T we have two semi-infinite intervals instead of one interval of finite length. This example shows
that changing topology of space in time may occur already at the classical level.

To visualize the surface, we show qualitatively the isometric embedding of surface U in three-
dimensional Minkowskian space-time R1,2 in Fig. 2. Where the saddle point really lies at infinity.

7. Conclusion

We have found and classified all global solutions of general relativity with cosmological con-
stant minimally coupled to an electromagnetic field assuming the space-time to be the warped
product of two surfaces with Lorentzian and Euclidean signature metrics. The symmetry of so-
lutions arises as the consequence of Einstein’s equations (“spontaneous symmetry emergence”).

11
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T

Figure 2: Qualitative isometric embedding of the Carter–Penrose diagram with triple horizon in three-
dimensional Minkowskian space-time.

Totally, there are 37 topologically inequivalent spatially symmetric solutions. New global solution
describing changing topology of space sections in time is discussed in detail.

The work was supported in part by the Russian Government Program of Competitive Growth
of Kazan Federal University (Russian Academic Excellence Project “5–100”).
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