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With the advent of theHigh-Luminosity phase of theLHC (HL-LHC), the instantaneous luminosity
of the LargeHadronCollider at CERN is expected to increase up to≈ 7.5·1034𝑐𝑚−2𝑠−1. Therefore,
new strategies for data acquisition and processing will be necessary, in preparation for the higher
number of signals produced inside the detectors. In the context of an upgrade of the trigger system
of the Compact Muon Solenoid (CMS), new reconstruction algorithms, aiming for an improved
performance, are being developed. For what concerns the online tracking of muons, one of the
figures that is being improved is the accuracy of the transverse momentum (𝑝𝑇 ) measurement.
Machine Learning techniques have already been considered as a promising solution for this
problem, as they make possible, with the use of more information collected by the detector, to
build models able to predict with an improved precision the 𝑝𝑇 . This work aims to implement
such models onto an FPGA, which promises smaller latency with respect to traditional inference
algorithms running on CPU, an important aspect for a trigger system. The analysis carried out in
this work will use data obtained through Monte Carlo simulations of muons crossing the barrel
region of the CMS muon chambers, and compare the results with the 𝑝𝑇 assigned by the current
CMS Level 1 Barrel Muon Track Finder (BMTF) trigger system.
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1. Introduction

Muon detection has a fundamental role in the CMS (CompactMuon Solenoid) experiment [1].
Such particles are produced, in fact, by an high amount of physical processes of great importance
for the High Energy Physics community, in some of the signatures which led to the Higgs boson
discovery by the ATLAS and CMS collaborations in 2012 [2]. For this reason, the CMS muon
trigger system has to select events containing such particles while keeping the rate of acquisition
under control, by operating cuts in transverse momentum (𝑝𝑇 ). The current CMS Level-1 muon
trigger system [3] performed smoothly during Large Hadron Collider (LHC) Run 1 and, after the
"Phase 1" upgrade in 2016, in Run 2 as well.
However with the advent of the High-Luminosity phase of the LHC (HL-LHC), the instantaneous
luminosity will increase up to 7.5 · 1034 cm−2s−1, approximately five times larger than the limit
reached during the present LHC run. This corresponds to an average pile-up of up to 200 events per
crossing in the interaction region of the detector and an integrated luminosity of up to 4000 fb−1 over
10 years of data taking. Such level of machine performance will allow to extend searches for new
physics and to perform stringent tests on the Standard Model of particle physics, such as precision
measurements of the Higgs Boson couplings. The complexity and the time span of this computing
challenge, together with the recent ramp-up in the evolution curve of advanced techniques - like
Machine Learning (ML) and Deep Learning (DL) approaches - invites to explore some of them and
to implement actual prototypes that test and verify their possible implementation on the experiment
hardware itself, using low latency solutions like Field Programmable Gate Arrays (FPGAs).
Focusing on the barrel region of the Level-1 muon trigger, this contribution [4] aims to implement
a functioning workflow: from the design of an artificial neural network model capable of predicting
the muon 𝑝𝑇 , using the track information gathered by the actual Level-1 trigger algorithms, to the
conversion of such models in hardware code, with the final goal of importing them in the actual
FPGA and perform inference on a microsecond timescale.

2. The Compact Muon Solenoid detector

The Compact Muon Solenoid (CMS) is a general purpose detector 21.6 m long with a diameter
of 15 m and a weight of about 14000 tons. It is composed by a cylindrical barrel and two endcaps as
shown in Figure 1. A superconducting solenoid generates amagnetic field of 3.8 T inside its volume.
In its innermost region, a high quality central silicon inner tracker, capable of achieving a track
reconstruction with very high resolution, is installed. A homogeneous electromagnetic calorimeter
and a sampling hermetic hadron calorimeter are installed to perform energy measurements on
electrons, photons and jets from hadrons. Finally, a redundant and highly performant muon system
wraps the detector: it provides detection of muon tracks, and contribute to the measurement of their
transverse momentum and trajectory. Its four muon stations are sliced into an iron yoke that returns
the flux of the magnetic field and acts as an absorber for traversing particles that are not muons and
neutrinos, and hosts and mechanically supports the stations.
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Figure 1: Overall view of the CMS detector [5, 6].

