
P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for
Demand Response Based Resource Provisioning

Shogo Matsui*a, Yasuhiro Watashibab, Susumu Dateb, Jason Liuc,
Kaname Harumotod and Shinji Shimojob

aGraduate School of Information Science and Technology, Osaka University, Japan
bCybermedia Center, Osaka University, Japan
cKnight Foundation School of Computing and Information Sciences, Florida International
University, USA

dInstitute for Datability Science, Osaka University, Japan
E-mail: matsui.shogo@ais.cmc.osaka-u.ac.jp

We study a new service model based on the Demand Response (DR) resource provisioning at
High Performance Computing (HPC) centers. This DR-based resource provisioning model allows
administrators of HPC centers to provide computing services with incentives to users to compen-
sate for the performance loss due to power saving operations. In a power conservation mode, a
job’s performance may decrease, both in terms of a job waiting time and a job execution time.
With DR-based resource provisioning, the submitted jobs are divided into two categories, allowed
jobs and disallowed jobs, depending on the user’s tolerance in the performance degradation. The
allowed jobs, if indeed affected by the power saving operations, will receive compensation in
accordance with an incentive system which determines the reward to the user. For designing an
appropriate demand response model, we need to focus on the increase in the job’s execution time
and the job’s waiting time, and the corresponding decrease in the power consumption. These are
important factors in deriving an incentive system. Currently, no existing approaches can reliably
quantify the effectiveness and the contribution of these factors in HPC job scheduling and re-
source provisioning. In this paper, we propose a newly developed job scheduling simulator that
can evaluate DR-based resource provisioning approach under various operating conditions. We
designed and implemented the job scheduling simulator for HPC demand-response resource pro-
visioning using a general-purpose discrete-event simulator. Our experiments show that the job
scheduling simulator can properly represent the demand response resource provisioning using
different job scheduling scenarios.

International Symposium on Grids & Clouds 2020, ISGC2021
22-26 March, 2021
Academia Sinica, Taipei, Taiwan (online)

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:matsui.shogo@ais.cmc.osaka-u.ac.jp


P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

1. Introduction

High Performance Computing (HPC) centers operate large-scale cluster systems composed
of many computing nodes, which are allocated as computing resources to fee-paying users. The
power consumption of large-scale cluster systems is of important concern. To conserve power, ad-
ministrators at HPC centers may choose to either shut down an idle part of the computing cluster
or slow down the CPU frequency on selected computing nodes. These power conservation oper-
ations performed by the administrators may result in a decrease in available computing resources
or performance degradation in the CPU processing. As such, these power conservation operations
at HPC centers are called "fallbacks". A fallback may be in the form of prolonged waiting time of
submitted jobs or prolonged execution time of running jobs. Most existing job schedulers, which
manage submitted jobs and control the provisioning of computing resources to jobs, do not take
into account the fallbacks due to power conservation operations.

A new service model based on Demand Response (DR), which attempts to better match power
demand with power supply, has attracted the attention of operators and researchers at High Per-
formance Computing (HPC) centers [1, 2, 3]. In this new service model, which we call DR-based
resource provisioning, submitted jobs are divided into two categories, allowed jobs and disallowed
jobs, based on the user input. The users declare whether the submitted jobs can tolerate fallbacks
if power conservation is applied. The disallowed jobs will remain the same as traditional HPC
jobs. They do not participate in power conservation operations. Consequently, they do not suffer
from fallbacks. The allowed jobs will participate in power conservation operations. These jobs
can tolerate longer turnaround times. Administrators at HPC centers devise an incentive system,
providing compensations to users who submitted allowed jobs impacted by fallbacks. In doing so,
the HPC centers encourage users to consider submitting more allowed jobs.

