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1. Introduction

Since the origin of quantum field theory (QFT) there have been proposal to add a new scale
of length to the theory in order to solve the problems connected to UV divergences. Later, also
attempts to build a theory of quantum gravity have proved the necessity of introducing a length

scale, that has been identified with the Planck length Lp =
√

h̄G
c3 ∼ 1.6 · 10−35 m [1]. A naive

application of this idea, like a lattice field theory, would however break Lorentz invariance. A way
to reconcile discreteness of spacetime with Lorentz invariance was proposed by Snyder [2] a long
time ago. This was the first example of a noncommutative geometry: the length scale should enter
the theory through the commutators of spacetime coordinates.

Noncommutative geometries were however not investigated for a long time, until they revived
due to mathematical [3] and physical [4] progresses. Their present understanding is based on the
formalism of Hopf algebras [5]. In particular, QFT on noncommutative backgrounds has been
largely studied [4]. In most cases, a surprising phenomenon, called UV/IR mixing, occurs: the
counterterms needed for the UV regularization diverge for vanishing incoming momenta, inducing
an IR divergence. At first, the discover of this property has spoiled the hopes that noncommutative
field theory may improve the renormalizability of its commutative counterpart, However, better
behaved models were later proposed that avoid this problem [6].

Noncommutative geometries also admit a sort of dual representation on momentum space in
theories of doubly special relativity (DSR) [7]. Here a fundamental mass scale is introduced, that
causes the curvature of momentum space [8], and the deformation of both the Poincaré group and
the dispersion relations of the particles. The Snyder model can also be seen as an example of DSR
model, where however the Poincaré invariance and the dispersion relations are undeformed.

As mentioned above, Snyder’s idea was almost abandoned with the introduction of renormal-
ization techniques, with the exception of some Russian authors in the sixties [9]. It revived more
recently, when noncommutative geometry became an important topic of research [10, 11]. How-
ever, in spite of several attempts using various methods [9, 12], the issue of finiteness of Snyder
field theory has not been established up to now. Here we review an attempt to investigate this topic
using the formalism of noncommutative QFT [13, 14].

2. The Snyder model

The most notable feature of the Snyder model is that, in contrast with most examples of non-
commutative geometry, it preserves the full Poincaré invariance. In fact, it is based on the Snyder
algebra, a deformation of the Lorentz algebra acting on phase space, generated by positions xµ ,
momenta pµ and Lorentz generators Jµν , that obey the Poincaré commutation relations

[Jµν ,Jρσ ] = i
(
ηµρJνσ −ηµσ Jνρ +ηνρJµσ −ηνσ Jµρ

)
, (2.1)

[pµ , pν ] = 0, [Jµν , pλ ] = i
(
ηµλ pν −ηλν pµ

)
, (2.2)

together with the standard Lorentz action on position

[Jµν ,xλ ] = i
(
ηµλ xν −ηνλ xµ

)
, (2.3)
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and a deformation of the Heisenberg algebra, preserving the Jacobi identities,

[xµ ,xν ] = iβJµν , [xµ , pν ] = i(ηµν +β pµ pν), (2.4)

where β is a parameter of the order of the square of the Planck length and ηµν = diag(−1,1,1,1).
The generators Jµν can be realized in the usual way as Jµν = xµ pν − xν pµ .

In contrast with most models of noncommutative geometry, the commutators (2.4) are func-
tions of the phase space variables: this allows them to be compatible with a linear action of the
Lorentz symmetry on phase space. However, translations act in a nontrivial way on position vari-
ables.

It is important to remark that, depending on the sign of the coupling constant β , two rather
different models can arise:

β > 0 Snyder model
β < 0 anti−Snyder model

They have very different properties. For example, the Snyder model has a discrete spatial structure
and a continuous time spectrum, while the opposite holds for anti-Snyder.

The subalgebra generated by Jµν and xµ is isomorphic to the de Sitter/anti-de Sitter algebra,
and hence the Snyder/anti-Snyder momentum spaces have the same geometry as de Sitter/anti-
de Sitter spacetime respectively. In fact, the Snyder momentum space can be represented as a
hyperboloid H of equation

ζ
2
A = 1/β (2.5)

embedded in a 5D space of coordinates ζA with signature (−,+,+,+,+), or equivalently as a coset
space SO(1,4)/SO(1,3) [15].

The Snyder commutation relations are recovered through the choice of isotropic (Beltrami)
coordinates on H

pµ =
ζµ√
βζ4

(2.6)

and the identification

xµ =
√

βMµ4, Jµν = Mµν . (2.7)

where MAB are the Lorentz generators in 5D. Note that this construction implies that p2 < 1/β , and
hence the existence of a maximal mass, of the order of the Planck mass, for elementary particles.
This is a common feature in models with curved momentum space [8].

