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1. Introduction

The tensor track [2] is an attempt to quantize gravity by making use of random tensor models
[3]. It lies at the crossroad of several closely related approaches, most notably random matrix
models, (causal) dynamical triangulations, non -commutative quantum field theory, and group field
theory, which is the second-quantized field-theoretic version of loop quantum gravity.

The world of random tensors models has a surprisingly simple entrance door, namely the fam-
ily of melonic graphs [4]. Beyond this modest door lies a marvelous world of dazzling complexity.

Random tensors is a zero dimensional world, and, as such, it is background-independent; it
makes no references whatsoever of any particular space-time. Moreover, based on the field theory
of Feynman, it is amenable to renormalisation group techniques. Simple models even share with
non-Abelian gauge theories the property of asymptotic safety [5].

However until recently the lack of simple solvable examples of this correspondence prevented
to extract easily the gravitational content. Gurau-Witten and Klebanov-Tarnoplosky built a first
bridge [6] between tensors models and the gauge-gravity correspondance [7] through conformal
field theory, by making clever use of a modification of SYK models [8]1. But these models still are
quantum mechanical and lost background-independence since they make use of a preferred time.

This paper is a very small step to restore background-independence. Zero dimensional tensor
models create naturally trees or unicycles as Gromov-Hausdorff limits. If we can aproximate the
sub-dominant terms as matter fields living on trees or unicycle (and it’s a big “if”), we shall get in
this approximation an SYK-type model on a random tree or unicycle. Thermal Euclidean, which
plays such a natural role in SYK models, leads us to use unicycles rather than trees. Models of this
type can be studied first by perturbative field theory techniques, hence the link with the paper [1].

Then our main result is that, under reasonable assumptions, the SYK model for bosons aver-
aged on (long, infrared) unicycles possesses a two-point function exhibiting much the same behav-
ior, but with a critical infrared exponent different from the one of ordinary SYK, sensitive to the
spectral dimension of the underlying graph.

This can be seen as a simpler version of the well-known 2d CFT coupled to gravity (ie CFT
on R2 but coupled to the Liouville field). The change in critical exponent is a simpler analog of
the Knizhnik-Polyakov-Zamolodchikov and David-Distler-Kawai relations, which tell how critical
exponents change when coupled to 2d gravity. The cycle in a unicycle can be identified to a
(lattice regularized) flat U(1) thermal circle, and the trees decorating the unicycles are then the
unidimensional analog of the bidimensional Liouville field bumps which are at the source of the
modification of critical exponents. In this way, field theory on random unicycles can be seen as
"gravity in one dimension" or "gravitational time".

Relevance of the spectral dimension regarding renormalization properties of a quantum field
theory on fractal sets was argued using a heat-kernel representation of the two-point function and
resolved for hierarchical models, which allowed a rigorous Wilson block renormalization construc-
tion, by Eyink [11].

This paper suggests research in many directions among which:

1We also point to the very recent review on the particular aspects of melonic CFTs that were discussed at the same
conference [9].

1



P
o
S
(
C
O
R
F
U
2
0
1
9
)
2
0
7

Field Theory on Random Trees and Unicycles Vincent Rivasseau

• understand the four point SYK function on unicycle. Does it still saturates MSS bound?

• determine the renormalization group flow, CFT spectrum etc. in the lines of [10];

• investigate the potential bulk holographic dual. Is it a kind of "random AdS2"?

• is there an analog of OS positivity for random spaces?

The text is organised as follows. In Section 2, we review the material in [1]: the measure
over the ensemble of trees, the field theory on the trees and relying on estimates over heat-kernels,
perturbative bounds over amplitudes. In Section 3, we introduce the unicycles as a compactified
version of the random trees considered previously. We then recall very briefly the SYK model
and its associated two-point function solution of a melonic Schwinger-Dyson equation. The next
Section 5 defines the analog of the SYK model on the unicycles. Finally, Section 6 closes with the
simpler extraction of the critical two-point function for a bosonic model on unicycles.

2. Perturbative Renormalization on Random Trees

A graph Γ is made of a set of vertices V (Γ), a set of edges E(Γ), and an incidence relation R
between them. Fermions are preferably defined on oriented graphs (or digraphs), in which every
edge has an arrow hence starts from a vertex u and arrives at a vertex v. This will be noted as
e : u→ v. Tadpoles e : u→ u are a priori allowed although they will not be important in this paper.

2.1 Critical Trees

The Aldous continuous random tree [14] is the Gromov-Hausdorff limit of a critical Galton-
Watson tree process with fixed branching rate conditioned on infinite survival along a single infinite
spine [15]. One can also consider a discretized version of this continuous tree. It is a set of
infinite discrete trees which have in common a unique infinite spine decorated with a product of
independent measures for the finite critical Galton-Watson trees branching along the spine [16].
We briefly recall the definition of the corresponding probability measure following closely [16].