To design such an incentive system to encourage users to submit as many allowed jobs as pos-
sible while achieving larger profit from the reduced energy cost, one needs to consider important
factors, including the overall reduction in power consumption of large-scale cluster systems and the
increase in the jobs’ waiting time and execution time. These factors depend on the fallback meth-
ods, the structure of large-scale cluster systems, and the characteristics of submitted jobs. They
play an important role in determining a design of the incentive system. Currently, no mechanisms
exist to reliably measure the impact of these factors on DR-based resource provisioning methods
under various HPC operating conditions. Although job scheduling simulators are widely used as
mechanisms to evaluate how submitted jobs are processed on large-scale cluster systems, most job
scheduling simulators do not have functionalities to capture the power consumption of large-scale
cluster systems, the increased job waiting time and execution time, and their impact on DR-based
resource provisioning. This paper presents a new job scheduling simulator with functionalities
for managing jobs in accordance with DR-based resource provisioning, in an effort to study and
evaluate the effectiveness of various design alternatives for proper incentive systems.

The rest of this paper is organized as follows. Section 2 describes the operations of an HPC
center and DR-based resource provisioning as background. Section 3 mentions an analysis of the
required functionalities for job processing in DR-based resource provisioning and proposes our
job scheduling simulator. Section 4 describes the implementation of the proposed job scheduling
simulator. Section 5 presents case study results to evaluate the job scheduling simulator. Section 6

1



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

concludes the paper with a summary.

2. Background

2.1 Operations of a High Performance Computing center

In High Performance Computing (HPC) centers that operate large-scale cluster systems, the
power consumption of large-scale cluster systems is an important concern. An HPC center provides
computing resources for fee-paying users from large-scale cluster systems composed of many com-
puting nodes. Cluster systems consume a huge amount of power. Table 1 shows a list of TOP500 [4]
computer systems which are top-ranked on theoretical peak performance and the number of pro-
cessor cores. The table shows the power consumption of these cluster systems. For example,
Tianhe-2A, ranked at 6th place, consumes as much electricity as to power roughly twenty thousand
homes. Power consumption undoubtedly is an important issue for HPC centers.

HPC centers attempt to reduce power consumption by performing fallback operations. Two
main fallback methods exist: Dynamic Voltage Frequency Scaling (DVFS) [5] and "node stop".
DVFS is a method of reducing CPU power consumption by lowering CPU frequency and power
voltage supplied to a CPU. Node stop is a method to suppress a power consumption of a cluster
system by making computing nodes turning off or idling.

Unfortunately, fallbacks can potentially increase the waiting time of submitted jobs (due to
the unavailability of computing nodes that have been turned off or idle) or the execution time of
running jobs (due to the reduced CPU processing power at lower frequency or voltage). In general,
since users prefer a short turnaround time of jobs, an increase in job’s waiting time and execution
time presents an unfavorable proposition to the users.

2.2 Demand Response Based Resource Provisioning

To accommodate power conservation operations with fallbacks described in Sec. 2.1, a new
service model, called Demand Response (DR)-based resource provisioning, has attracted consid-
erable attention recently [1, 2, 3]. The DR-based resource provisioning is a service model that
applies demand response to limit power consumption and balance supply and demand between
power companies and power consumers. Power companies maintain a balance by adjusting the
supply of power according to the power consumers’ declarations for permission to reduce the sup-
ply of power. The more power consumers that allow power supply reductions, the easier it is for

Rank System Power [kW]

1 Supercomputer Fugaku 29,899
2 Summit 10,098
3 Sierra 7,438
4 Sunway 15,371
5 Selene 2,646
6 Tianhe-2A 18,482

Table 1: part of the TOP500, NOVEMBER 2020.

2



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

the power companies to balance the supply and demand. To encourage power conservation, an in-
centive system is in place that generally translates to a reduced cost for the consumers to willingly
participate in the demand response scheme.

