
P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

A possible solution for HEP processing on network
secluded Computing Nodes

Mirko Mariotti1
INFN
Sezione di Perugia, Via Alessandro Pascoli 23c, 06123 Perugia (ITALY)
E-mail: mirko.mariotti@unipg.it

Daniele Spiga
INFN
Sezione di Perugia, Via Alessandro Pascoli 23c, 06123 Perugia (ITALY)
E-mail: daniele.spiga@pg.infn.it

Tommaso Boccali
INFN
Sezione di Pisa,Largo Bruno Pontecorvo 3, 56124 Pisa (ITALY)
E-mail: tommaso.boccali@pi.infn.it

The computing needs of LHC experiments in the next decades (the so-called High Luminosity
LHCm HL-LHC) are expected to increase substantially, due to the concurrent increases in the
accelerator luminosity, in the selection rates and in the detectors' complexity. Many Funding
Agencies are aiming to a consolidation of the national LHC computing infrastructures, via a
merge with other large scale computing facilites such as HPC and Cloud centers. The LHC
Experiments have started long ago tests and production activities on such centers, with
intermittent success. The biggest obstacle comes from their typical stricter network policies with
respect to our standard centers, which do not allow an easy merge with the distributed LHC
computing infrastructure. A possible solution for such centers is presented here, able to satisfy
three main goals: be user deployable, be a catch-all solution for all the protocols and services,
and be transparent to the experiment software stack. It is based on the integration of existing
tools like tsocks, tunsocks, openconnect, cvmfsexec and singularity. We present
results from an early experimentation, which positively show how the solution is indeed usable.
Large scale testing on thousands of nodes is the next step in our agenda.

1 Speaker and corresponding author

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

mailto:mirko.mariotti@unipg.it
mailto:daniele.spiga@pg.infn.it
mailto:tommaso.boccali@pi.infn.it
http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

International Symposium on Grids & Clouds 2020, ISGC2021
22-26 March, 2021
Academia Sinica, Taipei, Taiwan (online)

1. Introduction and the definition of the problem

In order to cope with the future needs of LHC computing during the High
Luminosity (HL-LHC) phase, the scientific communities are developing a series of new
approaches and solutions spanning several contexts, from the adoption of new
optimized data formats up to the integration of possibly any type of computing
infrastructures into the well know WLCG Grid resources. Many Funding Agencies are
aiming to a consolidation of the national computing capacity exploiting also HPC
centers; while Grid resources are homogeneous in many respects such as the used Grid
middleware, architecture, setups of the centers etc, HPC installations can be very
different because HPC systems are highly not standard facilities, designed and
developed having in mind use cases largely different from High Energy Physics ones,
making the integration process not a trivial task.

From a technical perspective HPC centers differ on a variety of specialized
hardware setups, storage setups and policy wise strict usage rules apply for security
reasons. In turn, this means that in order to integrate HPC resources into the highly
automatized workload management setups of the CMS computing system, several
challenges need to be addressed in order to possibly accommodate systems with less
common operating systems, lower memory availability per core, absence of local
scratch disk space on compute nodes and limited if not absent outbound network
connectivity.

The latter represents the biggest obstacle with respect to our standard facilities,
since only a fraction of HPC centers allow for outgoing connections from the computing
nodes. This affects all the steps typically performed by CMS jobs that expect to access
external services at run time to perform the following steps:

1. The communication with the central CMS queue (the HTCondor Global Pool) in
order to deliver the actual payloads;

2. The access to data taking conditions (from a Oracle DB accessible sia a
hierarchy of squid servers);

3. The access to the experiment software;

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

4. The access to remote input data and the stageout of produced output data.

1.1 Known solutions

Several R&D activities are currently ongoing in CMS in order to mitigate the
limitations of the limited/no connection from worker nodes. The solution under
development and investigation are:

● A shared FS based communication path for HTCondor daemons, taking the
place of network socket communications. This is also known as the
HTCondor-splitstarter [1] based solution, which relies on a shared file system
which is mounted on the execute nodes and on the login machines, made
available via sshfs. This is currently the solution CMS is investigating in a
few centers such as BSC in Spain and Theta in US.

● A user-level network based solution, for example relying on Squid proxies that,
if properly configured, can provide TCP tunneling capabilities. A client can
connect to them via a HTTP CONNECT call, and instruct them to open a TCP
connection to route traffic to an arbitrary other host and port. The HTTP
CONNECT tunnel is only for TCP connections (no UDP) hence while still
useful for tunneling specific traffic, it does not solve all the problems.

● Virtual Private Network (VPN) based solutions. In local setups where compute
nodes allow for user namespaces, the setup can run entirely on user space with
no root permissions required. This solution is not suitable if namespaces are not
enabled.

In this paper we describe a solution based on tsocks [2], a networking tool
designed to trap system calls and allow rerouting TCP+UDP connections via multiple
means. The motivations for this choices are to provide a solution that:

● can be deployed (without hacking the system) by a standard user;
● covers all the possible connections (UDP, TCP) and protocols (XrootD, SRM,

HTTP(S), SSH, …);
● is not intrusive from the Experiment software perspectives (no recompilation, no

changes of configuration, no need to ask for special pilots or workflows);
● can be the pillar for a universal edge service working below the application

layer.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

2. The implementation

An universal tool, working below the application layer has been developed as an
edge service to overcome the network limitation in a typical HPC node, as described
above.