The order |T | of a rooted tree is defined as its number of edges, or its number of vertices differ-
ent from the root r (assumed, unless otherwise stated, to be of degree 1). To a set of non-negative
branching weights wi, i ∈ N? is associated the weights generating function g(z) := ∑i≥1 wizi−1 and
the finite volume partition function Zn on the set Tn of all rooted trees T of order |T |= n

Zn = ∑
T∈Tn

∏
u∈T\r

wdu , (2.1)

where du denotes the degree of the vertex u. The generating function for all Zn’s is

Z(ζ ) =
∞

∑
n=1

Znζ
n, (2.2)

and it satisfies the equation
Z(ζ ) = ζ g(Z(ζ )). (2.3)

2
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Assuming a finite radius of convergence ζ0 for Z one defines

Z0 = lim
ζ↑ζ0

Z(ζ ). (2.4)

The critical Galton-Watson probabilities pi := ζ0wi+1Zi−1
0 for i ∈N are then normalized: ∑

∞
i=0 pi =

1. Any infinite tree in the class we consider has a root r, an infinite spine s0 = r,s1,s2, · · · ,sk, · · · ,
k ∈ N, plus a collection of dk− 2 finite branches T (1)

k , · · · ,T (dk−2)
k , at each vertex sk of the spine

(recall the degree of k is indeed dk). The set of such trees is called T∞. It is equipped with a
probability measure ν that we now describe. This measure is obtained as a limit of measures νn on
finite trees of order n. These measures νn are defined by identically and independently distributing
branches around a spine with measures

µ(T ) = Z−1
0 ζ

|T |
0 ∏

u∈T\r
wdu = ∏

i∈T\r
pdu−1 . (2.5)

Theorem [16] Viewing νn(T ) = Z−1
n ∏u∈T\r wdu , τ ∈ Tn , as a probability measure on T we

have
νn→ ν as n→ ∞ , (2.6)

where ν is the probability measure on T concentrated on the subset T∞.

On random or fractal spaces, different notions of dimensions are introduced, in particular
the Hausdorff and spectral dimensions. The first gives a global picture, close to the topological
dimension. Formally, given a set A, its Hausdorff dimension is:

dH(A) = inf

{
d ≥ 0 : lim

r→0
inf

(
∑

i
rd

i

)
= 0,such that balls S of radii ri ∈ (0,r) cover A

}
. (2.7)

To the contrary, the spectral dimension provides a more local picture of the landscape. Given a set
A and a random walk {Xt}t≥0 starting at x ∈ A, noting the probability that the random walker is at
y ∈ A at time t by pt(y,x), the spectral dimension of A is

ds(A) =−
1
2

lim
t→∞

log pt(x,x)
log t

. (2.8)

Theorem For generic infinite tree ensembles, the Hausdorff and spectral dimensions are respec-
tively dH = 2 and ds = 4/3.

For simplicity and in order not distract the reader’s attention into unessential details we shall
as in [1] restrict ourselves from now on to the case of critical binary Galton-Watson trees. It
correspond to weights w1 = w3 = 1, and wi = 0 for all other values of i. In this case the above
formulas simplify. The critical Galton-Watson process corresponds to offspring probabilities p0 =

p2 =
1
2 , pi = 0 for i 6= 0,2. The generating function for the branching weights is simply g(z)= 1+z2

and the generating function for the finite volume trees Z(ζ ) = ∑
∞
n=1 Znζ n obeys the simple equation

Z(ζ ) = ζ (1+Z2(ζ )), which solves to the Catalan function Z =
1−
√

1−4ζ 2

2ζ
. In the above notations

the radius of convergence of this function is ζ0 = 1
2 . Moreover Z0 = limζ↑ζ0 Z(ζ ) = 1 and the

measure on each branch of the Aldous tree is simply

µ(T ) = 2−|T | . (2.9)

3
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2.2 Regularized Laplacians

On any graph Γ, there is a natural notion of the Laplace operator LΓ. For a directed graph Γ

the incidence matrix is the rectangular V by E matrix with indices running over vertices and edges
respectively, such that

• εΓ(v,e) is +1 if e ends at v,

• εΓ(v,e) is -1 if e starts at v,

• εΓ(v,e) is 0 otherwise.

The V by V square matrix with entries d(v) on the diagonal is called the degree matrix DΓ.
The adjacency matrix is the symmetric V ×V matrix AΓ made of zeroes on the diagonal: AΓ(v,v) =
0 ∀v ∈ V , and such that if v 6= w then AΓ(v,w) is the number of edges of G which have vertices v
and w as their ends. Finally the Laplacian matrix of Γ is defined to be ∆Γ = DΓ−AΓ. Its positivity
properties stem from the important fact that it is a kind of square of the incidence matrix, namely

LΓ = εΓ · ε?
Γ. (2.10)

Remark that in graph theory the Laplacian is a positive rather than a negative operator, with a
kernel dimension equal to the number of connected components of G. So the sign convention for
the graph Laplacian is the opposite of the one of differential geometry.