DR-based resource provisioning contains new actions in addition to existing resource provi-
sioning. Actions for DR-based resource provisioning are shown in Fig. 1. In DR-based resource
provisioning, a user declares whether she would allow her jobs to participate in the power conser-
vation operation. If so, it is expected that the waiting time of the submitted jobs and the execution
time of the running jobs may take longer if power conservation is activated. In Fig. 1, "User 1"
declares that his job is not allowed to participate in power conservation, while "User 2" allows it.
In this case, the allocation of computing resources to User 2’s job might be delayed due to unavail-
ability or the computing resources with reduced processing performance might be allocated to User
2’s job. To compensate for User 2’s participation, User 2 will be provided with a reward, maybe in
terms of reduced usage fee, if the job suffers from prolonged waiting time or execution time due to
power conservation. The system incorporates an incentive system to calculate the rewards given to
users affected by fallbacks.

In DR-based resource provisioning, it is important to design an incentive system so that more
users are willing to allow their jobs to participate in power conservation. To design such an incen-
tive system, it is necessary to take into account the benefit of both a HPC center (in terms of profit)
and its users (in terms of rewards). There are important factors to consider. For HPC centers, one
needs to consider the overall reduction in power consumption of large-scale cluster systems. For
HPC users, one needs to consider the increased turn-around time of the allowed jobs (including
both the waiting time of submitted jobs and the execution time of running jobs).

Currently, no mechanisms exist to reliably measure the impact of these factors on DR-based
resource provisioning, under various HPC operating conditions. These factors depend on the fall-
back methods, the structure of large-scale cluster systems, and the characteristics of submitted jobs.
The structure of a cluster system is determined by the number and type of computing nodes and
a type of interconnect between the computing nodes. The type of a computing node is defined
by the type of a CPU, the use of accelerators, and the memory capacity. The characteristics of
submitted jobs depend on jobs themselves as well as the behavior of the users (such as job arrivals
and job types, etc.) Therefore, we aim to realize a mechanism for HPC centers to study and evalu-
ate demand response based resource provisioning and in particular, the design of proper incentive
systems. For this purpose, we developed a job scheduling simulator so that we can examine the
handling of the different structures of large-scale cluster systems and the various situations in job

Figure 1: Actions for DR-based resource provisioning.

3



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

processing.

3. Job Scheduling Simulator

3.1 Existing Job Scheduling Simulator

Many job scheduling simulators have been researched and developed to evaluate how jobs are
allocated in computer systems which include large-scale cluster systems. For example, the gem5-
gpu [6] is a mechanism to model and simulate large-scale cluster systems composed of computing
nodes with GPU. MERPSYS [7] is a mechanism to simulate the execution time of the message-
passing parallel applications on large-scale cluster systems.

Obaida et al. proposed a job scheduling simulator using Performance Prediction Toolkit
(PPT) [8]. It supports rapid assessment and performance prediction of jobs. The job schedul-
ing simulator can deal with various job scheduling and task mapping algorithms. Buyya et al.
proposed GridSim to evaluate the basic configuration and scheduling algorithms in a grid environ-
ment [9]. Skimakov et al. proposed the Slurm Simulator to simulate a large-scale cluster system
where jobs are managed by the job scheduler Slurm [10]. It can assist in the selection of Slurm
parameters. These existing job scheduling simulators do not have a functionality for managing jobs
in DR-based resource provisioning manner.

3.2 DR-based Job Scheduling Simulator

We propose a job scheduling simulator with functionalities for managing jobs in DR-based
resource provisioning manner and evaluating the effectiveness of alternative incentive systems. To
realize the proposed job scheduling simulator, a functionality required for job processing is derived
against the job processing flow of the existing resource provisioning. The structure and processing
flow of the job scheduling simulator with functionalities for DR-based resource provisioning is
shown in Fig. 2.