The momentum space of the anti-Snyder model can be represented analogously, as a hyper-
boloid of equation (2.5) with β < 0, embedded in a 5D space of coordinates ζA with signature
(+,−,−,−,+), or equivalently as a coset space SO(2,3)/SO(1,3). Again, anti-Snyder commuta-
tion relations are recovered through the choice of isotropic coordinates (2.6) and the identification
(2.7). An important difference from the previous case is that the momentum squared is now un-
bounded. In the following we shall concentrate on Snyder space, but most results hold also for
β < 0.
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3. Generalizations of the Snyder model

The Snyder model can be generalized by choosing different isotropic parametrizations of the
momentum space, but maintaining the identification xµ =

√
βMµ4. In this way, eqs. (2.1-2.3)

and the position commutation relations still hold, but [xµ , pν ] is deformed. For example, choosing
pµ = ζµ , one obtains [11]

[xµ ,xν ] = iβJµν , [xµ , pν ] = i
√

1+β p2 ηµν . (3.1)

The most general choice that preserves the Poincaré invariance is [16]

pµ = f (ζ 2)ζµ , xµ = g(ζ 2)Mµ4. (3.2)

Algebraically, the same models can also be obtained by deforming the Heisenberg algebra as1

[11, 17]

[xµ ,xν ] = iβJµν ψ(β p2),

[xµ , pν ] = i
[
ηµνφ1(β p2)+β pµ pνφ2(β p2)

]
. (3.3)

The function φ1 and φ2 are arbitrary, but the Jacobi identity implies

ψ = φ1φ2−2(φ1 +β p2
φ2)

dφ1

d(β p2)
. (3.4)

A different kind of generalization is obtained by choosing a curved spacetime (de Sitter) back-
ground, imposing nontrivial commutation relations between the momentum variables,

[pµ , pν ] = iαJµν , (3.5)

with α proportional to the cosmological constant. This idea goes back to Yang [19], but was later
elaborated in a more compelling way in [20] and further investigated by several authors [21, 22, 23].
We call this generalization Snyder-de Sitter (SdS) model. The other commutation relations are
unchanged, except that now, by the Jacobi identities,

[xµ , pν ] = i
(

ηµν +αxµxν +β pµ pν +
√

αβ (xµ pν + pµxν)
)
. (3.6)

This model depends on two invariant scales besides the speed of light, that are usually iden-
tified with the Planck mass and the cosmological constant, from which the alternative name name
triply special relativity, proposed in [20] for this model. It must be noted that, in order to have real
structure constants, both α and β must have the same sign. There are indications that the introduc-
tion of α might be necessary in order to obtain a well-behaved low-energy limit of quantum gravity
theories [20].

An interesting property of the SdS model is its duality for the exchange αx↔ β p [22], that
realizes the Born reciprocity [24]. The phase space can be embedded in a 6D space as a coset

SO(1,5)
SO(1,3)×O(2) if α,β > 0, or SO(2,4)

SO(1,3)×O(2) if α,β < 0 [23].
Alternatively, one can construct the SdS algebra directly from that of Snyder by the nonunitary

transformation

xµ = x̂µ +λ
β

α
p̂µ , pµ = (1−λ )p̂µ −

α

β
x̂µ , (3.7)

where x̂µ , p̂µ are generators of the Snyder algebra and λ a free parameter [23].
1A less general extension of the model had previously been proposed in [18].
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4. Phenomenological implications

A wide literature investigates the phenomenological implications of the Snyder model, espe-
cially in connection with the generalized uncertainty principle (GUP) [25]. In fact, the deformed
Heisenberg algebra of the Snyder model gives rise to a particular case of GUP.

Most papers however consider a nonrelativistic version of the model, where only spatial coor-
dinates present a Snyder structure, while time is unaffected. This case is of course easier to treat
and is expected to correspond to the correct low-energy limit (see however [26]). In this context,
some standard problems have been discussed, both in classical and quantum settings. Among them,
free particle [27, 28], harmonic oscillator [29, 30, 27], hydrogen atom [31], Dirac equation [32],
Newtonian orbits [29, 33]. In all these cases, corrections of order βm2 arise in the equations of
motion or in the quantum spectra, with m the mass of the system. The correction are therefore ex-
tremely small, except in the case of macroscopic systems, where however it is unlikely that Snyder
mechanics applies.

