
P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

A Big Data Platform for heterogeneous data collection
and analysis in large-scale data centres

Simone Rossi Tisbeni,∗ Daniele Cesini, Barbara Martelli, Arianna Carbone,
Claudia Cavallaro, Doina Cristina Duma, Antonio Falabella, Matteo Galletti,
Jacopo Gasparetto, Elisabetta Furlan, Diego Michelotto, Francesco Minarini,
Lucia Morganti, Elisabetta Ronchieri and Giusy Sergi
INFN-CNAF,
Bologna, Italy

E-mail: simone.rossitisbeni@cnaf.infn.it

The INFN-CNAF data centre hosts the Italian Tier 1 site for the Worldwide LHC Computing
Grid (WLCG), while also serving several other research and technological transfer programs. The
challenges posed by the upcoming runs of LHC, together with the opportunity of moving the data
centre itself to a bigger site, require a thorough redesign of its monitoring system. The large but
heterogeneous amount of logging data and metrics produced daily are fundamental for monitoring
activities and, once harmonised, can also be used to build Predictive Maintenance models based
on Big Data techniques. In this work we describe the Big Data Platform, the new monitoring
infrastructure under development at CNAF. The Big Data Platform relies on a modular, highly
scalable architecture based on open source technologies and able to exploit modern frameworks
such as containerisation and cloud support. It is capable of collecting data from heterogeneous
data sources, clean and harmonise them, and store them as JSON files on different solutions, based
on the needs of the end user. Data can then be visualised using Kibana, or analysed through a
platform based on Jupyter Notebooks.

International Symposium on Grids & Clouds 2021, ISGC2021 22-26 March 2021
Academia Sinica, Taipei, Taiwan (online)

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:simone.rossitisbeni@cnaf.infn.it
https://pos.sissa.it/


P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

1. Introduction

Collection, storage and analysis of large amounts of data are crucial to both industry and
research. Just to give an example in the field of fundamental physics, in one year alone (2018) the
LHC experiment at CERN generated 88 PB of data worth recording and analysing - and this is just
a glimpse on what is expected to happen in the next runs. In the high luminosity phase, or Run 4
(2026-2029), the experiment is estimated to produce up to 500 PB of data per year. Other facilities
worldwide face similar challenges. The Open Science Grid (OSG) [1], a consortium of over a
hundred computing and storage sites throughout the United States, handles daily the requests of
hundreds of users, executing tens of thousands of jobs and transferring several TB of data every day.
In these infrastructures it is therefore crucial to ensure the reliability of the service provided, and
in-home monitoring and accounting services have been designed to analyse usage and anticipate
potential failures. Recently, CERN moved to a new unified monitoring infrastructure, MONIT [2],
for its IT Data Centre and the Worldwide LHC Computing Grid. Also the Open Science Grid relies
on a new generation GRid ACCounting system, GRACC [3].

CNAF, the INFN facility dedicated to the research and development of information and com-
munication technologies, is gearing up for the upcoming challenges as well. The centre has ongoing
technology transfer activities with industrial and medical partners, which will greatly benefit from
more powerful, reliable computing infrastructures. Most importantly, as a Tier 1 data centre of
CERN Worldwide LHC Computing Grid (WLCG), it will soon need to handle the huge amount
of data expected from the next runs of LHC, especially during the high-luminosity phase. It is
estimated that about 2000 m2 of data halls (a factor 2.5 larger than what currently available), with
up to 10 MW of power and cooling capacity, will be necessary. A rough preliminary estimate of
the resources needed by the end of 2021 is 550 HS06 [4] of HTC computing power, 50 PB of disk
and 100 PB of tape storage, with a forecast 20% yearly increase of installed resources. In addi-
tion, half of the computing resources are currently located outside CNAF and need to be managed
remotely. CNAF has therefore taken the opportunity offered by the new, large area available in
Bologna Tecnopolo, a nearby infrastructure dedicated to research and innovation, to move, expand
and upgrade its Tier 1 data centre. The transition requires a complete modernisation of the comput-
ing infrastructure and, in turn, a redesign of the way in which system administrator operations are
currently done, seeking possible uniformity in procedures and tools adopted for all infrastructures
(HTC, HPC, Cloud, high security zone, network, storage). The aim is to use the same procedures
and tools on all components of the data centre, thus evolving the synergic activities currently in
place for provisioning, monitoring and alerting systems.

