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1. Introduction

Invariant differential operators play very important role in the description of physical symme-
tries. The general scheme for constructing these operators was given some time ago [1]. In recent
papers [2, 3] we started the systematic explicit construction of the invariant differential operators.

The first task in the construction is to make the multiplet classification of the reducible Verma
modules over the algebra in consideration following [4]. Such classification provides the weights
of embeddings between the Verma modules via the singular vectors, and thus, by [1], the weights
of the invariant differential operators.

We have done the multiplet classification for many real non-compact algebras, first from the
class of algebras that have discrete series representations, see [5]. In the present paper we focus on
the complex exceptional Lie algebra F4 and on its split real form algebra F ′

4. Our scheme requires
that we use induction from parabolic subalgebras. In the present paper we choose a parabolic sub-
algebra containing the factor M ⊕A , where M = sl(3,R)⊕ sl(2,R), A = o(2). This choice
is motivated by the fact that the complexification of M ⊕A and the corresponding compact form
Mc ⊕Ac = su(3)⊕ su(2)⊕u(1) have applications in physics being the Lie algebra symmetry of
the standard model of elementary particles [6] (see also [7]).1

We present the multiplet classification of the reducible Verma modules over F4 which are
compatible with the chosen parabolic of F ′

4. We give also the weights of the singular vectors
between these modules. By the scheme of [1] these singular vectors will produce the invariant
differential operators.

2. Preliminaries

2.1 Lie algebra

We start with the complex exceptional Lie algebra G C = F4. We use the standard definition of
G C given in terms of the Chevalley generators X±

i , Hi , i = 1,2,3,4(=rankF4), by the relations :

[H j , Hk] = 0 , [H j , X±
k ] = ±a jkX±

k , [X+
j , X−

k ] = δ jk H j , (2.1)

∑n
m=0 (−1)m

( n
m

) (
X±

j

)m
X±

k

(
X±

j

)n−m
= 0 , j ̸= k , n = 1−a jk ,

where

(ai j) =


2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

 ; (2.2)

is the Cartan matrix of G C, α∨
j ≡ 2α j

(α j,α j)
is the co-root of α j , (·, ·) is the scalar product of the

roots, so that the nonzero products between the simple roots are: (α1,α1) = (α2,α2) = 2(α3,α3) =

2(α4,α4) = 2, (α1,α2) = −1, (α2,α3) = −1, (α3,α4) = −1/2. The elements Hi span the

1More precisely the symmetry is presented on the group level as : G = SU(3)×SU(2)×U(1)/Z, where Z belongs
to the center of G.
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Cartan subalgebra H of G C, while the elements X±
i generate the subalgebras G ±. We shall use

the standard triangular decomposition

G C = G+⊕H ⊕G− , G± ≡ ⊕
α∈∆±

Gα , (2.3)

where ∆+, ∆−, are the sets of positive, negative, roots, resp. Explicitly we have that there are roots
of two lengths with length ratio 2 : 1.
The long roots are: α1, α2, α1+α2, α2+2α3, α1+α2+2α3, α1+2α2+2α3, α2+2α3+2α4,
α1 +α2 + 2α3 + 2α4, α1 + 2α2 + 2α3 + 2α4, α1 + 2α2 + 4α3 + 2α4, α1 + 3α2 + 4α3 + 2α4,
2α1 +3α2 +4α3 +2α4. With the chosen normalization they have length 2.
The short roots are: α3, α4, α2 +α3, α3 +α4, α1 +α2 +α3, α2 +α3 +α4, α1 +α2 +α3 +α4,
α2 + 2α3 +α4, α1 + 2α2 + 2α3 +α4, α1 +α2 + 2α3 +α4, α1 + 2α2 + 3α3 +α4, α1 + 2α2 +

3α3 +2α4, and they have length 1.
(Note that the short roots are exactly those which contain α3 and/or α4 with odd coefficient, while
the long roots contain α3 and α4 with even coefficients.)