In any case, here we are more interested in the relativistic case, which has obtained much less
consideration. Some of the phenomenological consequences are:

- The relativistic uncertainty relations are deformed: from the deformed Heisenberg algebra,
for vanishing expectation values of x and p, one gets

∆xµ∆pν ≥
1
2
(ηµν +β∆pµ∆pν). (4.1)

The spatial components of this uncertainty relation essentially coincide with those considered in
GUP.

- Modification of perihelion shift of planetary orbits [34]: on a Schwarzschild background the
perihelion shift gets an additional contribution to the relativistic one δθrel ,

δθ = δθrel

(
1+

5
3

βm2
)
, (4.2)

where m is the mass of the planet. This correction clearly breaks the equivalence principle at Planck
scales. It is however not realistic to expect that this formula can be applied to macroscopic objects
like planets [35].

- DSR-like effects [36]: no effects of time delay of cosmological photons occur, contrary to
other models of noncommutative geometry [37], but some higher-order effects are still present.

To sum up, due to the smallness or absence of observable effects compared to other DSR
theories, it seems difficult that verifiable phenomenological predictions can be devised. The reason
is that the absence of a deformation of the Poincaré symmetry suppresses the size of the corrections
to the standard physical predictions.

5. Hopf algebras

In the study of noncommutative models an important tool is given by the Hopf algebra formal-
ism [5], especially in relation with QFT. We recall that in essence an Hopf algebras is an extension
of an ordinary algebras in which a structure called coalgebra is added, that describes nontrivial
features of tensor products of elements of the algebra by means of an operation called coproduct.

4
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In particular, since in noncommutative geometry spacetime coordinates are noncommuting
operators, the composition of two plane waves eip·x and eiq·x gives rise to a nontrivial addition rule
for the momenta, denoted by p⊕ q, that can be described by the coproduct structure of a Hopf
algebra, ∆(p,q). The coproduct is in general noncommutative.

Moreover, the opposite of the momentum is encoded in another operation of the Hopf algebra,
called antipode S(p), such that p⊕S(p) = S(p)⊕ p = 0.

In the case of the Snyder model, the algebra generated by the xµ does not close, in fact from
(2.4) it is evident that in order to get a closed algebra one should add to the xµ also the Jµν as
primary generators. Although this can be done [15, 38], it is still possible to compute the coproduct
and the antipode in the usual way. Of course the result will not obey all the axioms of a Hopf
algebra. In particular, the star product will turn out to be nonassociative [15, 11].

Geometrically, the nontrivial structure of the addition of momenta can be understood recalling
that the momentum manifold of the Snyder model can be represented as a a coset space. Calculating
the action of the group multiplication on it one can obtain the addition rules of momenta [15].

Alternatively, one can use the algebraic formalism of realizations [11]: a realization of the
noncommutative coordinates xµ is defined in terms of coordinates ξµ , pµ that satisfy canonical
commutation relations

[ξµ ,ξν ] = [pµ , pν ] = 0, [ξµ , pν ] = ηµν , (5.1)

by assigning a function xµ(ξµ , pµ) that satisfies the Snyder commutation relations.
The ξµ and pµ are interpreted as operators acting on function of ξµ , as

ξµ B f (ξ ) = ξµ f (ξ ), pµ B f (ξ ) =−i∂ f (ξ )/∂ξµ .

In particular, it is easy to show that the most general realization of the Snyder model is given by
[17]

xµ = ξµ +β ξ ·p pµ +β χ(β p2) pµ , (5.2)

where the function χ(β p2) is arbitrary and does not affect the commutation relations, but takes into
account ambiguities arising from operator ordering of ξµ and pµ .

In general, it can be shown [39] that for any noncommutative model,

eik·x B eiq·ξ = eiP(k,q)·ξ+iQ(k,q), (5.3)

where the functions Pµ and Q can be deduced from the realization. In particular,

eik·x B1 = eiK (k)·ξ+iJ (k), (5.4)

with Kµ(k)≡Pµ(k,0) and J (k)≡Q(k,0). The generalized addition of momenta is then given
by

kµ ⊕qµ = Dµ(k,q), (5.5)

with Dµ(k,q) = Pµ(K −1(k),q), and the coproduct is simply

∆pµ = Dµ(p⊗1,1⊗ p). (5.6)

5
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Note that Dµ is independent of χ . Moreover, the antipode S(pµ), is −pµ for all (generalized)
Snyder models. As discussed above, a fundamental property of the Snyder coproduct is its nonas-
sociativity.