2.1 Tracker

The Tracker is a crucial component in the CMS design. It measures particles’ momentum
through their path: the greater is their curvature radius across the magnetic field, the larger is their
momentum. The Tracker is able to reconstruct muons, electrons and hadrons paths as well as tracks
produced by short-lived particles decay, such as b quarks.

2.2 Calorimeters

There are two types of calorimeters in the CMS experiment, designed to measure the energy of
particles emerging from the collisions: the Electromagnetic calorimeter (ECAL) and the Hadronic
calorimeter (HCAL). The ECAL is made of lead tungstate (PbWO4) crystals, that scintillate when
electrons and photons pass through them, producing light in proportion to the crossing particle’s
energy. The energy measurement for hadrons is instead carried out by the HCAL, which is
specifically built for measuring strong-interacting particles.

2.3 Muon system

The aim of the Muon System [7] is to provide a robust trigger, capable of performing bunch-
crossing (BX) assignment and standalone transverse momentum (𝑝𝑇 ) measurement, an efficient
identification of muons, and to contribute to the measurement of the 𝑝𝑇 of muons with energy as
high as few hundreds of GeV or more. As shown in Figure 2, the barrel Drift Tube (DT) chambers
[9] cover the psudorapidity region |𝜂 | < 1.2, where the background is small, the muon rate is
low and the magnetic field is uniform and mostly contained in the steel return yoke. In the two
endcap regions of CMS, instead, the muon system adopts Cathode Strip Chambers (CSC) [10]:
with their fast response time, fine segmentation and radiation resistance, the CSCs are used to track
muons between |𝜂 | values of 0.9 and 2.4. Resistive Plate Chambers (RPC) [11] are also deployed
throughout the central and forward regions (|𝜂 | < 1.8), offering a fast response and an excellent
time resolution. From the Phase-II upgrade of the detector, additional chamber have been installed
in the endcap region, designed to improve forward muon triggering capabilities in this challenging
region: Gas Electron Multipliers (GEM) [12] and an improved version of the RPC, called iRPC
(improved RPC) [13].
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Figure 2: Longitudinal view of the CMSmuon region. The dashed red box contains the new detectors added
for Phase-II (HL-LHC) [8].

3. The barrel muon Level-1 trigger system

The Level-1 trigger, is designed to take a fast accept/reject decision (every BX), in a pipelined
fashion using custom developed programmable hardware. The functional relations between the
components are shown in Figure 3. The electronics devoted to muon tracking follows a geographical
partitioning: separate systems process local information produced in the barrel, endcap and overlap
regions, corresponding to |𝜂 | < 0.8, 0.8 < |𝜂 | < 1.2 and 1.2 < |𝜂 | < 2.4, respectively, to identify
muons and measure their coordinates and momentum.
The information gathered from the barrel gaseous detectors, DTs and RPCs, is collected and
synchronised by the TwinMux system [15], in charge of the merging of the two, thus delivering the
improved trigger segments, called primitives, to the BarrelMuon Track Finder (BMTF) [16]. The
BMTF receives the muon primitives from the Barrel area of CMS (|𝜂 | < 0.85) and it reconstructs
muon tracks and calculate the physical parameters: transverse momentum (𝑝𝑇 ), 𝜙 and 𝜂. The
transverse momentum assignment is performed by means of Look-Up Tables (LUTs), which exploit
information from the trigger primitives of the two innermost stations used to built a given BMTF
track.
The value of 𝑝𝑇 assigned after the output produced by the BMTF will be used as a comparison for
the 𝑝𝑇 ’predicted’ by the Machine Learning models.