The inverse GΓ of this operator is formally given by the sum over random paths ω

L−1
Γ

= GΓ(x,y) = ∑
ω:x→y

∏
v∈Γ

[
1
dv

]nv(ω)

(2.11)

where dv is the coordination at v and nv(ω) is the number of visits of ω at v.
As we know this series is not convergent without an infrared regulator, since a Laplacian al-

ways has a constant zero mode. We can take out the zero mode by fixing a root vertex in the graph
and deleting the corresponding line and column in LΓ. But to keep contact with the path represen-
tation (2.11), which has nice positivity properties, we shall use particular infrared regularizations
compatible with this representation. There are two such natural regularizations.

• The mass regularization adds m21 to the Laplacian, and leads to the path representation

Gm
Γ (x,y) = ∑

ω:x→y
∏
v∈Γ

[
1

dv +m2

]nv(ω)

(2.12)

whose infrared limit corresponds to m→ 0.

• The path length regularization (used in [16]) corresponds to the path representation

Gξ

Γ
(x,y) = ∑

ω:x→y
(1−ξ )|ω| ∏

v∈Γ

[
1
dv

]nv(ω)

(2.13)

convergent for 0 < ξ < 1; the infrared limit corresponds to ξ → 0.
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These two representations are usually equivalent for most infrared problems. For instance in
our binary case the path length representation with constant ξ corresponds to a mass regularization
with just two different masses m2

1 =
ξ

1−ξ
on vertices of degree 1 and m2

3 =
3ξ

1−ξ
= 3m2

1 on vertices
of degree 3. The case of a regular lattice such as Zd is even simpler; since its vertices have all
constant degree 2d, the relationship is simply m2

d = 2dξ

1−ξ
.

We want also to mimic fractional powers of the inverse Laplacian. This allows to probe for
theories with scaling dimension different from the one of the ordinary Laplacian. This is most con-
veniently done (again to respect the positivity properties of the path representation) by superposing
regularized Laplacians with a weight which diverges near m2 = 0 or ξ = 1. For instance in the case
of the mass regularization we could define, for 0 < α < 1, a kind of Källen-Lehmann superposition

Gα
Γ (x,y) = 2

∫
∞

0
m−2α+1Gm

Γ (x,y)dm. (2.14)

In the usual case on flat space it is easy to see why this corresponds to a fractional power of
the Laplacian. We have for example in the mass regularized case the parametric representation

Gm(p) = (p2 +m2)−1 =
∫

∞

0
e−t(p2+m2)dt (2.15)

of the Laplacian in Fourier space. The corresponding superposed integrals are then

Gα = (p2 +m2)−1
α =

∫
∞

0
m−2α2mdm

∫
∞

0
e−t(p2+m2)dt (2.16)

=
∫

∞

0
e−uu−αdu

∫
∞

0
e−t p2

t−1+αdt (2.17)

= Γ(1−α)p−2α

∫
∞

0
vαe−v dv

v
(2.18)

= Γ(1−α)Γ(α)p−2α (2.19)

where in the second line we put u = tm2 and need α < 1 for convergence of the u integral near 0;
in the third line we put v = t p2 and need α > 0 for convergence of the v integral near 0. This shows
that Gα is a fractional inverse Laplacian (with better infrared properties for α < 1 than the regular
inverse Laplacian p−2).

2.3 Probabilistic Estimates

The difficulty is to go from bounds valid on a single graph (quenched), to those for which an
average over the ensemble of random graphs is taken (annealed). We based our analysis on the
probabilistic estimates on random trees from [17]. More precisely we use the definition of λ -good
balls, typical regions on the statistical ensemble of spaces we consider. We write the ball of radius
r from center x as B(x,r) = {v ∈ Γ : d(x,v) ≤ r} and its volume V (x,r) will count the number of
vertices in B(x,r). 2 For λ ≥ 64, the ball B(x,r) is said λ–good (Definition 2.11 of [17]) if:

r2
λ
−2 ≤ V (x,r)≤ r2

λ , (2.20)

m(x,r) ≤ 1
64

λ , V (x,r/λ )≥ r2
λ
−4, V (x,r/λ

2)≥ r2
λ
−6. (2.21)

2In the notations of [17] and the random graph community, V (x,r) sums, for all vertices v in the ball B(x,r), the
weights associated to all edges attached to v. Since here the weights are all set to one and the graph is a tree, both
definitions are proportional.