Over the years the Tier 1 data centre hosted at CNAF has used various monitoring tools [5], all
replaced, a few years ago, by a system common to all CNAF functional units [6, 7]. This system,
based on Sensu [8], InfluxDB [9], and Grafana [10], is used to acquire, store, and visualise facility
metrics (i.e. CPU load, memory usage, IO requests). The new data centre operation will require
the inclusion of logging data into the monitoring system and an automation of metrics and logs
analysis. This step currently is in an early exploratory phase [11, 12].

In addition, INFN-CNAF coordinates the distributed INFN Cloud infrastructure [13], develop-
ing software and distributed systems to be provided as integrated services on the Cloud. Monitoring
and accounting of Cloud resources is provided through the use of an infrastructure based on Zab-

2



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

bix [14], Elastic [15] and Grafana, which also monitor the applications and Virtual Machines (VMs)
running on the various OpenStack [16] tenants of the Cloud.

INFN-CNAF is also one of the main contributor to the Horizon 2020 IoTwins project [17]. The
project provides a reference architecture, for medium and small enterprises, for the development of
a platform for the collection of manufacturing and maintenance data and their analysis through the
use of machine learning and digital twins simulations [18]. In this project, INFN-CNAF does not
only cover the role of cloud provider, but it has also taken a major role in defining the software and
technologies solution to be used in the sample architecture.

Given the complexity of the inter-dependencies of the several services running at the data centre
and the foreseen large increase of resource usage, CNAF is promoting effort to introduce a more
powerful and versatile monitoring system. This platform should be able to harmonise the different
infrastructures currently in use at the centre, with the purpose of exploring possible solutions for
the development of Predictive Maintenance models to detect and anticipate failures. This new
monitoring system should provide a framework able to correlate log files and metrics coming from
heterogeneous sources and devices using Big Data analysis tools.

In this paper, we discuss the design principles of this new Big Data Platform (BDP). In
particular, in Section 2, we discuss the details of the components and the functionalities provided
by the architecture. In Section 3 we present a sample use case that make use of the platform
functionalities. Section 4 closes the work touching on the next steps of development.

2. Architecture

The functional diagram of the Big Data Platform is shown in Figure 1. The platform is based
on a layered architecture with dedicated components for the various tasks in the data flow:

• ingestion layer for the acquisition of the monitored data from different data sources, their
validation and formatting in a structure readable by the higher levels of the platform;

• transfer layer for the collection and aggregation of data from the producers, their buffering
on a reliable and resilient cluster, and their forward to the different storage solutions;

• storage layer to store the data on suitable storage solutions according to the different retention
policies, security, and technology requirements;

• access layer to expose the data collected to the final user for discovery, visualisation, reporting
and analysis.

The modularity of the architecture allows to decouple the production and consumer side of
the platform. This approach allows for different distribution systems for the different layers. The
production side, being system-specific, can for example be installed on bare metal with resources
scaled to the requirements of the producers; the consumer side can be provided on-demand with
scalable resources on a cloud-based environment.

The components chosen for the Big Data Platform are briefly described in the following
sections. They have been selected to satisfy the requirements of using only mainstream solutions,
with open source technologies and frequent updates, and able to exploit modern frameworks such
as containerisation and cloud support.

3



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Figure 1: Diagram of the Big Data Platform architecture.

2.1 Ingestion

The bottom layer of the infrastructure consists of data ingestion tools that ingest data produced
by hosted services and forward them to the higher levels of the platform. Services produce data of
various types and transfer them using several protocols. For this reason dedicated tools are needed
to extract the data.

For log files, among the available forwarding tools, we select Filebeat [19], a lightweight log
shipper from the Beats family of software in the Elastic Stack suite. Filebeat allows to ingest data
coming from log files with variable structure, supporting multiline logs. For each input location
specified in the configuration, Filebeat starts a harvester that reads each file, line by line, and
sends the content to the configured output. The state of each file is frequently flushed to disk in
a registry file. This state is used to restore the last offset a harvester was reading from, to ensure
high reliability in case the output is not reachable or Filebeat is restarted. In addition to reference
to the harvester offset, Filebeat stores in the registry the delivery state of each log line, ensuring
at-least-once delivery to the configured output.