As seen in Fig. 2, the proposed job scheduling simulator is composed of four components: job
queue, resource allocator, status manager, and computing resources. The job queue stores submit-
ted jobs until they are executed. The resource allocator is used to judge whether it is possible to
allocate computing resources to a job in the job queue and allocates computing resources to that
job. The status manager has the role of monitoring and changing the status of computing resources.
The status of computing resources is categorized into two types: changeable status and unchange-
able status. The changeable status includes the number of available computing resources and the
processing performance of CPUs in each computing node. The unchangeable status includes the
power consumption of the large-scale cluster system and the job ID allocated to each computing
resource. The INPUT illustrated in Fig. 2 has four elements: "jobsets", "power limitation", "fall-
back method", and "Machine config". The jobsets and the Machine config are generally required
by the job scheduling simulator. The power limitation and the fallback method are for managing
jobs in DR-based resource provisioning. The jobsets describe the jobs which contain the follow-
ing information for each job: the job ID, the job submission time, the job execution time, and the
number of computing nodes required. The Machine config is the structure of the large-scale cluster
system. A power limitation consists of values of the upper power limit that a large-scale cluster

4



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

Figure 2: Structure and job processing flow of job scheduling simulator.

system can consume at a given time. A power limitation is used as a threshold for switching to
the fallback. The fallback method, such as DVFS and node stop described in Sec. 2.1, is a way to
reduce the power consumption of a large-scale cluster system so that they can operate within the
power limitation. The OUTPUT illustrated in Fig. 2 is defined as the indexes in this study. The
OUTPUT includes the job execution time, the job waiting time, and the power consumption of
large-scale cluster systems.

The arrow 1, arrow 2, arrow 3, and arrow 4 in Fig. 2 are processes for existing job processing.
The arrow 1 is a process of placing jobs from the jobsets to the job queue in the order of submission
time. The arrow 2 is a process by which the resource allocator judges whether or not it is possible
to allocate computing resources to the job in the job queue. The arrow 3 is a process in which
computing resources the resource allocator allocates to a job. The arrow 4 is a process in which
the status manager monitors the status of the computing resources. Such status is provided to the
resource allocator on demand.

The arrow 5, arrow 6, arrow 7, arrow 8, and arrow 9 in Fig. 2 are processes which are required
for DR-based resource provisioning. The arrow 5 is a process in which the resource allocator re-
ceives the power limitation and then determines whether it is necessary to switch to the fallback
mode. The arrow 6 is a process in which the resource allocator determines whether a job is allowed
to run on computing nodes under the fallback mode. The arrow 7 is a process in which the re-
source allocator instructs the status manager to update the computing resources. When the fallback
method is DVFS, this instruction is to change the processing performance of CPUs which consists
of the computing resources allocated to a job. If an adopted the fallback method is node stop, the
instruction is to make some computing nodes turned off or idle. The arrow 8 is a process in which
the status manager refers to the fallback method and then changes the status of the computing re-

5



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

Figure 3: Design of proposed job scheduling simulator.

sources based on the fallback method. The arrow 9 is a process in which the status manager outputs
the job execution time, the job waiting time, and the power consumption of the large-scale cluster
system.

To realize these functionalities, we have designed DR-based resource provisioning execution
module. The proposed job scheduling simulator is realized by linking this module with the existing
job processing. Fig. 3 shows the design of the proposed job scheduling simulator. This module
consists of three functions: (1) Allowed flag processing function, (2) Fallback execution function,
(3) Output function. Function (1), function (2), and function (3) enable the processes of Fig. 2-
5,6,7, Fig. 2-8, and Fig. 2-9 for existing job processing, respectively. Function (1) handles the
power limitation as a criterion for executing DR-based resource provisioning and the allowed flag.
Function (2) enables the status manager to change the status of the computing resources based
on the fallback method. Function (3) receives the status of computing resources from the status
manager and refers to the job information by using job ID. Function (3) outputs the job execution
time, the job waiting time, and power consumption of large-scale cluster systems.

4. Implementation of the Job Scheduling Simulator

4.1 Overview of the Job Scheduling Simulator

We implement the proposed job scheduling simulator based on the design described in Sec. 3.2.
The implementation structure of the proposed job scheduling simulator is shown in Fig. 4. The
proposed job scheduling simulator consists of two components: simulus [11], which is an exist-

6



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

Figure 4: Implementation Structure of Proposed Job Scheduling Simulator.

ing event-driven general-purpose simulator, and DR-based resource provisioning execution module
shown in Fig. 3.