5
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Remark that if B(x,r) is λ–good for some λ , it is λ ′–good for all λ ′ > λ .
Corollary 2.12 of [17] proves that there are two constants c1,c2 such that:

P(B(x,r) is not λ–good)≤ c1e−c2λ . (2.22)

Assuming that a random walk evolves in some λ -good ball B(x,r), essential quenched es-
timates are upper and lower bounds on the off-diagonal heat-kernel q2t(x,y) for a proper time t
restricted to an interval scaling as r3.

Theorem 2.1. Suppose that B = B(x,r) is λ–good for λ ≥ 64, and let I(λ ,r) = [r3λ−6,r3λ−5].
Then

• for any K ≥ 0 and any y ∈ T with d(x,y)≤ Kt1/3

q2t(x,y)≤ c
(

1+
√

K
)

t−2/3
λ

3 for t ∈ I(λ ,r) , (2.23)

• for any y ∈ T with d(x,y)≤ c2rλ−19

q2t(x,y)≥ ct−2/3
λ
−17 for t ∈ I(λ ,r). (2.24)

The theorem can be very useful. In the multiscale decomposition of Feynman amplitudes,
we introduce I j = [M2( j−1),M2 j] where M has the dimension of mass, and we have the infrared
equivalent continuous time representation

Cα, j
T (x,y) =

∫
∞

0
u−αdu

∫
I j

qt(x,y)e−utdt = Γ(1−α)
∫

I j

qt(x,y)tα−1dt. (2.25)

Regarding the φ 4 theory, for which α = 1
3 is the critical dimension such that the interaction is

marginal or the theory just renormalizable, we used the above estimates to show upper and lower
bounds on fractional annealed propagators (Lemma 3.3 in [1]).

Lemma 2.1. There exist constants c, c′ such that the averaged propagator summed over one end-
point obeys the bounds:

cM2 j/3 ≤ E

[
∑
y

C
α= 1

3 , j
T (x,y)

]
≤ c′M2 j/3. (2.26)

Also, there exists a third constant c̃ such that an annealed tadpole is bounded by:

E
[
C j

T (x,x)
]
≤ c̃M−2 j/3. (2.27)

Proof. The proof goes as follows. Given the scale j and the point x ∈ T , we decompose the tree T
into annuli centered at x:

T = ∪k∈N AT
j,k, AT

j,k :=
{

y : d(x,y) ∈ [r j,k,r j,k+1[
}
, (2.28)

with the radii r j,k := M2 j/3k5/3. Taking λk,l := k+ l and r j,k,l := M2 j/3λ
5/3
k,l , we are ensured that

I j = [M2 j−2,M2 j]⊂ I(λk,l,r j,k,l) = [r3
j,k,lλ

−6
k,l ,r

3
j,k,lλ

−5
k,l ], (2.29)

6
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making Thm. 2.1 applicable. In order to be able to sum over all points y ∈ T , we introduce the set
of constants Kk := M2/3(k+1) such that

d(x,y)≤ Kkt1/3, ∀t ∈ I j, ∀y ∈ AT
j,k. (2.30)

Finally, we also need to control the volume of balls BT
j,k of center x and radius r j,k (or BT

j,k,l of
radius r j,k,l). In that purpose, we introduce the random variable L = min{l ≥ l0 : BT

j,k,l is λk,l-good}
allowing to partition the average over trees according to the volume of the ball B j,k containing y

E

[
∑
y

C j
T (x,y)

]
=

∞

∑
k=0

∞

∑
l=l0

P[L = l]E|L=l

[
∑

y∈AT
jk

∫
I j

dttα−1qt(x,y)
]
, (2.31)

where E|A means conditional expectation with respect to the event A. Using the bounds (2.23) and
the fact that the volume of the annulus A j,k is bounded by that of the ball B j,k,l , assumed λk,l-good
but not λk,l+1-good, thus inequality (2.22), we obtain the upper bound (2.26). The lower bound is
easier since it is enough to restrict to the balls that are λk,l-good in the average over trees. Finally
for the tadpole, the reasoning is straightforward since we are exempted of the sum over points in
the balls.
These estimates will enter the multiscale decomposition of Feynman amplitudes, through Kruskal
greedy algorithm [21]. It results in two theorems that establish the main perturbative bounds for
2PI graph:

Theorem 2.2. For a completely superficially convergent graph G (i.e. with no two- or four-point
subgraphs), with vertex set V (G) of order n, the limit as limρ→∞E(AG) of the averaged amplitude
exists and obeys the uniform bound

E(AG)≤ Kn(n!)β (2.32)

where β = 52
3 .