The use of a dedicated shipper to send the log data to the Big Data Platform allows to reserve
Rsyslog [20] for critical services already in production at the data centre, without altering preexisting
configurations.

Data are sent to the transfer layer as JSON objects. This format allows for flexible data formats,
maintaining the original data structure and content. The only requirement is that the ingestion
tools provide each event with a predefined subset of fields that contains the information required to
perform the correct shipping of the data (i.e. the producer name, an identifier for the data, the topic
for the broker).

4



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Figure 2: Diagram of the ingestion and transfer layers of the platform.

2.2 Transfer

The ingestion tools forward the data collected towards an aggregator. One or multiple aggre-
gators can be setup for different services or projects, allowing for independent management of the
data by the owner. Different tools can be used based on the different requirements of the data owner,
granted that the tool selected supports the data format and is able to forward data to the chosen data
distribution system. Figure 2 shows a schematic representation of the data transfer pipeline.

In our implementation, the selected tool is Fluentd [21], an open source data collector that
allows to unify and filter the data and outputs them to multiple destinations. Fluentd is JSON native
and can forward the data without altering their original structure, providing at the same time high
flexibility for refactoring and filtering the incoming data. It has a flexible plugin system that allows
it to support multiple sources and output destinations. Many of these plugins are included in its
stable distribution package. Fluentd supports memory- and file-based buffering to prevent data loss
and ensure at-least-once delivery. It can also be set up for high availability when used both for
ingestion and aggregation.

The data collected are then distributed to the processing nodes at the higher level of the platform
by the topic-based publish-subscribe engine Kafka [22]. The aggregator can publish data coming
from different producers to different topics in the Kafka engine. This allows for the separation of
data, protecting the users from being affected by each other activities, while ensuring the reliability
provided by a common, reliable infrastructure.

The role of Apache Kafka is to decouple the data ingestion tool from the consumers, allowing
to broadcast data to multiple subscribers simultaneously. Since Kafka represents a fundamental
building block of the platform, it is important to ensure its fault tolerance and high performance.
Both have been achieved through a set of three brokers with two replicas for each of the three
partitions of a topic. The data in Kafka are distributed to the storage component and buffered for
a retention period of three days in order to prevent a data loss in case of network loss with the
consumer. The trade-off of this approach is the need of larger storage space.

The deployment of the tools for data ingestion and transfer can be automated via Puppet [23, 24],
the provisioning system available on all the equipment of the CNAF data centre.

5



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Figure 3: Diagram of the consumer side of the platform.

2.3 Storage

The data received by the Kafka broker are then routed to the storage endpoints. Their format
and granularity depend on the producer use case. In this first setup of the Big Data Platform,
two storage solutions have been provided: the first is based on the Elastic Stack and provides an
indexed database for short term storage of log data; the second is based on theMinIOObject Storage
system [25] and provides long term storage for the data. Figure 3 shows a diagram of the consumer
side of the architecture.

The Elastic Stack consists of three services: Logstash, Elasticsearch and Kibana. Logstash
is a log-ingestion tool capable of aggregating large quantities of logs, filtering them to extract
significant information and patterns in dedicated fields, and converge them into Elasticsearch
indexes. It is an highly scalable tool that can be configured to handle different data sources with a
single configuration file. In our architecture Logstash aggregates logs from Kafka topics and filters
them extracting relevant information from each log line. This parsing process transforms logs into
structured data, preparing them for more powerful analysis.

The data processed by Logstash are forwarded to Elasticsearch, the central component of the
Elastic Stack, which features a distributed search and analytics engine. Elasticsearch stores the
data as JSON documents and indexes them in a way that supports fast searches. The software
is a distributed, multi-tenant capable, full-text search engine built in Java on the Apache Lucene
library [26] and its functionalities are natively exposed as CRUD (Create, Read, Update, Delete)
operations via a simple RESTful API over HTTP. The data processed by Logstash can also be
shipped back to Kafka to expose the parsed logs to the rest of the Platform.

In our setup, Elasticsearch stores the log data for two weeks and exposes them for discovery
and visualisation to the third software component of the Stack, Kibana, which will be discussed in
the next section.