Thus, F4 is 52–dimensional (52 = |∆|+ rank F4).
In terms of the normalized basis ε1,ε2,ε3,ε4 we have:

∆+ = {εi, 1 ≤ i ≤ 4; ε j ± εk, 1 ≤ j < k ≤ 4;
1
2
(ε1 ± ε2 ± ε3 ± ε4), all signs} . (2.4)

The simple roots are:

π = {α1 = ε2 − ε3, α2 = ε3 − ε4,α3 = ε4, α4 =
1
2
(ε1 − ε2 − ε3 − ε4)} . (2.5)

The maximal compact subalgebra is K = sp(3)⊕ su(2). Its complexification K C may
be embedded most easily in F4 as the Lie algebra generated by the subalgebras with simple
roots {α2,α3,α4} and {α1}. The long roots of sp(3,C) in this embedding are: α2, α2 + 2α3,
α2 +2α3 +2α4. The short roots are: α3, α4, α2 +α3, α3 +α4, α2 +α3 +α4, α2 +2α3 +α4.

Note that the 16 roots on the first line of (2.4) form the positive root system of B4 with simple
roots εi − εi+1 , i = 1,2,3, ε4 .

The Weyl group of F4 is the semidirect product of S3 with a group which itself is the
semidirect product of S4 with (Z/2Z)3, thus, |W |= 27 32 = 1152.

2.2 Verma modules

Let us recall that a Verma module V Λ is defined as the HWM over G C with highest weight
Λ ∈ H ∗ and highest weight vector v0 ∈ V Λ, induced from the one-dimensional representation
V0 ∼= Cv0 of U(B) , where B = H ⊕G+ is a Borel subalgebra of G C, such that:

X v0 = 0, ∀X ∈ G+

H v0 = Λ(H) v0 , ∀H ∈ H (2.6)

Verma modules are generically irreducible. A Verma module V Λ is reducible [8] iff there
exists a root β ∈ ∆+ and m ∈ N such that

(Λ+ρ , β∨) = m (2.7)
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holds, where ρ = 1
2 ∑α∈∆+ α , (ρ = 8α1 +15α2 +21α3 +11α4).

If (2.7) holds then the reducible Verma module V Λ contains an invariant submodule which is
also a Verma module V Λ′

with shifted weight Λ′ = Λ−mβ . This statement is equivalent to the
fact that V Λ contains a singular vector vs ∈V Λ, such that vs ̸= ξ v0 , (0 ̸= ξ ∈ C), and :

X vs = 0, ∀X ∈ G+

H vs = Λ′(H) vs , Λ′ = Λ−mβ , ∀H ∈ H (2.8)

More explicitly, [1],
vs

m,β = Pm,β v0 . (2.9)

The general reducibility conditions (2.7) for V Λ spelled out for the simple roots in our situation
are:

m1 ≡ mα1 = (Λ+ρ,α1), m2 ≡ mα2 = (Λ+ρ,α2), (2.10)

m3 ≡ mα3 = (Λ+ρ,2α3), m4 ≡ mα4 = (Λ+ρ,2α4)

The numbers mi from (2.10) corresponding to the simple roots are called Dynkin labels, while the
more general Harish-Chandra parameters are:

mβ = (Λ+ρ,β∨), β ∈ ∆+ (2.11)

2.3 Structure theory of the real form

The split real form of F4 is denoted as F ′
4 , sometimes as F4(4) . This real form has discrete

series representations since rankF ′
4 = rankK . We can use the same basis (but over R) and the

same root system.
The Iwasawa decomposition of the real split form G ≡ F ′

4 , is:

G = K ⊕A0 ⊕N0 , (2.12)

the Cartan decomposition is:
G = K ⊕Q, (2.13)

where we use: the maximal compact subgroup K ∼= sp(3)⊕ su(2), dimR Q = 28, dimR A0 = 4,
N0 = N +

0 , or N0 = N −
0

∼= N +
0 , dimR N ±

0 = 24.
Since G is maximally split, then the centralizer M0 of A0 in K is zero, thus, the minimal

parabolic P0 and the corresponding Bruhat decomposition are:

P0 = A0 ⊕N0 , G = A0 ⊕N +
0 ⊕N −

0 (2.14)

The importance of the parabolic subgroups comes from the fact that the representations in-
duced from them generate all (admissible) irreducible representations of the group under consider-
ation [9–11].