An essential step in the proof is to bound from above the amplitude of the graph G with that
of a graph that keeps propagators connecting the vertices V (G) with a (non-unique) Kruskal tree
rooted at a vertex x0, while the other propagators, from the loops, become tadpoles:

E[AG,µ ]≤ cnE
[

∑
{xv}

n−1

∏
v=1

C jv
T (xv,xa(v))

2n+2−N

∏
f=1

[C j f
T (x f ,x f )]

1/2
]
. (2.33)

We have denoted by a(v) the ancestor of the vertex v assuming that the Kruskal tree directs the
propagators pointing away from the root x0. The remaining edges that formed loops split here into
half-edges where tadpoles attach.

Theorem 2.3. For a graph G with external points N(G)≥ 4, no two-point subgraph and with vertex
set V (G) of order n, the averaged effective-renormalized amplitude E[Ae f f

G ] = limρ→∞E[Ae f f
G,ρ ] is

convergent as ρ → ∞ and obeys the same uniform bound as in the completely convergent case,
namely

E(Ae f f
G )≤ Kn(n!)β . (2.34)

7
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We refer to [1] for details of the proof. The value of β has not being optimized.
Regarding now inclusion of two-point subgraphs, there is evidence from the long history of the

critical behaviour of long-range models3 that since divergences and the required counterterms are
analytic functions of the external momenta, the fractional propagator is not renormalized [19, 20].

3. Unicycles

The cycle C` of length ` is the connected graph with ` vertices and ` edges forming a single
circuit. Unicyclic graphs Γ are very mild modifications of trees. Instead of having no cycle they
have a single cycle C (Γ). They can therefore be embedded on the sphere as planar graphs with
two faces (recall that trees have a single “external" face). The order n = |Γ| of a unicycle Γ is still
defined as its total number of edges which is also its total number of vertices. Another important
integer for a unicycle Γ is its length `≥ 1 which is defined as the length of C (Γ). Hence `≤ n.

Figure 1: This unicycle of length `= 8 and order n = 42 is binary: every vertex has degree either 3 or 1.

For simplicity we choose an orientation of the cycle and we orient every decorating tree from
leaves to root, hence we can consider Γ as an oriented graph or digraph. Again for simplicity we
shall restrict to the binary case. It means that we shall consider unicycles whose vertices have
degree either 1 or 3. All vertices of a cycle have degree ≥ 2, hence in the binary case they must
have degree three. A binary unicycle of length ` is therefore characterized by the set of ` cyclically
ordered rooted trees T0, · · · ,T`−1 attached to it. It really means that the set U` of unicyclic graphs
of length ` can be identified to the set [∏`−1

k=0 Tk]/Cyc(`) of ` identical copies Tk of the set of rooted
binary trees T , quotiented by the group Cyc(`) of cyclic permutations of {0, · · · , `−1}.

Calling C = {t0, · · · t`−1} the set of vertices of the cycle, since each tk is of degree 3, there is
a set {t ′0, · · · t ′`−1} of tree vertices, each t ′k being joined to tk by a single edge not belonging to the
cycle; therefore the order of a binary unicycle of length ` is at least 2` (see Figure 3).

This characterization of binary unicycles suggests to define a probability measure for finite
unicycles whose infinite order limit is closely related to the previous class T∞ of infinite binary

3See [18] for a comprehensive account.
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random trees4. The cycle of the unicycle should be thought of as a finite analog of the spine of an
infinite tree in T∞. Each sk is indeed the root of a binary Galton Watson tree Tk, and we can equip
these trees with independent probability measures 2−|Tk|.

We can then in the same vein as in [16] define a measure dν` over the set U` of unicyclic
graphs of length `. It is just the product of independent Galton-Watson critical measures over the
attached trees Tk:

dν` =
`−1

∏
k=0

µ(Tk). (3.1)

We shall not consider directly the limit lim`→∞ dν` since it is delicate to define an analog of the
infinite spine with a periodic boundary condition. Instead we can work with asymptotics of expec-
tation values for dν` as `→ ∞, just like a thermodynamic or infrared limit can be defined as the
large size limit of finite size partition functions and correlation functions.

In the next section we shall therefore define the SYK model on unicycles in U` with finite
`, define their correlation functions averaged over dν` and we shall study the infrared limit of
these correlations when `→ ∞. The cycle in the unicycle is the analog of the lattice-regularized
Euclidean time at a certain non-zero temperature. The trees of the unicycle introduce the new
"random gravity" aspects of this Euclidean time.

4. The SYK Model

In 2015 Kitaev proposed a very simple model [8] which saturates the MSS bound [12], indi-
cating the surprising presence of a gravitational dual in two dimensions. It is a disordered quantum
mechanical model with action

I =
∫

dt
(

i
2

N

∑
i=1

ψi(t)
d
dt

ψi(t)− iq/2
∑

1≤i1<···<iq≤N
Ji1···iqψi1(t) · · ·ψiq(t)

)
(4.1)

where JI is a quenched iid random tensor (〈JIJI′〉 = δII′J2(q− 1)!N−(q−1)), and ψi an N-vector
Majorana Fermion.