The data buffered by Kafka are also saved for long-term storage through MinIO. MinIO is a
highly scalable, cloud-native platform that supports modern orchestration and containerisation. The
data are stored as JSON objects to maintain the original structure and data fields. Fluentd is used
to redirect the messages from the different Kafka topics to dedicated storage buckets, ensuring the
data separation required by the data producers. The data stored on MinIO nodes can be accessed in

6



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Figure 4: Diagram of the batch analysis pipeline.

multiple ways: web-based UI, SQL-like query languages, or Amazon S3 API, the de facto standard
in the object storage world. MinIO can be integrated with a vast number of services, from identity
providers to modern data processing service, which will be discussed in the following sections.

2.4 Access

The data made available on the different storage backends can then be accessed using well-
known visualisation and data analysis technologies. These solutions provide the end user with
easy-to-use interfaces to extract useful insights form the data without working directly with source
systems, different transfer protocols, or data format.

The log data stored in the Elasticsearch indexed database can be explored using Kibana, the
third component of the Elastic Stack. Kibana is a GUI-based data visualisation service that accesses
Elasticsearch indexes. It performs advanced filtering and leverages stored data to build dashboards
with use-case driven visualisations. These dashboards allow users to monitor the status of services
by looking at selected metrics among the huge amount of data produced in the centre. Kibana
also provides several additional features, such as developer tools for advanced interactions with
the Elastic Stack and quick discovery tools that make use of Kibana SQL-like syntax for filtering
Elasticsearch data and perform advanced queries on log data fields.

In order to perform batch analysis, predictive maintenance and anomaly detection on the data
stored inMinIO as JSONfiles, we build a platform based on Jupyter Notebooks. This setup allows to
manipulate the large amount of stored data using common data analysis frameworks, mainly written
in Python, such as NumPy, Pandas, Scikit-Learn and Natural Language Processing (NLP) toolkits.
In addition, we use Apache Spark [27] to perform the analysis in parallel on several computing cores.
We take advantage of the user-friendly paradigm provided by Jupyter Notebooks [28], because it
allows for block code execution, in-text graphic visualisations and text cells. These features are
directly available on a web application that the user accesses with no need of further setup. We
allow for multiple users and for each one we create on-demand a sandboxed environment managed
by JupyterHub, deployed on a Kubernetes [29] cluster. The architecture is shown in Figure 4.

7



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Kubernetes is a state-of-the-art, open source container orchestrator system. It provides high
scalability of applications and resilience against failure of cluster nodes. Applications are deployed
by the Kubernetes master node through pods which consist in virtual hosts, each running one
or more Docker [30] containers. Pods communicate through a virtual network managed by the
master node. The deployment of the applications is realised through Helm [31] charts. Helm
provides a handy package management based on YAML [32] files, allowing for reproducibility and
portability. Within this framework we deploy two applications: a NGINX [33] Ingress Controller
(not shown in figure) and JupyterHub. NGINX provides an entry point to the cluster and handles the
incoming network traffic. JupyterHub is a multi-user server which spawns and manages multiple
single-user Jupyter Notebook servers. It can be easily integrated with Kubernetes through the
KubeSpawner [34] plugin.

As shown in Figure 4, the user connects to JupyterHub, which sends a request to Kubernetes;
Kubernetes in turn creates a pod containing a single-user Jupyter Notebook server. Details of
the Notebook server (number of CPUs, RAM, environment image) can be specified by the user
at login. The user is forwarded to a JupyterLab1 environment and a dedicated MinIO bucket is
mounted as a POSIX directory. This directory provides long-term storage for the user files and data.
The single-user Jupyter Notebook server is embedded with a fully configured Apache Spark setup.
Spark is a data processing framework that provides an interface for handling resilient distributed
dataset (RDD) over a cluster. It can interface with various distributed file systems and object storage
architectures, among which Amazon S3/MinIO, providing a handy SQL-like syntax to access the
stored log files. Spark also uses aMapReduce [35] paradigm to efficiently handle heavily demanding
tasks on a very large number of CPU cores. In the Spark environment evoked by JupyterHub, the
user can submit Spark jobs to the Kubernetes orchestrator, opening a persistent SparkContext via
the PySpark [36] library. When the user creates the SparkContext, it takes the role of Spark Driver
and requests Kubernetes to instantiate an on-demand Spark cluster. The number of Spark Executors
(worker nodes) and their resources are allocated accordingly to the configuration provided at login.