We recall that in general a parabolic subalgebra P = M ⊕A ⊕N is any subalgebra of G

which contains a minimal parabolic subalgebra M0 . In general, M contains the subalgebra M0,
while A is contained in A0, N is contained in N0.
On the other extreme are the maximal parabolic subalgebras for which dimA = 1.
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2.4 Elementary representations

Further, let G,K,P,M,A,N are Lie groups with Lie algebras G0,K ,P,M ,A ,N .
Let ν be a (non-unitary) character of A, ν ∈ A ∗. Let µ fix a finite-dimensional (non-

unitary) representation Dµ of M on the space Vµ . In the case when M is cuspidal then we
may use also the discrete series representation of M with the same Casimirs as Dµ . (We ignore
a possible discrete center of M since its representations are not relevant for the construction of
invariant differential operators [5].)

We call the induced representation χ = IndG
P (µ ⊗ ν ⊗ 1) an elementary representation of

G [12]. (These are called generalized principal series representations (or limits thereof) in [13].)
Their spaces of functions are:

Cχ = {F ∈C∞(G,Vµ) | F (gman) = e−ν(H) ·Dµ(m−1)F (g)} (2.15)

where a = exp(H) ∈ A, H ∈ A , m ∈ M, n ∈ N. The representation action is the left regular
action:

(T χ(g)F )(g′) = F (g−1g′) , g,g′ ∈ G . (2.16)

An important ingredient in our considerations are the highest/lowest weight representations of
G . These can be realized as (factor-modules of) Verma modules V Λ over G , where Λ ∈ (H )∗,
the weight Λ = Λ(χ) being determined uniquely from χ [1].

As we have seen when a Verma module is reducible and (2.7) holds then there is a singular
vector (2.9). Relatedly, then there exists [1] an invariant differential operator

Dm,β : Cχ(Λ) −→ Cχ(Λ−mβ ) (2.17)

given explicitly by:
Dm,β = Pm,β (N̂ −) (2.18)

where N̂ − denotes the right action on the functions F .
Actually, since our ERs are induced from finite-dimensional representations of M the cor-

responding Verma modules are always reducible. Thus, it is more convenient to use generalised
Verma modules Ṽ Λ such that the role of the highest/lowest weight vector v0 is taken by the (finite-
dimensional) space Vµ v0 .

Algebraically, the above is governed by the notion of M -compact roots of G C. These are
the roots of G C which can be identified as roots of M C as the latter is a subalgebra of G C. The
consequence of this is that (2.7) is always fulfilled for the M -compact roots of G C. That is why we
consider generalised Verma modules. Relatedly, the invariant differential operators corresponding
to M -compact roots are trivial.

3. Invariant differential operators for F ′
4

The real form F ′
4 has several parabolic subalgebras [2]. We shall consider the maximal parabolic

subalgebra [2]:

P = M ⊕A ⊕N ,

M = sl(3,R)⊕ (2,R) , (3.1)

dimA = 1, dimN = 20

4
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such that the embedding of M and M C in G C is given by:

sl(3,R)C : {α1,α2,α12 = α1 +α2}, sl(2,R)C : {α4} (3.2)

Remark: Note that F ′
4 has a another maximal parabolic subalgebra that is also written as (3.1)

but the embedding of M and M C flips the short and long roots [2]:

sl(3,R)C : {α3,α4,α34 = α3 +α4}, sl(2,R)C : {α1} (3.3)

That case is also very interesting and will be considered next [14]. ♢
Further we classify the generalized Verma modules (GVM) relative to the maximal parabolic

subalgebra (3.1). This also provides the classification of the P-induced ERs with the same Casimirs.
The classification is done as follows. We group the reducible Verma modules (also the correspond-
ing ERs) related by nontrivial embeddings in sets called multiplets [1, 4]. These multiplets may
be depicted as a connected graph, the vertices of which correspond to the GVMs and the lines be-
tween the vertices correspond to the GVM embeddings (and also the invariant differential operators
between the ERs). The explicit parametrization of the multiplets and of their Verma modules (and
ERs) is important for understanding of the situation.

The result of our classification is a follows. The multiplets of GVMs (and ERs) induced from
(3.1) are parametrized by four positive integers χ = [m1,m2,m3,m4]. Each multiplet contains 96
GVMs (ERs). They are presented in Fig. 1.