4. Artificial Neural Network

An Artificial Neural Network (ANN) is a learning method vastly used in Machine and Deep
Learning, inspired by the biological neural connections that constitute the human brain, specifically
designed to tackle non-linear learning problems [17]. Among the different architectures of ANN
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Figure 3: CMS Level-1 muon trigger data flow (the dashed circle highlights the barrel region of the detector)
[14].

(a) Graphical representation of a per-
ceptron.

(b) Neural network basic lay-
out.

Figure 4: Simple diagrams representing the layout and functioning principle of neural networks.

available, the Fully Connected Multilayer Perceptron (MLP) [18] has been chosen for this work,
due to its relative simple design. MLPs, as the name suggests, are made up of single units called
perceptrons. These, as shown in Figure 4(a), are characterised by an input vector of features
x = (𝑥, 𝑦, 𝑧), each one multiplied with their weight (𝑤𝑖𝑥𝑖). All of these are then added together
to create the net or weighted sum

∑
𝑖 𝑤𝑖𝑥𝑖 , and finally given to the Activation function 𝑓 (∑𝑖 𝑤𝑖𝑥𝑖)

which evaluates the perceptron’s outputs, adding a non-linearity compared to the simple linear
combination alone. Perceptrons can be stacked together to make a layer of neurons, each producing
its own outputs. These layers can then be put together to build arbitrarily deep custom networks,
by feeding the outputs of a layer to the neurons of the next layer, which will be ’hidden’ to the user,
and resulting in a structure like the one shown in Figure 4(b).

5



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
5

Deep Learning fast inference on FPGA for CMS Muon L1 Trigger studies Tommaso Diotalevi

4.1 Data preparation

The first important step prior to model creation is data preparation. In a standard machine
learning problem, this is a delicate phase that deals with aspects such as data cleansing, data scaling
(normalisation and binning), feature inspection and eventually feature engineering. The data used
is generated out of a Monte Carlo simulated sample of 300k muons in a 𝑝𝑇 range from 3 to
200 GeV/c, with different energy and direction (equally distributed in charge) crossing the CMS
detector and, as anticipated in the previous section, only trigger primitives are used for a more direct
comparison with the actual Level-1 trigger algorithm. Each generated muon passing through the
barrel DT chambers results into several trigger primitives. Each muon has an associated number
corresponding to the number of chambers crossed by its trajectory.
Therefore, inside a plain csv file (Comma Separated Values), extracted from a TTree in a ROOT
file [19] (format widely used by the high energy physics community), all the necessary information
has been stored: both the physical information of each simulated muon and the respective primitive
hits in the detector, up to the Level-1 trigger information.

4.2 Neural Network architecture

The neural network architecture has been implemented with the following structure: the first
hidden layer has 60 neurons and receives the information directly from the input layer of 27 different
features with the ReLU (Rectified Linear Unit) selected as activation function. The second layer is
identical to the first one but contains 50 neurons and this is repeated for other 3 additional hidden
layers with 30, 40 and 15 neurons, respectively. In the end, the output layer (with only one node)
closes the Network. This structure will be referred later as D model, standing for ’Deep model’.
The network performs a regression task, by predicting the transversemomentum (𝑝𝑇 ) in a supervised
environment, i.e. providing as a target label the estimated momentum from the Monte Carlo
simulation.

4.2.1 Quantisation of the Neural Network

Developing a neural network in a specific hardware with a limited amount of resources,
requires a high level of optimisation in terms of compression, to reduce the storage and computation
costs for deep models. Quantisation, therefore, means converting the arithmetic used within the
network from high-precision floating-points to normalised low-precision integers (fixed-point) [20].
Floating-point representation allows the decimal point to ’float’ to different placeswithin the number,
depending upon the magnitude. Fixed-point numbers, instead, consist of two parts, integer and
fractional, as shown in Figure 5. Compared to floating-point, fixed-point representation maintains
the decimal point within a fixed position, allowing for more straightforward arithmetic operations.