For the calculations, it is useful to define a star product, that gives a representation of the
product of functions of the noncommutative coordinates x in terms of a deformation of the product
of functions of the commuting coordinates ξ . In particular, from the previous results one can
calculate the star product of two plane waves:

eik·ξ ? eiq·ξ = eiD(k,q)·ξ+iG (k,q), (5.7)

where
G (k,q) = Q(K −1(k),q)−Q(K −1(k),0). (5.8)

We consider now a Hermitean realization of the Snyder commutation relations

xµ = ξ
µ +

β

2
(ξ ·p pµ + pµ p·ξ ) = ξ

µ +β ξ ·p pµ − 5i
2

β pµ . (5.9)

The request of Hermiticity of the operator xµ will be important for the discussion of field theory.
Applying the previous formalism, one gets after some lengthy calculations [17]

Dµ(k,q) =
1

1−βk·q

[(
1+

β k·q
1+
√

1+β p2

)
kµ +

√
1+β p2 qµ

]
, (5.10)

and
G (k,q) =

5i
2

ln(1−β k·q) . (5.11)

It follows that

eik·ξ ? eiq·ξ =
eiD(k,q)·ξ

(1−β k·q)5/2 . (5.12)

The denominator can be considered as a natural measure related to the curvature of momentum
space.

6. QFT in Snyder space: free fields

Let us consider a QFT for a scalar field φ on a Snyder space. Usually, field theories in noncom-
mutative spaces are constructed by writing the action in terms of the star product and continuing to
Euclidean signature [4].

In fact, the action functional for a free massive real scalar field φ(x) in 4D can be defined
through the star product as [17]

Sfree[φ ] =
1
2

∫
d4

ξ

(
∂µφ(ξ )?∂

µ
φ(ξ )+m2

φ(ξ )?φ(ξ )
)
. (6.1)

The star product of two real scalar fields φ(ξ ) and ψ(ξ ) can be computed by expanding them in
Fourier series,

φ(ξ ) =
∫

d4k φ̃(k)eik·ξ . (6.2)

6
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Then, using (5.12),∫
d4

ξ ψ(ξ )?φ(ξ ) =
∫

d4
ξ

∫
d4k d4q ψ̃(k) φ̃(q) eik·ξ ? eiq·ξ

=
∫

d4k d4q ψ̃(k) φ̃(q)
∫

d4x
eiD(k,q)·x

(1−β k·q)5/2 =
∫

d4k d4q ψ̃(k) φ̃(q)
δ (4)

(
D(k,q)

)
(1−β k·q)5/2 . (6.3)

But

δ
(4)(D(k,q)

)
=

δ (4)(q+ k)∣∣∣det
(

∂Dµ (k,q)
∂qν

)∣∣∣
q=−k

= (1+βk2)5/2
δ
(4)(q+ k). (6.4)

The factor (1+βk2)5/2 cancels with the denominator of (6.3) and then [17],∫
d4

ξ ψ(ξ )?φ(ξ ) =
∫

d4
ξ ψ(ξ )φ(ξ ). (6.5)

This is called cyclicity property, and occurs also in other noncommutative models: it implies that
the free theory is identical to the commutative one,

Sfree[φ ] =
1
2

∫
d4

ξ
(
∂µφ ∂µφ +m2

φ
2) . (6.6)

The propagator is therefore the standard one

G(k) ∝
1

k2 +m2 . (6.7)

Notice that the cyclicity property is a consequence of our choice of a Hermitian representation for
the operator x, and can be related to the choice of the correct measure in the curved momentum
space.

These results can easily be extended to generalized models of the form (3.3) through a pertur-
bative expansion in β [17]. It turns out that the cyclicity property is valid also in that case.

7. QFT in Snyder space: interacting fields

The interacting theory is much more difficult to investigate. Several problems arise:
- The addition law of momenta is noncommutative and nonassociative, therefore one must

define some ordering for the lines entering a vertex and then take an average.
- The conservation law of momentum is deformed at vertices, so loop effects may lead to

nonconservation of momentum in a propagator. This effect is common to other noncommutative
QFTs [40].

As an illustration, let us consider the simplest case, a φ 4 theory [13]

Sint = λ

∫
d4

ξ φ ? (φ ? (φ ?φ)). (7.1)

The parentheses are necessary because the star product is nonassociative. Our definition fixes this
ambiguity, but other choices are possible, as for example

S′int = λ

∫
d4

ξ (φ ?φ)? (φ ?φ). (7.2)

7
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With the choice (7.1), the 4-point vertex function turns out to be

G(0)(p1, p2, p3, p4) ∝ λ ∑
σ∈S4

δ

(
D4
(
σ(p1, p2, p3, p4)

))
× g3

(
σ(p1, p2, p3, p4)

)
, (7.3)

where
D4(q1,q2,q3,q4) = q1 +D(q2,D(q3,q4)), (7.4)

g3(q1,q2,q3,q4) = eiG (q2,D(q3,q4))eiG (q3,q4), (7.5)

and σ denotes all possible permutations of the momenta entering the vertex.
With the expressions of the propagator and the vertex one can compute Feynman diagrams.