This model now called the Sachdev-Ye-Kitaev model or SYK is solvable as N → ∞, being
approximately reparametrization invariant (i.e. conformal) in the infrared limit. Moreover an at-
tentive study of out-of-time ordered four-point functions reveals that the model saturates the MSS
bound [12]. The corresponding so-called NAdS2/NCFT1 (where N stands for “near") holography
attracted considerable interest and is currently the subject of active investigation (see for example
[13] for a pedagogical exposition).

The model came somewhat as a surprise since solvability and chaotic behavior were previ-
ously somehow considered as incompatible. Since any near-extremal black hole should have a two
dimensional "throat" in which the radial distance to the horizon and the time should be the effective
interesting dimensions, the SYK model could shed light on the quantum aspects of black holes and
in particular on hot issues such as the information paradox.

4Of course we expect that this limit is universal i.e. would be the same for p-ary random unicycles, but our emphasis
here is not on this point.
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As mentioned above, the reason the theory can be solved in the limit N → ∞ is because the
leading Feynman graphs of the SYK model are the melonic graphs [4] which dominate the 1/N
tensor expansion [22]. We give now a brief review of the corresponding computation of the two-
point function in the infrared limit.

To start, we need to obtain the Euclidean two-point function

G(τ) =
1
N ∑

i
〈ψi(τ)ψi(0)〉 (4.2)

or (by abuse of notation) its Fourier transform

G(ω) =
∫

∞

−∞

dτ eiωτG(τ). (4.3)

At finite temperature, the (Matsubara) frequencies are quantized: ωn = 2π

β
(n+ 1/2) and the Eu-

clidean time is bounded 0≤ τ ≤ β . It is convenient to define the quantity ∆ = 1/q.

Figure 2: Melonic Two-Point Function

At leading order in 1/N, after performing a quenched average over J and taking the limit
N→ ∞, the Schwinger-Dyson equations for the free propagator G−1

0 (ω) = iω and the self-energy
Σ(ω) simplify as

G−1(ω) = G−1
0 (ω)−Σ(ω), Σ(τ) = J2G(τ)q−1. (4.4)

This is pictured in Fig. 2, where the “blob" indicates a full propagator.
The first equation is the usual one linking the complete two-point function to the self-energy,

the second is the melonic approximation which leads the 1/N tensor expansion. Taking advantage
of the form of the free propagator, in the IR limit the above equation simplifies to the equation
depicted in Fig. 3, namely∫

dτ
′J2G(τ− τ

′)G(τ ′− τ
′′)q−1 =−δ (τ− τ

′′). (4.5)

Reparametrization invariance of (4.5) under any differentiable function f :

G(τ,τ ′) → [ f ′(τ) f ′(τ ′)]∆G( f (τ), f (τ ′)), (4.6)

Σ(τ,τ ′) → [ f ′(τ) f ′(τ ′)]∆(q−1)
Σ( f (τ), f (τ ′)), (4.7)

suggests to search for a particular solution of the type

Gc(τ) = b|τ|−2∆sign τ, J2bq
π =

(
1
2
−∆

)
tan(π∆). (4.8)
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Figure 3: Infrared Limit of Melonic Two-Point Function

The equation for b comes from the formula∫ +∞

−∞

dτeiωτsignτ|τ|−2∆ = 21−2∆i
√

π
Γ(1−∆)

(1
2 +∆)

|ω|2∆−1sign ω. (4.9)

Applying reparametrization fβ (τ) = tan(πτ/β ) leads to the finite temperature two-point function

Gc(τ) =

[
π

β sin(πτ/β )

]2∆

b sign τ. (4.10)

Recalling that ∆ = 1/q, the anomalous dimension for Gc(τ) ∝ τ−2/q at large τ corresponds to the
theory being just renormalizable in the infrared (in the tensor field theory sense [2]).

5. Lattice-regularized SYK

Consider a Γ0 of length ` and order n = l, that is without any decoration by trees. We want
to define the fermionic SYK model on Γ0. For the moment consider a one component Majorana
fermion ψ , the generalization to N components being straightforward.

The U(1) Euclidean circle of length β is replaced by an oriented finite cycle C` = {t0, · · · t`−1}
with tk = ak and ` = β/a. The ultraviolet limit a→ 0 and infrared limit β → ∞ then both imply
`→ ∞, by keeping constant the perimeter of the circle.