The Application Programming Interface (API) environment used for the Machine Learning
model - deeply specialised in Neural Networks - is based on Keras [21], an high-level framework
capable of running on top of the Google TensorFlow [22] software library, and it is called QKeras
[23]. Developed by a collaboration between Google and CERN, it is a quantisation extension to
Keras that provides a drop-in replacement for layers performing arithmetic operations. This allows
efficient training of quantised versions of Keras models. The quantisation is performed during
training itself, and not at the end by simply lowering the numbers bitwidth.
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Figure 5: Fixed-point number representation. The green number represents the width, the blue number the
integer part and the purple number the fractional part.

For the implementation of theD model, the first hidden layers presents a gaussian random number as
kernel initialiser (for the initial randomised weight assignment). Then, all the network components
are quantised, including the activation functions, with a bitwidth of 16 bits of which 1 is used to
represent the integer part of the value (another bit is used for the sign).

4.2.2 Neural Network weight pruning

During the implementation of a neural network model, the final hardware platform where the
inference computation will run, has to be considered. In order to minimise the resource utilisation,
a further optimisation is needed to reduce the number of parameters and operations involved in the
computation, by removing connections, and thus parameters, in between the network layers. This
process is commonly called weight pruning, i.e. the elimination of unnecessary values in the weight
tensor, by setting the network parameters’ values to zero, which will be translated into a cut of the
connections between the nodes of the neural network.
The pruning is done during the training process to allow the network to adapt to the changes and
the TensorFlow Sparsity Pruning (TFSP) API [24] has been selected to perform this optimisation.
It uses an algorithm designed to iteratively remove connections, based on their magnitude during
training. As training proceeds, the pruning routine is scheduled to execute, eliminating the weights
with the lowest magnitude (i.e. those closest to zero), until the current sparsity target is reached.
Every time the pruning routine is scheduled to execute, the current sparsity target is recalculated,
until it reaches the final target sparsity at the end of the pruning schedule by gradually increasing
it according to a smooth ramp-up function. In Table 1, it is clear how this technique reduces the
number of weights different from zero, yielding to a lower number of operations performed by the
network itself.

5. Neural Network model performance on CPU

Prior to the implementation of the network in the FPGA, the architecture has been tested on a
Intel i7 6500U @ 2.50GHz consumer CPU. The QKeras model trained is saved into a HDF5 file
[25], containing:

• The architecture of the model, in order to be reproduced when it is needed to be used with
other datasets;

• The weights of the model;

7
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Weights Biases Total
Complete Pruned Complete Pruned Complete Pruned

1st layer 1620 409 60 60 1680 469
2nd layer 3000 750 50 50 3050 800
3rd layer 1500 375 30 29 1530 404
4th layer 1200 300 40 40 1240 340
5th layer 600 150 15 15 615 165
Output layer 15 4 1 1 16 5

Table 1: Results of the pruning technique for the D model, with a complete list of parameters for every layer
before and after pruning. The model is built using QKeras.

• The training configuration (loss, optimiser);

• The state of the optimiser, allowing to resume training exactly where it was left.

Then, using another csv file with an independent set of simulated muons (about 15000 muons),
created and processed in the same way as the training sample, it is possible to load the models and
predict the muon 𝑝𝑇 . The results of the prediction are then compared to the 𝑝𝑇 estimated by the
𝑝𝑇 assignment unit of the BMTF.
Two different types of plots has been produced as output:

• 𝑝𝑇 resolution histograms;

• efficiency curves computed as function of the generated muon 𝑝𝑇 ("turn-on curves").