The overall diagram of the project is illustrated in Figure 1. The only requirement
from a network point of view is that the nodes trust and can reach, via TCP, a specific
endpoint that will serve as a fan-out service. All the other routing configurations of the
nodes are irrelevant except for this point to point connection, called VPN in the
following. This endpoint is the first component of the proposed implementation. Its
consumer, the VPN client, is the second and has the purpose of creating a proxy socket
within the node and connecting it to the VPN. The two solutions tested to create this
kind of VPN will be described later; one is entirely based on ssh and the other on
openconnect [3] and tunsocks [4].

The resulting socks proxy is the network entry point for the applications within the
nodes using a library called libtsocks.

Finally, the singularity [5] containerization system and the cvmfsexec [6]
tool allow to pack all the software and to access remote cvmfs repositories respectively.

Figure 1: Overall diagram of the proposed implementation.

2.1 Tsocks

The most important tool of the proposed implementation is the net wrapping
library: tsocks. Its purpose is to change the behaviour of the network related os calls.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

By default, they send network traffic to and from a NIC present in the system either real
or a virtual one, following the kernel routing table. With the tsocks modification,
system calls interact instead with a socks proxy. This is necessary because the creation
of a virtual NIC requires superuser privileges and is not doable in this scenario; the
launch of an user space application that opens a proxy endpoint can be made by a
standard user instead2.

Tsocks is present as part of the standard distribution is Debian derivative. In
Centos based distribution, it has to be patched and recompiled from sources3.

Its configuration is managed by a .conf file, and it is possible to specify which
proxy use for specific routes and which are the native ones. Figure 2 shows an example
of tsocks configuration.

Tsocks can be used either wrapped in a specific executable, or via the
LIBRARY_PRELOAD mechanism of the libtsocks library to wrap a full shell and
its children processes.

Figure 2: Tsocks configuration example

2.2 Proxy via SSH

The first way to create the VPN is ssh with the -D option. In this configuration,
the fan-out node could be any system that is reachable via ssh from an HPC compute
node. It could be any host, but usually a bastion host or a login node are already
reachable by the center compute nodes. The sshd daemon on this system will act as a

3 We wish to thank E.Sindrilaru, F.Furano, M.Simon, P.Paparrigopoulos, L.Mascett (CERN) for their
assistance in this phase.

2 We are not arguing here whether standard End User agreements would still veto this type of solutions;
we just want to underline how technically the solution is operating within the standard privileges of a
user.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

point of exit towards the internet and the ssh on the HPC node will create the proxy for
the tsocks operations, as shown in figure 3.

Figure 3: ssh -d VPN

ssh -D can also be used directly on the exit node using itself as a login machine
(ssh -D localhost) and pointing the tsocks endpoint to its IP address (in this case also
the -g option is needed) as shown in figure 4.

Figure 4: ssh -d localhost

2.3 Proxy via tunsocks and openconnect

The second way to build the VPN connection is using, instead of ssh, a proper
SSL-VPN software like openconnect. By default it runs with administrator
privileges, and creates a virtual NIC upon connection established. It also can be used
with standard user privileges providing a “tun-script”, a program to forward the
network traffic without the need of a virtual interface. The tested solution uses
tunsocks as tun-script for openconnect. Tunsocks creates a proxy, just
like ssh -D, but interfacing with an SSL-VPN solution like openconnect as shown
in figure 5.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

Figure 5: tunsocks and openconnect

This solution could also be deployed with an hardware edge system, like those
from Cisco. Openconnect is compatible with the Anyconnect protocol that can be
found in a wide range of routers. Figure 6 shows an example of the invocation of the
openconnect command.

echo "some password" | /usr/sbin/openconnect --passwd-on-stdin
--no-dtls -u [user] --script-tun --script "/usr/bin/tunsocks -D 5555"
[edge node ip] --servercert
pin-sha256:kgZNs8k8lbK0cI6IketuiITLcqRxpul1Xa+WD+l7fPY=

Figure 7: openconnect script example

2.4 The two approaches in comparison

The two approaches share some common traits. The edge service can be anywhere,
it is not necessarily close to the HPC node; the only requirement is that it is reachable
from it. Moreover, there can be more than one such edge systems, for example in DNS
round robin, to improve the scalability and the reliability of the connections. Tsocks
can also be used wrapped in another tsocks connection. Complex chains can be
created this way.

Table 1 shows the differences between the two possibilities.

Openconnect + tunsock ssh

The installation of software is needed on
both on the edge node and on the compute

It is probably already installed and
available on the edge node and on HPC
node

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

node

The edge service needs to be configured
with routes and users.

There is no configuration needed.

A native VPN solution is expected to scale
better when handling many connection
than a remote access software like SSH

Not scaling as well as a dedicated VPN

The edge service can be configured in
several ways to have a fine-grained
control of the network connections of the
users

ssh does not give the possibility of
selecting network routes. If this is a
necessity some other third-party tools has to
be used

Fine-grained control of accounts using the
edge service.