We have first to implement the antiperiodic boundary conditions. Antiperiodicity on the lattice
means that ψ is in fact periodic but with period 2β instead of β hence should be analyzed in terms of
2` frequencies πq

β
= πq

a` with q = 1, · · ·2`, but that only odd Matsubara frequencies ωp = (2p+1) π

β

for p = 0, · · ·`−1 contribute. The discrete Fourier transforms are defined as

ψ̂(ωp) =
1√
`

`−1

∑
k=0

e−iωp·tk ψ(tk) =
1√
`

`−1

∑
k=0

e−
(2p+1)iπk

` ψ(ak). (5.1)

Remark that
ψ̂(ω`−p−1) = ψ̂(ωp) (5.2)

and that the inverse Fourier law gives antiperiodic fields of antiperiod β

ψ(tk) =
1√
`

`−1

∑
p=0

eiωp·tk ψ̂(ωp) =
1√
`

`−1

∑
p=0

e
(2p+1)iπk

` ψ̂

(
(2p+1)π

β

)
=−ψ(tk +β ). (5.3)
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The action should be discretized in the usual way, that is turning each derivative at tk into a
lattice difference

1
a
[ψ(ka+a)−ψ(ka)] =

1
a
[ψ(tk+1)−ψ(tk)] (5.4)

and integrals such as
∫

dt f (t) into Riemann lattice sums a∑
`−1
k=0 f (tk). To discretize the quadratic

part i
2
∫

dt ∑
N
i=1 ψi(t) d

dt ψi(t) of the SYK action one should take into account the anticommutation
of Fermions. Factoring out i

2 leads to consider the quadratic form

Qlat(ψ) =

[
`−2

∑
k=0

ψ(tk)ψ(tk+1)−ψ(t`−1)ψ(t0)

]
, (5.5)

where the last term is subtle: because of antiperiodicity, ψ(t`) should be identified with −ψ(t0).
The total interacting SYK lattice action is therefore

Ilat =
N

∑
i=1

i
2

Qlat(ψi)−aiq/2
`−1

∑
k=0

∑
1≤i1<···<iq≤N

Ji1,··· ,iqψi1(tk) · · ·ψiq(tk). (5.6)

Remark that in order to have a non zero normalization (for q even) the total number ` should be
even, a condition which we assume from now on.

We can rewrite the quadratic (free) action in Fourier space. Forgetting the trivial i index, it
means

Qlat(ψ) =
[ `−2

∑
k=0

ψi(tk)ψ(tk+1)−ψ(t`−1)ψ(t0)
]

(5.7)

=
1
`

`−1

∑
p=0

`−1

∑
q=0

[`−2

∑
k=0

e
iπ
` [(2p+1)k+(2q+1)(k+1)]− e

iπ
` [(2p+1)(`−1)

]
ψ̂(ωp)ψ̂(ωq)

=
1
`

`−1

∑
p=0

`−1

∑
q=0

[
e

iπ(2q+1)
`

`−1

∑
k=0

e
2iπ
` (p+q+1)k

]
ψ̂(ωp)ψ̂(ωq) (5.8)

=
`−1

∑
p=0

[
e−

iπ(2p+1)
` −1

]
ψ̂(ωp)ψ̂(ωp). (5.9)

where in the last line we took advantage of the fact that the sum over k gives zero unless e
2iπ
` (p+q+1)=

1 hence p+q+1= `, and we added the−1 because it is the Fourier transform of a mass term hence
is zero, and we used (5.2) .

Remark that the factor e
−iπ(2p+1)

` − 1 is never zero and behaves as −iπ(2p+ 1) for small p.
Hence the free lattice propagator is invertible and approximates at small p the inverse of the con-
tinuous free propagator, hence the inverse of the Matsubara frequency.

Consider now any unicycle Γ with decorating trees oriented from leaves to the cycle. We want
to define the fermionic SYK model on Γ.

We impose two conditions. First we want the free action of the N-component Majorana field
ψ to be a quadratic form i

2 QΓ(ψ) with a good non-zero normalization. Second we want to impose
the anti-periodic boundary conditions along the spine to coincide with the ones of the ordinary free
SYK model on the trivial unicycle Γ0 (not decorating by the trees).
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A naive quadratic form would couple a Fermion on each vertex to its nearest neighbours.
However it does not work, since as soon as a single branch of Γ is non trivial, the corresponding
free theory has zero normalization. Indeed in this case the tree has a non trivial terminal branch
with two leaves s1 and s2 related to a node s3, and the Grassmann integral contains a term such as∫

dψ(s1)dψ(s2)dψ(s3)eψ(s1)ψ(s3)+ψ(s2)ψ(s3), which is zero.
In fact our two conditions lead to the same conclusion, namely that we need some kind of

Fermion doubling. The SYK model on Γ requires a single N-component Fermion variable not only
for the n vertices of Γ but also for the n edges of Γ. With this convention we can define

QΓ(ψ) =
[
∑
e,v

εevψ(e)ψ(v)
]
. (5.10)

To implement the anti-periodicity we fix a particular root vertex v0 on the spine and we reverse
the last half-arrow e` into that vertex.