Simulus is employed as the foundation of the proposed job scheduling simulator. Simulus per-
forms simulations by executing the events described in the event list. The event list is described as
pairs of events and their execution time. A function is assigned to the event as the execution content.
In the actual simulation, the function assigned to the event is executed at the designated simula-
tion time. Simulus facilitates the implementation of various event-driven simulators by developing
functions defined as processes of independent functions. Thus, simulus is highly extensible. Is
suitable to implement the foundation functions of the proposed job scheduler, which are expected
to be extended in the future. We intend to use the proposed job scheduler in the future to evaluate
a selection algorithm to choose which jobs with allowed flags are affected by the fallback, or to
incorporate new fallback methods into the proposed job scheduler.

The DR-based resource provisioning execution module contains eight functions. They are
divided into two groups. One group is for processing jobs with the existing job scheduling simu-
lator. The other group is for performing the functions (1)-(3) shown in Fig. 3. The events can be
described in the event list by the eight functions described in more detail below.

The first group contains Initialization (Function A in Fig. 4), Job submit (Function B), Job
judge (Function C), and Job execution (Function D). Function A is a function for the initial setup
of the simulation. Function A has two roles for receiving input data and for adding fixed events to
the event list. A fixed event is one that has a fixed start time and is not subject to change, such as
a job submission event. Function A adds Function B and Function E as fixed events to the event
list. Function B adds a job to the job queue, which is the process when a job is submitted. If a job
is added to the head of the job queue, Function B describes Function C to judge whether the job

7



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

is executable. Function C has the role of judging whether a job is executable or not. Function C
describes Function D based on judgment. Function D is responsible for the job execution (process
3 in Fig. 2). At the start of a job, Function D removes a job from the job queue and increases the
number of computing resources allocated to jobs. At the end of the job, Function D reduces the
number of computing resources allocated to jobs.

The second group includes Power capping (Function E in Fig. 4), Allowed flag processing
(Function F), Fallback execution (Function G), and Output (Function H). Function (1) described
in Sec. 3.2 is satisfied by Function E and Function F, and Function (2) is satisfied by Function G.
Function (3) is satisfied by Function H. Function E has a role in generating power saving situations.
Based on the value of power limitation, Function E changes the upper limit of the power, that can
be consumed by all computing resources, a parameter of computing resources. Function F judges
whether the allowable flag is true or not. If it is true, Function F registers function G as an event.
Function G is for executing the fallback. Function G changes the job execution time and the number
of computing nodes. Function H outputs the power consumption in large-scale cluster systems, the
job waiting time, and the job execution time.

4.2 Method of Creating Event List for DR-based Resource Provisioning

The procedure for creating an event list in the proposed job scheduling simulator is shown in
Fig. 5. This flowchart contains eight actions. The actions can be divided into two groups. The
first group is represented as (ii), (iii), (v), and (viii), which describes the behavior of the existing job
scheduling simulators. The second group is (i), (iv), (vi), and (vii), which describes the behavior of
DR-based resource provisioning. The second group is shown in "Area 1" of Fig. 5.

To create the event list, Action (i) and Action (ii) are executed first. Action (i) has the role
of describing Function E illustrated in Fig. 4 when the power limit changes based on the power

Figure 5: Flow of creating event list.

8



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

limitation. Action (ii) has the role of describing Function B as illustrated in Fig. 4 at the submission
time of each job in the jobsets. Action (iii) performs Action (ii) as many times as the number of
jobs. These actions are done by Function A as illustrated in Fig. 4. After completing these actions,
a process of running simulus is performed by Function A.

When simulus reaches the registered event, the function registered as the event is called by
simulus. Action (iv) is performed in Function B as illustrated in Fig. 4. Action (iv) has the role
of judging whether the power limit suppression is occurring based on the power limitation. If the
judgment result is true, Action (iv) executes the action (vi). If false, action (v) is executed. Action
(vi) is executed by Function F as illustrated in Fig. 4. Action (vi) judges the allowed flag. If the
result is true, Action (vi) executes the action (vii). If false, the action (v) is performed. Action (vii)
describes Function G illustrated in Fig. 4 and executes Action (v). Action (v) describes Function C
illustrated in Fig. 4. When Action (v) is executed by simulus, Function C is called, and Action (vii
i) is executed by Function C. Action (viii) describes Function D illustrated in Fig. 4.