5.1 𝑝𝑇 resolution histogram

The 𝑝𝑇 resolution histograms,for each generated muon, are filled using the following relation:

Δ𝑝𝑇

𝑝𝑇
=

𝑝𝑇𝑒𝑠𝑡 − 𝑝𝑇𝑠𝑖𝑚

𝑝𝑇𝑠𝑖𝑚

where 𝑝𝑇𝑒𝑠𝑡 is the estimation of the transverse momentum, given by the model prediction or the
Level-1 trigger 𝑝𝑇 assignment unit, and 𝑝𝑇𝑠𝑖𝑚 is the simulated transverse momentum. Even though
this metric makes a quick and easy to understand comparison possible, it is important to keep in
mind that this resolution is asymmetric, i.e. its range can go from -1 to infinite. This means that,
for a constant actual spread, the standard deviation associated to its distribution is affected by the
value of its mean: the smaller it is, the smaller the standard deviation will get.
Figure 6 shows the 𝑝𝑇 resolution for the entire range analysed (from 3 to 200 GeV/c). The green
line indicates the resolution of the Level-1 trigger system while the blue line indicates the resolution
of the predictions made by the network D model. In particular, it is possible to notice a less broad
distribution for the ML resolution, resulting in an overall improvement (yet small) with respect to
the Level-1 trigger system. Another noticeable detail is the small peak corresponding to the value
-1: this happens when the 𝑝𝑇 assigned by the trigger is significantly underestimated with respect
to the generated muon 𝑝𝑇 . The machine learning based momentum assignment is therefore less
prone to large 𝑝𝑇 underestimation.
In general, an additional feature visible in the 𝑝𝑇 resolution plot is the scale: the peak of the
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Figure 6: Transverse momentum resolution histograms computed for the machine learning D model (blue)
and Level-1 trigger (green) based momentum assignment, computed for muons generated in the 3-200 GeV
𝑝𝑇 range.

ML-based distribution is closer to zero if compared with the Level-1 trigger one. This is due to a
different calibration of the 𝑝𝑇 scale in the two cases. The trigger 𝑝𝑇 assignment is in fact calibrated
defining Level-1 muon 𝑝𝑇 as the point where, for a given threshold, the efficiency turn-on curve
(described in the next section) reaches the 90% value. On the other hand, the network attempts to
estimate the generated muon 𝑝𝑇 and is therefore characterised by a smaller scale bias.

5.2 Efficiency turn-on

The efficiency turn-on, as the word states, represents an efficiency 𝜖 defined as follows:

𝜖 =
Number of 𝜇 > given threshold in 𝑝𝑇

Total number of muons
After the definition of a minimal 𝑝𝑇 threshold cut, the numerator is filled if the 𝑝𝑇 value from the
network or the Level-1 𝑝𝑇 assignment is above threshold. Then the ratio with the denominator is
performed. Both numerator and denominator are filled only in case a geometrical match between a
trigger muon track and a generated muon is found. In Figure 7 a turn-on efficiency curve is shown
for the D model. A threshold of 22 GeV/c is selected, as it is the typical threshold of the lowest 𝑝𝑇
cut used by the lowest momentum unprescaled single muon trigger used over Run-2.
From these plots, a very high efficiency in the plateau region of the ML turn-on curve can be
observed: the lower efficiency of the Level-1 curve in the high-𝑝𝑇 region is mainly caused by the
underestimation of the muon 𝑝𝑇 in some events, which is visible as the small peak at -1 in the 𝑝𝑇
resolution plots (Section 5.1). The network model, instead, is not affected by this issue and the
efficiency at high values of 𝑝𝑇 is nearly 100%. On the other hand, in the low 𝑝𝑇 region from 3
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Figure 7: Efficiency turn-on given a 𝑝𝑇 threshold cut of 22 GeV. The blue dots show the efficiency for
the machine learning based momentum assignment related to the D model, while the green dots show the
efficiency for the Level-1 trigger 𝑝𝑇 assignment.

to 20 GeV, a small increase in efficiency is visible, leading to an higher fraction of muons with
low momentum misidentified as high momentum, with a consequently not optimal increase of the
expected rate of acquisition.