Lemma 5.1. The normalization of the free theory at any unicycle Γ, ZΓ, is 2N`, so that

Z−1
Γ

∫
eQΓ(ψ)

∏dψ = 1. (5.11)

Proof. First treat the spine, then by induction, adding a leaf.
There are really 2` fermions on the spine, ` ones for the vertices and ` ones for the edges.

This allows to automatically implement the evenness condition, hence we can use the normalized
quadratic form QC in the form

Qlat(ψ) =
[ `−2

∑
k=0

ψ(tk)ψ(tk+1)−ψ(t`−1)ψ(t0)
]
. (5.12)

Let us note that this is the most simple example of introducing fermions on a graph, the general
case taking the Dirac operator as acting on the cliques of the graph [24] 5.

6. Bosons

For the moment let us focus on the two-point function for the SYK in the simplest case of
Bosons. The bare SYK model on Γ can be defined by the discretized action

IΓ = ∑
u∈V (Γ)

[
1
2

φ(u)(LΓ +m21)φ(u)− iq/2

q! ∑
1≤i1<···<iq≤N

Ji1···iqφi1(u) · · ·φiq(u)
]
. (6.1)

where LΓ is the lattice Laplacian on Γ and the disordered coupling has second moment:〈
J2

i1···iq

〉
=

(q−1)!J2

Nq−1 . (6.2)

In the N→ ∞ limit we get a self-consistent melonic equation for the two-point function Gmel(x,y)

[Gmel(x,y)]−1 =−[Gmel
0 (x,y)]−1−

∫
dτ
′J2[Gmel(x,y)]q−1. (6.3)

5See also [25] for a similar definition of fermions on a tree graph in the context of p-adic AdS/CFT.
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which simplifies in the infrared limit [23] into the convolution equation:

∑
z∈Γ

J2Gmel
ir (x,z)[Gmel

ir (z,y)]q−1 =−δ (x,y). (6.4)

We shall now assume that the effective infrared two point function Gmel
ir (x,y) is asymptotic to an

α-regularized propagator on Γ, namely Gα
Γ
(x,y) = 2

∫
∞

0 m−2α+1Gm
Γ
(x,y)dm. We shall average over

unicycles Γ of given length ` and search for the right value of α to fulfill (6.4). Since we average
over different Γ’s but which share all the same cycle of length ` it makes sense to consider x and y
in that cycle, but the intermediate point z can be anywhere on Γ, including in the decorating trees.

So we are searching for the value of α such that for x,y ∈ C` the equation〈
∑
z∈Γ

J2Gα
Γ (x,z)[G

α
Γ (z,y)]

q−1

〉
`

=−δ (x,y). (6.5)

holds. In this discrete setting, the right hand side is a Kronecker delta. Consequently we take x' y
on the left and the Kruskal tree is made of a single propagator connecting x to z. The average 〈.〉`
means averaging with dν`, hence over all unicycles of length ` with independent critical binary
Galton-Watson measure on the trees decorating the cycle.

Then the multiscale analysis is especially interesting.
According to the earlier Lemma 2.1, it results in

E

[
∑

z
Cα, j

T (x,z)

]
'M

4 j
3 M−

4 j
3 +2α j, (6.6)

and the tadpoles count each for

E
[
Cα, j

T (x,x)
]
'M−

4 j
3 +2α j. (6.7)

Remembering the proof of Theorem 2.2 which can be framed as

E

[(
∑

z
Cα, j

T (x,z)

)
(Cα, j

T (x,z))q−1

]
' E

[
Cα, j

T (x,z)
]
E

[
∑

z
Cα, j

T (x,x)

]q−1

, (6.8)

and collecting all factors, we have

E

[(
∑

z
Cα, j

T (x,z)

)
(Cα, j

T (x,x))q−1

]
'M−

4(q−1) j
3 +2qα j. (6.9)

Returning to eq. (6.5), we find

M−
4(q−1) j

3 +2qα j 'M−
4 j
3 =⇒ α =

2
3
− 4

3q
. (6.10)

Let us note that the scaling associated to the Kronecker delta that selects the critical value of α

making the q-th order interaction marginal, must correspond to the spectral dimension (here 4/3).
The effective infrared propagator, Fourier transforming on the spine, then behaves on the uni-

cycle as
〈Gα(p)〉` ' p−2α = p−

4
3+

8
3q , (6.11)

14



P
o
S
(
C
O
R
F
U
2
0
1
9
)
2
0
7

Field Theory on Random Trees and Unicycles Vincent Rivasseau

hence very differently from the flat deterministic case p−1+2/q. This is the main result of the paper
and, as usual, it corresponds to the just renormalizable case. Confirming this, for the moment crude,
analysis of the melonic equation with finer heat-kernel estimates is an interesting problem we are
working on.
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