5. Evaluation

5.1 Experiment Setup

Two experiments were conducted for evaluating the proposed job scheduling simulator. The
purpose of the first experiment is to make sure the proposed job scheduling simulator works prop-
erly. The purpose of the second experiment is to confirm that the indexes for designing an incentive
system are presented. In the first experiment, we set a power limit and checked whether the pro-
posed job scheduling simulator is able to provide resources within that limit. We set up a simplified
evaluation condition for the simulation so that the behavior could be easily checked. In the second
experiment, we conducted a case study to observe how much the amount of increase in the job
execution time, the job waiting time, and the reduction of power consumption in large-scale cluster
systems would be for a certain percentage of allowed users. Since an incentive system is designed
based on the simulation results of the actual large-scale cluster systems, the simulation is set up in
an evaluation condition that models the actual workload.

The two experiments were both conducted on the same PC. The processor used is Intel Core
i7-4578U, which is 3 GHz. The memory in the used PC is two 8 GB 1600 MHz DDR3. Table 2
shows the common simulation conditions for the two experiments. All jobs in the jobsets given as
input data for the simulation are assumed to be submitted within 24 hours. For the configuration

Submit time of jobs 0 - 24 [h]
Number of computing nodes 151 [nodes]
Number of CPU cores per a computing node 14
Power Consumption of Idling CPU 66 [W]
Power Consumption of Running CPU 240 [W]
Maximum power limitation of large-scale cluster systems 509 [kW]
Power limitation of large-scale cluster systems for power saving 407 [kW]

Table 2: Common simulation conditions.

9



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

of the computing resources, the number of computing nodes is 151, each with 14 CPU cores. The
power consumption of a CPU is configured as 66 W if in idle state and 240 W otherwise. From this
condition, power consumption is about 507 kW when all computing nodes were in use. Thus, the
maximum power limitation is set to 509 kW. The power limitation for power saving is set at 407
kW, which is about 80% of the maximum value.

5.2 Experiment Results

Table 3 shows the simulation conditions specific to the first experiment. The number of jobs
in the jobsets was 100, the execution time of each was between 2 and 6 hours. The number of
parallel computing nodes ranged from 1 to 16. Fig. 6 shows each simulator’s response to power
saving in the same condition (Table 4). Fig. 6-(a) shows the simulation results of the job scheduling
simulator which does not support DR-based job processing. Fig. 6-(b) shows the simulation results
of the proposed job scheduling simulator. The horizontal axis is the time and the vertical axis is
the power consumption. The line parallel to the x-axis in Fig. 6 is the power limitation for power
saving. Under power saving, the job scheduling simulator that does not support DR-based job
processing cannot adapt to the power limitation for power saving. On the other hand, the proposed
job scheduling simulator can provide resources within the power limitation for power saving. This
confirms that DR-based resource provisioning is working at the preliminary level in the proposed
job scheduling simulator.

Table 4 shows the simulation conditions specific to the second experiment. The number of jobs
in the jobsets was 3000, the execution time of each job was between 100 and 3000 seconds, and
the number of parallel computing nodes ranged from 1 to 4. DVFS was set as the fallback method.

Number of jobs 100
Execution time of jobs 2 - 6 [h]
Number of parallel computing nodes 1 - 16

Table 3: Simulation conditions specific to first experiment.

Figure 6: Each simulator’s response to power saving.

10



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

Number of jobs 3000
Execution time of jobs 100 - 3000 [s]
Number of parallel computing nodes 1 - 4
the fallback method DVFS

Table 4: Simulation conditions specific to second experiment.

Figure 7: Results of each case study with different percentages of allowed users.