2.5 Authentication and Authorisation

For batch data analysis, JupyterHub and subsequently MinIO storage are accessed with user-
based control policies. Authentication and authorisation are performed using the INDIGO IAM
service developed by INFN [37, 38]. The IAM service uses the full OpenIDConnect/OAuth2.0
protocols to identify and authorise users, with OpenID Connect (OIDC) [39] providing an identity
layer on top of the authorisation layer defined with the OAuth2.0 protocol [40]. When a registered
IAM user successfully logs in to JupyterHub, an access token, specifically a JsonWebToken (JWT),
is exchanged between IAM (the authorisation server) and JupyterHub (the client) with the usual
OAuth2.0 authorisation code flow. The token includes specific scopeswith a number of claimswhich
identify the user. These claims are verified against specific policies set up in the MinIO storage,
which define authorisation rights for the user, e.g. the ability to create/update/read/write/list/delete
content at specified paths and folders.

As described in the previous section, MinIO is mounted as a POSIX directory on the container
filesystem. The mount is provided by the INFN STS-WIRE [41] tool, which is a wrapper of

1JupyterLab is the modern version of the Jupyter Notebook interface, already embedded in the single-user server
installation, and is set as the default within our setup.

8



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

the famous mounting tool Rclone [42]. STS-WIRE handles the Rclone authentication to MinIO
forwarding the JWT exposed by JupyterHub at the spawn time of the single user container.

Within MinIO, policies are enforced using the Open Policy Agent [43], which is an open
source, general-purpose policy engine used to enforce policies across the stack. Policies are defined
in a high-level declarative language called Rego and are populated with claims retrieved from the
JWT access token. When the agent receives the policy, it generates policy decisions verifying
the rights of the specific user against the claims presented in the policy. Based on such policies,
the user usually is allowed all operations within a specific MinIO bucket identified by the user
name/surname, while a restricted series of operations are allowed in a scratch bucket where the
stored log files are accessed via the Spark data processing service.

The usefulness of such an approach lies in the automatic compartmentalisation of working
directories based on the user identity, which is originally defined at login via the Indigo IAM
service and then processed through the full stack via the Open Policy Agent.

3. Sample use case

Using the Big Data tools described earlier (Filebeat, Kafka, and the Elastic Stack), we devised
a pipeline which aims at integrating the current monitoring system at INFN Tier 1 data centre [6],
based on Sensu, InfluxDB and Grafana, with information coming from log files. Such integration
stems from the idea of enriching the numerical information one can extract from time series with
highly specific metadata that can only be obtained through log parsing and processing. This should
lead to quick detection of problematic patterns or irregularities, thorough debugging, and potentially
lay the basis for data-driven decision making in a predictive maintenance infrastructure.

At the moment of writing, we only focused on log files from Data Management and Data
Transfer Services. More specifically, we concentrated on the StoRM service. StoRM provides a
SRM (Storage Resource Manager) solution designed to take advantage of high performing cluster
file systems, such as GPFS, as well as leveraging standard POSIX file systems. Moreover, StoRM
supports the HTTP verb extension for Web Distributed Authoring and Versioning (WebDAV).
StoRM-related log files come, at time of writing, from 8 StoRM WebDAV servers and 7 StoRM
endpoints.

After being collected, log lines from such services are sent to the BDP, where they are parsed
with specific grok filters in Logstash and then forwarded to the Elasticsearch instance for indexing.
Kibana works in strict collaboration with the Elasticsearch instance to provide interactive data
discovery and visualisation tools.

Figure 5 provides an example of data visualisation which can be obtained from the BDP, namely
the HTTP response status codes of StoRM WebDAV servers dedicated to a specific experiment
(ATLAS) over time, with prefix 2 corresponding to successful responses and prefix 4 to client
errors. Figure 6 shows instead how requests are shared among the three StoRMWebDAV endpoints
dedicated to the experiment (left side) and which methods are actually requested (right).