6. Implementing the Neural Network on FPGA

Field Programmable Gate Arrays (FPGAs) are devices that blend the benefits of both hardware
and software. They implement circuits just like hardware, providing huge power, area and perfor-
mance benefits over software, yet they can be reprogrammed cheaply and easily to implement a
wide range of tasks. FPGAs implement computations spatially, simultaneously computing millions
of operations in resources distributed across a silicon chip. Such systems can be hundreds of times
faster than microprocessor based designs. The internal layout of an FPGA, is made up of replicated
units of digital electronic circuits, called logic blocks, embedded in a general routing structure,
hence the gate and array in the name of this type of devices. The logic blocks contain processing
elements, with different functions:

• LookUp Tables (LUT) for simple combinational logic;

• Flip-Flops (FF) for implementing sequential logic;

• Digital Signal Processors (DSP) for efficient multiplication of fixed-point numbers (funda-
mental for the implementation of the neural network in the FPGA).

10
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Figure 8: Functional block diagram of the Xilinx Zynq Ultrascale+ MPSoC.

6.1 Hardware characteristics

The target hardware consisted in a Xilinx ZCU102 Evaluation Board [26] featuring the Zynq
Ultrascale+ XCZU9EG-2FFVB1156E Multiprocessor System on a Chip (MPSoC) with a quad-
core Arm Cortex-A53, dual-core Cortex-R5F real-time processors, and a Mali-400 MP2 graphics
processing unit based on Xilinx’s 16nm FinFET+ programmable logic fabric. The ZCU102MPSoC
houses 600000 logic cells (flip-flops and LUTs) and 2520 DSP slices, working with an internal
memory of 32.1 Mb. This board has been chosen because of the faster development the use of a
microprocessor ensures, as only the firmware concerning the network has to be designed, leaving
the rest (e.g. I/O interface) manageable via software.
In all MPSoC devices from Zynq Ultrascale family, the system is subdivided in two main parts
(shown in Figure 8):

• Processing system (PS): contains all the microprocessors, in particular the quad core ARM
Cortex-A53 that implements the ARM v8-A 64-bit instruction set, with an I/O accessible via
software using the Xilinx Software Development Kit (SDK);

• Programmable Logic (PL): contains the FPGA logic described above.

Vivado and its SDK can establish a JTAG [27] connection to the MPSoC through the USB-to-
JTAG module with a micro-USB connector. This link is used for the programming of the FPGA
and for the first steps of debugging. On the other hand, to communicate and so retrieve the output
of the computation carried out in the PL and handled by the PS, the Universal Asynchronous
Receiver-Transmitter (UART) [28] interface has been used.

6.2 Conversion of the Network architecture to an HLS project

The first step required for the implementation of the neural network on the FPGA is the
conversion of the high-level code used for the creation of the network (QKeras) into an High-Level
Synthesis (HLS), which is the process of automatic generation of hardware circuit from ’behavioral
descriptions’ contained in a C or C++ program. To accomplish this task, the hls4ml package has
been used. The hls4ml package [29] has been developed by members of the High Energy Physics
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Figure 9: A typical workflow to translate a model into an FPGA implementation using hls4ml.

(HEP) community to translate ML algorithm, built using frameworks like TensorFlow, into HLS
code. In this work, hls4ml is used to perform this transformation on a trained neural network,
defined by its architecture, weights, and biases. A schematic workflow of hls4ml is illustrated in
Figure 9. The parts of the workflow illustrated in red indicates the usual software steps required to
design a neural network for a specific task. The blue section of the workflow is the task done by
hls4ml, which translates the model into an HLS project that can be synthesised and implemented to
run on an FPGA. This tool also allows the user to change the level of parallelisation, by adjusting a
simple parameter, called reuse factor, and it is also fully compatible with the QKeras extension.