In the case study, some situations with a different portion of allowed users/jobs are conducted. The
results of each case study are shown in Fig. 7. The amount of increase in job waiting time decreases
relative to the percentage of allowed users. However, the amount of increase in job waiting time
increases between 75% and 100%. To minimize the amount of increase in job waiting time, we can
design an incentive system so there is 75% of allowed users.

6. Conclusion

To support designing an appropriate incentive system for DR-based resource provisioning, we
proposed a new job scheduling simulator which presents the power consumption in large-scale
cluster systems, the job waiting time, and the job execution time. To realize the proposed job
scheduling simulator, we derived functionalities required for the job processing in DR-based re-
source provisioning against the job processing flow of the existing resource provisioning. We de-
signed DR-based resource provisioning execution module with the derived functionalities and then
implemented the proposed job scheduling simulator by linking DR-based resource provisioning
execution module with simulus, a generic discrete-event simulator. In the evaluation, we con-
firmed that the proposed job scheduling simulator supported job processing for DR-based resource

11



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
6

Architecture of Job Scheduling Simulator for Demand Response Based Resource ProvisioningShogo Matsui

provisioning and output data that can be used as indexes for the design of an incentive system.
For future work, we plan to enhance the processing capability of the allowed flags. In the

proposed job scheduling simulator, the simple job scheduling algorithm that allocates computing
resources according to the input order is adopted to simplify the implementation. Research and
development of a new job scheduling algorithm that modifies the order of the job execution based
on the allowed flags are required to minimize the impact of "fallback" on disallowed users.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant Number JP17KT0083.

References

[1] K. Ahmed, J. Liu and K. Yoshii, Enabling Demand Response for HPC Systems through Power
Capping and Node Scaling, in Proceedings of the 2018 IEEE 20th International Conference on High
Performance Computing and Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
pp. 789–796, Jun., 2018.

[2] K. Ahmed, J. Liu and X. Wu, An Energy Efficient Demand-Response Model for High Performance
Computing Systems, in Proceedings of the 25th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 175–186, Sep., 2017.

[3] A. Kishwar and L. Jason, Simulation of Energy-Efficient Demand Response for High Performance
Computing Systems, in Proceedings of the 31st Winter Simulation Conference(WSC2019), pp. 1–12,
Dec., 2019.

[4] “Top500.” https://www.top500.org, Nov., 2020.

[5] W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet, F. Rastello et al., Static and
Dynamic Frequency Scaling on Multicore CPUs, ACM Transactions on Architecture and Code
Optimization (TACO) 13 (2016) 1.

[6] J. Power, J. Hestness, M. S. Orr, M. D. Hill and D. A. Wood, GEM5-GPU: A Heterogeneous
CPU-GPU Simulator, IEEE Computer Architecture Letters 14 (2015) 34.

[7] P. Czarnul, J. Kuchta, M. Matuszek, J. Proficz, P. Rościszewski, M. Wójcik et al., MERPSYS: An
Environment for Simulation of Parallel Application Execution on Large Scale HPC Systems,
Simulation Modelling Practice and Theory 77 (2017) 124.

[8] M. A. Obaida and J. Liu, Simulation of HPC Job Scheduling and Large-Scale Parallel Workloads, in
Proceedings of the 50th Winter Simulation Conference (WSC), pp. 920–931, Dec., 2017.

[9] R. Buyya and M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid Computing, Concurrency and Computation: Practice
and Experience 14 (2002) 1175.

[10] N. A. Simakov, M. D. Innus, M. D. Jones, R. L. DeLeon, J. P. White, S. M. Gallo et al., A SLURM
Simulator: Implementation and Parametric Analysis, in Proceedings of the 8th International
Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS), vol. 10724, pp. 197–217, Dec., 2017.

[11] J. Liu, Simulus: Easy breezy simulation in python, in 2020 Winter Simulation Conference (WSC),
pp. 2329–2340, 2020, DOI.

12

https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1002/cpe.710
https://doi.org/10.1002/cpe.710
https://doi.org/10.1109/WSC48552.2020.9383886