On the figure each arrow represents an embedding between two Verma modules, V Λ and
V Λ′

, the arrow pointing to the embedded module V Λ′
. Each arrow carries a number n, n= 1,2,3,4,

which indicates the level of the embedding, Λ′ = Λ−mn β [5]. Another feature is indicated by
the enumeration of the GVMs (ERs). Namely, if Λ corresponds to signature χ−

k,ℓ, k < 9, then
Λ′ corresponds to signature χ−

k+1,ℓ′ (where ℓ,ℓ′ are secondary enumerations that are absent in
some cases). Analogously: if Λ corresponds to signature χ+

k,ℓ, k > 10, then Λ′ corresponds to
signature χ+

k−1,ℓ′ ; if Λ corresponds to signature χ−
9,ℓ, then Λ′ corresponds to signature χ∗

10,ℓ′ ,
(where ∗ may happen to be ′+′ or ′−′); if Λ corresponds to signature χ∗

10,ℓ, then Λ′ corresponds
to signature χ+

9,ℓ′ .
Further, we can see there is an additional symmetry. It is relevant for the ERs and indicates the

integral intertwining Knapp-Stein (KS) operators acting between the ERs. Due to this symmetry
in the actual parametrization we shall use the conformal weight d = 7/2+ c, more precisely, the
parameter c, instead of the non-compact Dynkin label m3. The parameter c is more convenient
since the KS operators flip its sign. The KS operators also involve an sl(3) flip of the Dynkin
labels m1,m2 (see below). Thus, the entries are:

χ = {n1,n2,c,n4} (3.4)

so that for the top ER (GVM) on the figure Λ−
0 we have:

χ−
0 = {n1 = m1,n2 = m2,c =−(m1 +m2 +m3 +m4/2),n4 = m4} (3.5)

Furthermore the sl(3) flip (n1,n2)
± will be given below by:

(n1,n2)
+ = (n1,n2), (n1,n2)

− = (n2,n1) (3.6)

5
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Altogether, the explicit parametrization of the multiplets is given by:

χ∓
0 = {(m1,m2)

±,∓(m1 +m2 +m3 +m4/2),m4 }, (3.7)

χ∓
1 = {(m1,m23)

±,∓(m12 +m34/2),m34 },
χ∓

2,1 = {(m12,m23)
±,∓(m12 +m34/2),m24 +m2 },

χ∓
2,2 = {(m1,m24)

±,∓(m12 +m3/2),m3 },
χ∓

3 = {(m12,m24)
±,∓(m12 +m3/2),m23 +m2 },

χ∓
3,1 = {(m2,m13)

±,∓(m2 +m34/2,m14 +m12 },
χ∓

3,2 = {(m13,m2)
±,∓(m13 +m4/2),m24 +m23 },

χ∓
4,1 = {(m14,m2)

±,∓(m2 +m3/2),m13 +m12 },
χ∓

4,2 = {(m13,m24)
±,∓(m12 +m3/2),m2 +m23 },

χ∓
4,3 = {(m23,m±

12,∓(m23 +m4/2),m14 +m13 },
χ∓

4,4 = {(m14,m2)
±,∓(m13 +m4/2),m24 +m23 },

χ∓
5 = {(m23,m14)

±,∓(m2 +m3/2),m13 +m12 },
χ∓

5,1 = {(m13 +m2,m24)
±,∓(m12 +m3/2),m3 },

χ∓
5,2 = {(m14,m23)

±,∓(m12 +m34/2),m24 +m2 },
χ∓

5,3 = {(m24,m12)
±,∓(m23 +m4/2),m14 +m13 },

χ∓
5,4 = {(m23,m1)

±,∓(m23 +m4/2),m14 +m13 +2m2 },
χ∓

6,1 = {(m23,m14 +m2)
±,∓(m3/2),m13 +m12 },

χ∓
6,2 = {(m24,m13)

±,∓(m2 +m34/2),m14 +m12 },
χ∓

6,3 = {(m14+m2 ,m23)
±,∓(m12 +m34/2),m34 },

χ∓
6,4 = {(m13 +m2,m14)

±,∓(m2 +m3/2),m3 },
χ∓

6,5 = {(m24,m13)
±,∓(m23 +m4/2),m14 +m13 +2m2 },

χ∓
6,6 = {(m24,m13)