The solution is available only for the user
that logins to the HPC node. There is no
support for multiple users if the edge
service is the login node. If the edge service
is a dedicated system, the access control of
users rely on ssh and is less flexible than
the ocserver one.

Direct in hardware support
(anyconnect devices) is possible

Table 1: Differences between ssh and openconnect

2.5 CVMFSexec

cvmfsexec is a tool for mounting cvmfs as an unprivileged user. The CernVM
File System provides a universal way to distribute software among High Energy
Physics (HEP) sites. While Cvmfs require a privileged user to be used, with
cvmfsexec the same functionality can be brought to standard users file spaces.

2.6 Singularity

Singularity is a computer program that performs operating-system-level
virtualization also known as containerization. It brings containers and reproducibility to
scientific computing and the (HPC) world. Differently from other containerization

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

solutions, it is present in many HPC clusters because it does not need superuser
privileges or daemons to run. For this reason and to pack all the proposed configurations
in a single object a singularity recipe has been written. Starting from the recipe a
container image can be built, deployed and started on HCP nodes.

3. Tests

In order to verify that a complete HEP typical payload runs smoothly with the
proposed solution, tests have been run at CINECA (the HPC/PRACE node for Italy).
CINECA hosts a number of HPC most of which are suitable for the test. The chosen
payload has been the standard CMS grid job. CMS is is one of the LHC experiments
and its job processing over distributed computing needs in many areas the possibility to
connect from the computing node to remote central services such as Condor Startd to
Schedd connections, CVMFS for software releases, Xrootd/WebDAV/SRM for input
output, access to VOMSes, access to CMS central services (Frontier, WMAgent, etc).
Outgoing connections are multiprotocol and in a standard edge service scenario would
need multiple proxies or connectors while here we try to encapsulate all of them with a
single user level tunnel.

Before trying a full run the single services have been tested. A brief report of these
tests are reported in table 2.

Access to the
experiment software

Using the cvmfsexec script, the mount and unmount of
remote software repositories have been tested.
Also the execution of code works smoothly

Data transfers Transfer of data have been tested using SRM (srmcp)
and Xrootd (xrdcp), in both directions

HTcondor operations Using the manual_glidein_startup the daemon
communications have been tested to work properly

Table 2: Single services tested

A more extensive test has been performed on CINECA Galileo, an HPC cluster
with no CVMFS, no external networking, no suid/sudo rights. A set of analysis crab
jobs have been sent through the standard CMS tools to workers prepared with all the
proposed setup. The result is shown in Figure 8 and shows a 100% success rate.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

Figure 8: Success rate of encapsulated CMS jobs

A last and even more extreme test has been conducted in CINECA Marconi 100
[7]. The cluster has a Power9 architecture and just local connectivity on nodes (not even
a default gateway). Nodes are reachable via SLURM though, and can login back to the
login node. Using the ssh setup previously described, it has been possible to run the
standard validation test of CMS payload, even using the V100 GPU present on nodes,
as shown in Fig 9.

Figure 9: Standard validation test result on Marconi 100

Larger Scale tests conducted after the ISGC Conference, using the more controlled
environment of CMS Monte Carlo official processing toolchain, have shown a non
measurable degradation of CU efficiency when running within tsocks when
compared with a standard routing solution. While more measurements are needed on
this front, the preliminary measurements are very encouraging.

4. Conclusions

A user deployable solution based on the integration of existing tools like
tsocks, tunsocks, openconnect, cvmfsexec and singularity has been
presented together with end-to-end tests performed on a real setup, showing that the
solution can actually be used in “restricted network” situations to execute CMS analysis
jobs. The presented solution is protocol and service independent and it can allow to

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

build a possible “universal edge service” not limited to a single application. Although a
single tunnelling host could suffice for a large cluster to execute non data intensive
processing (Monte Carlo generation workflows), clearly a wider deployment could scale
to allow for data intensive processing.

The authors are aware a similar effort is being carried on by Ben Tovar at Notre
Dame, based on using linux namespaces and a user level VPN setup and
openconnect+ocproxy [8] +tsocks as a fallback when namespaces are
not enabled.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

http://pos.sissa.it/

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

References

[1] https://indico.cern.ch/event/936993/contributions/4022104/

[2] http://tsocks.sourceforge.net/

[3] http://www.infradead.org/openconnect/

[4] https://github.com/russdill/tunsocks

[5] https://sylabs.io/singularity/

[6] https://github.com/cvmfs/cvmfsexec

[7] https://www.hpc.cineca.it/hardware/marconi100

[8] http://manpages.ubuntu.com/manpages/bionic/man1/ocproxy.1.html

12

P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
2

https://indico.cern.ch/event/936993/contributions/4022104/
http://tsocks.sourceforge.net/
http://www.infradead.org/openconnect/
https://github.com/russdill/tunsocks
https://sylabs.io/singularity/
https://github.com/cvmfs/cvmfsexec
https://www.hpc.cineca.it/hardware/marconi100