6.3 Exporting the HLS project into an IP core

Once the target hardware has been defined, the trained model is converted into an HLS project
using the functions provided by the hls4ml library. The projects are then opened with Vivado
HLS to modify the I/O interface from the one created automatically by hls4ml to an AXI4-Lite
[30] interface. The Advanced eXtensible Interface (AXI4) is a family of buses defined as part of
the fourth generation of the ARM Advanced Microcontroller Bus Architecture (AMBA) standard.
AXI4-Lite is a subset of AXI which has a simpler interface than the full AXI4 architecture but with
a slower I/O operation compared to the full AXI library. This choice has been performed in order
to allow the PS to communicate easily with the PL through the MPSoC Intellectual Property (IP)
[31] in the Vivado IP integrator. Then, the network I/O consisted in reading and writing registers in
the PS on-board memory, handled by the software. An entire write cycle for a single entry, dealing
with all the 27 features making up the test set, takes approximately 500 ns, as shown in Figure 10.
The next step is to synthesise the HLS project. After synthesising the project, performance and
utilisation estimates can be analysed in the post-synthesis report, which contains information on
several aspects, among which:

• the amount of resources required to implement the design, in terms of LUTs, FFs and DSPs;

• the latency, or the number of clock cycles required for the function to compute all output
values;

• the initiation interval, or the number of clock cycles before the function can accept new input
data,

12
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Figure 10: Simulation of a write cycle of the 27 features in input for a single entry through a AXI4-Lite
interface between the Processing System to the Programmable Logic.

Figure 11: Table containing the resource footprints of the D model in terms of BRAM, DSPs, FFs, LUTs
and URAM available and used.

The report for the D model is shown in Figure 11. In general, when implementing neural networks
into FPGAs, the main problem is the lack of DSP slices. The model chosen for the analysis has
been proven suitable for the implementation in the target hardware available for this work. Before
going further, a simulation of the model behaviour on the FPGA is carried out, yielding the results
depicted in Figure 12, which shows a comparable behaviour with the network inference on software.

6.4 Implementing a block design

To implement the chosen model in a complete design, the project is exported via the Vivado
IP Packager: it enables the creation of a reusable Intellectual Property (IP) module that can be
accessed from the Vivado IP Integrator. Then, a graphic connectivity canvas has been used to select
peripheral IPs, configure the hardware settings, and stitch together the IP blocks to create the digital
system. This is done in workspaces called Block Designs (BDs). In the case under study, the model
is represented inside a Block Design by the IP core produced by Vivado HLS. On the other hand,
the PS is represented by the Zynq Ultrascale+ MPSoC IP. In this way, through the addition of IPs
handling the AXI4-Lite interfaces, it is possible to connect the application with the ARM processor,
which will be used to communicate with the PL. The final diagram representing the entire design is
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Figure 12: Transverse momentum resolution histograms computed for the deeper ML-based simulated on
the FPGA (dark yellow) and Level-1 trigger based momentum assignment, computed for muons generated
in the 3-200 GeV 𝑝𝑇 range.

Figure 13: Block Design showing the IP core containing the neural network connected to the PS, through
IPs handling the I/O interface of the implemented network.

shown in Figure 13.
Once the design is ready, an HDL wrapper is created in order to synthesise and implement the
project. Finally, the bitstream can be generated, which is copied onto the FPGA in order to program
it.

7. Inference on the FPGA

At this stage the D model has been successfully translated in a bitstream. The computation on
the FPGA is performed through Vivado SDK, calling functions in a C++ code, compiled on a host
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PC that drive the execution into the PL. By defining the input as objects of the ap_fixed< 16, 6 >
class, the input from the network test set is cast to fixed point numbers of 16 bits. The entire
structure is then enclosed in a loop, allowing the inference for the entire test dataset. The output
is then retrieved via the UART interface, connected to a serial port on the host PC, using a Python
script which also converts the integer representation back into floating point numbers for further
analysis.
The results are evaluated by counting the number of clock pulses between the input of a pattern and
the production of the related output. The model takes approximately 74 clock cycles (corresponding
to ≈ 0.368 𝜇s) for each candidate on the FPGA, in contrast with the times obtained with a consumer
CPU of 37.29 ms for a single prediction. It is, however, comparable with the 9 BXs (≈ 0.225 𝜇s)
expected to be needed by the Phase-II upgrade of the track finder, the Kalman BMTF.