±,∓(m2 +m34/2),m14 +m13 +m23 +m2 },
χ∓

7 = {(m24,m13 +m2)
±,∓(m34/2),m14 +m12 },

χ∓
7,1 = {(m13,m14 +m2)

±,∓(m3/2),m23 +m2 },
χ∓

7,2 = {(m2,m14 +m23)
±,±(m3/2),m13 +m12 },

χ∓
7,3 = {(m24,m1)

±,∓(m2 +m34/2),m14 +m13 +m23 +m2 },
χ∓

7,4 = {(m14 +m23,m2)
±,∓(m13 +m4/2),m4 },

χ∓
7,5 = {(m14 +m2,m13)

±,∓(m2 +m34/2),m34 },
χ∓

7,6 = {(m2,m1)
±,∓(m2 +m34/2),2m14 +m23 +m2 },

χ∓
8,1 = {(m24,m13 +m2)

±,∓(m4/2),m13 +m14 },
χ∓

8,2 = {(m14,m13 +m2)
±,∓(m34/2),m24 +m2 },

χ∓
8,3 = {(m24,m12)

±,∓(m34/2),m14 +m13 +m23 +m2 },
χ∓

8,4 = {(m23,m1)
±,∓(m2 +m3/2),2m14 +m23 +m2 },

χ∓
8,5 = {(m14 +m23,m12)

±,∓(m23 +m4/2),m4 },
χ∓

8,6 = {(m2,m14 +m23)
±,±m34/2,m14 +m12 },

χ∓
8,7 = {(m12,m14 +m23)

±,±m3/2,m23 +m2 },
6
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χ∓
9 = {(m14,m13 +m2)

±,∓(m4/2),m24 +m23 },
χ∓

9,1 = {(m24,m13)
±,∓(m4/2),2m14 +m23 +m2 },

χ∓
9,2 = {(m14 +m23 +m2,m1)

±,∓(m23 +m4/2),m4 },
χ∓

9,3 = {(m23,m14 +m2)
±,±m4/2,m14 +m13 },

χ∓
9,4 = {(m14,m2)

±,∓(m34/2),m14 +m13 +m23 +m2 },
χ∓

9,5 = {(m1,m14 +m23 +m2)
±,±(m12 +m3/2),m3 },

χ∓
9,6 = {(m12,m14 +m23)

±,±m34/2,m24 +m2 },
χ∓

9,7 = {(m23,m12)
±,∓(m3/2),2m14 +m23 +m2 },

χ∓
10,1 = {(m14 +m2,m13)

±,∓m4/2,m23 +m24 },
χ∓

10,2 = {(m13,m2)
±,∓m3/2,2m14 +m23 +m2 },

χ∓
10,3 = {(m14,m23)

±,∓m4/2,m14 +m13 +2m2 },
χ∓

10,4 = {(m1,m14 +m23 +m2)
±,±(m2 +m34/2),m34 }

The pairs Λ±(χ±) are symmetrically placed w.r.t. to the bullet in the middle of the figure.

4. Concluding remarks

Remark 1:
The integral intertwining KS operators act between the spaces Cχ∓ in opposite directions:

G+
KS : Cχ− −→ Cχ+ , G−

KS : Cχ+ −→ Cχ− (4.1)

Remark 2:
The positive integers {m1,m2,m3,m4} parametrize the finite-dimensional nonunitary irreps of
F ′

4 (also the unitary finite-dimensional irreps of the compact Lie algebra f4).
Remark 3:
We expect that the discrete series are contained in the representation χ+

0 since it is dual to
χ−

0 where are contained the finite-dimensional (non-unitary) irreps. Following the Harish-Chandra
criterion we must check which M -non-compact entries are negative. We recall that the M -
compact entries are m′

1,m
′
2,m

′
12,m

′
4 , all other are non-compact. It is easy to see that all the M -

non-compact entries are negative. The discrete series irrep with lowest possible conformal weight
d = 7 happens naturally when m1 = m2 = m3 = m4 = 1. It corresponds to the one-dimensional
irrep contained in χ−

0 .
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Fig. 1. Multiplets for the real split form F ✶
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