ℓ ℓ

β1

p1 p2

Figure 1: One-loop two-point function.

For example, the one-loop two-point function depicted in fig. 1 in position space is given by

G(1)(ξ1,ξ2) ∝ λ

∫
d4 p1d4 p2d4`

eip1ξ1

p2
1 +m2

eip2ξ2

p2
2 +m2

1
`2 +m2

×∑
σ

δ

(
D4
(
σ
(

p1, p2, `,−`
)))

g3

(
σ
(

p1, p2, `,−`
))

. (7.6)

To evaluate the diagram, one must consider the 24 permutations of the momenta entering the
vertex. Among these, only 8 conserve the momentum (i.e. p1 = −p2), while the remaining 16 do
not.

At the linear level in β the calculation can be done explicitly, showing stronger divergences
than in the commutative theory. In fact, calculating n-points functions, the nonrenormalizability of
the linearized theory shows up. The reason is that the improved convergence properties due to the
denominator in the star product (5.12) are spoiled if one performs a perturbative expansion in β .

In return, at first order the results do not depend on the specific ordering chosen for the inter-
action, and the effects of momentum nonconservation cancel out completely [13].

Attempting instead a calculation to all orders in β , not all diagrams can be explicitly computed,
because it is not possible in general to evaluate explicitly the δ function in (7.6) [14]. It can be
shown, however, that the divergences are suppressed with respect to the noncommutative theory

8
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and there are even indications that the integrals might be finite, at least for the interaction (7.1). For
other interactions, like for example (7.2), it can be shown instead that renormalization is necessary
and gives rise to the phenomenon of UV/IR mixing, like in other noncommutative models [4].

We recall however that a model that avoids this problem in the cae of Moyal geometry has been
proposed by Grosse and Wulkenhaar [6] (GW model). This model has several attractive properties
and gives rise to a perturbatively renormalizable theory to all orders. Its main ingredient are the
presence of a duality between position and momentum [41], and the addition to the action of a
harmonic oscillator term proportional to φ x2φ , that smooths the infrared behavior of the theory.

A remarkable observation is that also the Snyder-de Sitter model of sect. 3 enjoys analogous
properties [42]. In addition, the harmonic term is induced by the background geometry in a natural
way. In fact, using the relation (3.7) between the SdS and Snyder algebra with λ = 0, and the
realization (5.9) of the Snyder algebra, the free action can be reduced, at leading order in α and β ,
to

Sfree =
∫

dξ
4
φ

[
p2 +

α

β
ξ

2 +m2 +O(α,β )

]
φ , (7.7)

The free action (7.7) is therefore identical to that of the GW model. Of course, the interaction
term is instead different in the two models. Moreover, as discussed in sect. 3, also the SdS model
presents a duality between x and p.

One may therefore conjecture that also in SdS the IR divergences are suppressed and one
can obtain a fully renormalizable theory. The investigation of this topic has been undertaken in
ref. [42], but unfortunately in that paper it has only been possible to investigate the first order
expansion in α and β , and the methods used did not permit to explicitly display the duality of the
theory. Nevertheless some results concerning the flow of the coupling constants of the linearized
theory under the renormalization group have been obtained.

In view of these preliminary results, it would be interesting to pursue the study in this direction,
looking for new methods that permit to go beyond the perturbative expansion in the parameter α

and β , to finally settle the question of the consistence of Snyder field theory.

8. Conclusions

We have reviewed the present state of research on the Snyder model, the earliest example of
noncommutative geometry, and the only one that preserves the Lorentz invariance. Although it
seems that no relevant phenomenological predictions can be derived from this model, since the
Lorentz invariance suppresses observable effects at low order, the model has a considerable rele-
vance from a theoretical point of view. Also several generalizations can be introduced, notably to
the case of a spacetime background of constant curvature.

In particular, the possibility that it may lead to a finite quantum field theory, that was the
motive for its introduction, has not yet been ruled out. In this review, we have concentrated on the
definition of a QFT using the standard methods of the noncommutative formalism. It turns out that,
although an exact calculation has not been performed in full, there is evidence of renormalizability
and of the possible absence of UV/IR mixing, at least in the case of a curved background.

9
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