8. Neural Network model performance on FPGA

After the implementation, synthesis and inference of the muon 𝑝𝑇 from the neural network
model, the same plots shown in Section 5 has been produced for the FPGA results.

8.1 𝑝𝑇 resolution histogram

In Figure 14 the resolution histogram for theD model is shown. In this overall picture, it is clear
that the model infer momenta with a resolution which is narrower when the computation is carried
out on a CPU. When the assignment is performed on an FPGA, slightly worse results are produced
with respect to a traditional CPU, with a small bias towards higher values of Δ𝑝𝑇 /𝑝𝑇 . The passage
from software inference to FPGA has caused a small decrease in the advantages achieved by using
a machine learning based algorithm to assign 𝑝𝑇 to muons, as demonstrated by the slightly wider
resolutions’ distributions. This could be the effect of the loss in precision the input features undergo,
due to the conversion to fixed-point representation needed to perform computations efficiently in an
FPGA. Nevertheless, the hardware approach still appears compatible or, in case of higher momenta,
even better than the Level-1 trigger based momentum assignment.

8.2 Efficiency turn-on

As shown in Section 5.2, the accuracy of the model under study in the range 3-20 GeV/c results
worse than the Level-1 trigger. This can cause problems when cuts in momentum are applied in the
trigger. Figure 15 depicts the turn-on curves for the D model when a threshold cut at 22 GeV/c is
applied. Only small differences between software and hardware based computation are observed.
From both FPGA and CPU (Figure 7) turn-on curves, almost 100% efficiency for 𝑝𝑇 values well
above the threshold cut is also shown.

9. Conclusions

The precise evaluation of 𝑝𝑇 is crucial to allow the trigger rate to be ultimately reduced and
it represents a possible improvement of the CMS Level-1 muon trigger system during the High
Luminosity phase of the LHC. By implementing neural network models onto Field Programmable
Gate Arrays (FPGAs), an alternative to the Level-1 trigger track transverse momentum assignment

15



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
5

Deep Learning fast inference on FPGA for CMS Muon L1 Trigger studies Tommaso Diotalevi

Figure 14: Transverse momentum resolution histograms computed for the D model running on a consumer
CPU (blue), running on an FPGA (red) and Level-1 trigger based momentum assignment (green), computed
for muons generated in the 3-200 GeV 𝑝𝑇 range.

Figure 15: Efficiency turn-on given a 𝑝𝑇 threshold cut of 22 GeV/c. The blue dots show the efficiency for
the network based momentum assignment related to the D model running on a consumer CPU, the red dots
show the results for the same model implemented on the FPGA, while the green dots show the efficiency for
the Level-1 trigger 𝑝𝑇 assignment.
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presently used by the Compact Muon Solenoid (CMS) was developed and tested.
The inference for the chosen network model on FPGA produced overall comparable resolutions
with respect to the current Level-1 trigger system, with slightly better results at higher 𝑝𝑇 values,
but worse assignments in the 3-20 GeV/c range. In the plateau region of the ML turn-on curve an
efficiency very close to 100% is observed, better than in the present trigger. On the other hand,
compared to the present Level-1 trigger, the proposed algorithm shows a higher efficiency in the
low 𝑝𝑇 region (e.g. 10-15 GeV/c, for a 22 GeV/c cut) of the turn-on efficiency curve. This feature,
which would definitely imply a high rate for the newly proposed solution, must be tackled in the
next development stages. Regarding the time needed for the 𝑝𝑇 assignment, the FPGA showed an
inference time of the order of ≈ 70 clock cycles.

This work represents a first stepping stone towards more refined and fine-tuned neural net-
works, implemented in a more optimised way onto FPGAs. There is space for improvements in
every phase of the workflow, from finding more suitable bitwidths for the weights, to a more evolved
I/O interface used to send and retrieve data from the network, in order to process data in a pipelined
way and to reduce even more the time needed for computation.
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