In general, any valuable information can be easily obtained from the log files and plotted - for
example, the number and type of requests, their distribution on the servers, the geographical origin
of the requests, the storage areas on which the requests insist and the rate of failures. Thus, the
first result of this activity is the possibility of interactive data discovery in support of the everyday

9



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Figure 5: HTTP response codes for the StoRM WebDAV endpoints dedicated to ATLAS in a given time
range.

Figure 6: Number of requests per StoRM WebDAV endpoints (left) and methods requested (right).

debugging activity of our system administrators. A second outcome is the visualisation, through
monitoring dashboards, of the instantaneous and historical status of the data management and data
transfer services that run at CNAF Tier 1.

4. Future developments

In addition to log files, the monitoring metrics collected from the system nodes are also
available at the CNAF data centre, and can in principle be used for predictive maintenance and
anomaly detection. The current monitoring service is based on Sensu, to manage the gathering of
metrics and alerting systems, and InfluxDB, as a timeseries database. To satisfy the requirements
of moving towards a unified platform for monitoring all of the data produced at the centre, this
critical infrastructure should be merged into the Big Data Platform. InfluxDB will probably remain
as the storage solution of choice for metrics and numerical data, with Grafana for dashboard
visualisation. The current dataflow from Sensu should be redirected through Kafka to provide a

10



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

consistent pipeline for the data coming from these sources, allowing for simultaneous routing to
different output, including InfluxDB.

In addition, INFN-CNAF is promoting effort to develop an IoT-as-a-service platform to be
possibly provided in the cloud services of INFN Cloud. This platform, based on ThingsBoard [44],
would allow to collect data from various IoT datasources using different communication protocols
(i.e. MQTT, HTTP, CoAP). In addition to storing data into NoSQL Database, Thingsboard is
also able to forward messages towards Kafka topics using built-in plugins. With this functionality,
Thingsboard is easily embeddable in the current architecture, extending the ingestion functionalities
of the platform.

A very challenging use case is related to anomaly detection at the CNAF data centre. Using the
log information of the various services running at the data centre, an initial effort will be dedicated
to integrate into the BDP the parsing activity of the various entries in the log files. On top of
this, feature selection, clustering and classification activities will be performed in order to identify
which services and resources (may) cause problems at the data centre. Various approaches have
been explored for the analysis. One is natural language processing, that we use to identify message
patterns and to discover anomalous system behaviour. This technique can be used to determine e.g.
key-anomaly terms to be considered in the clustering or classification phases. Another approach is
based on autoencoder techniques for feature extraction. The large amount of log messages makes it
difficult to label data for supervised methods. Therefore we will first build an unsupervised model,
thus reducing the manual error in defining anomaly categories and labelling entries. The initial
analysis will take into account a reference period for both the training and the validation parts; then
the whole procedure will be extended injecting new data. An iterative process will be setup to
detect anomaly messages and classify them with the help of experts (e.g. system administrators).
This will allow to build a semi-supervised model where it will be possible to combine what we
achieve by the unsupervised model and expert information.

This type of analysis could benefit greatly from the BDP infrastructure by uniforming the data
access, and providing software to do Big Data analysis with high performance. In addition to
batch analysis, we are investigating the development of a streaming analysis layer, to elaborate and
enrich the data moving through the Kafka broker. A possible solution could make use of the Spark
Streaming extension to the core Spark APIs. Data can be ingested from many sources, including
Kafka, and can be processed using complex algorithms. Finally, processed data can be pushed out
to multiple outputs, including filesystems, dashboards and Kafka itself.

5. Conclusion

In this paper we presented the Big Data Platform, a new monitoring infrastructure at INFN-
CNAF. It is a modular and highly scalable architecture built on de facto standard open-source
technologies and designed to be able to sustain the INFN-CNAF growth in the next years. It
is structured in such a way to decouple all key functionalities. This allows to have multiple,
heterogeneous data sources and different storage solutions according to the granularity required by
the producer and the usage of the data. All the data are accessible in a seamless way from a common
easy-to-use user interface.

11



P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

Currently this new infrastructure is running parallel to the already existing monitoring systems
used in the different projects and services of the data centre, which are critical for production. The
main difficulty in the development of the BDP is the adoption of technologies likely to fit all the
requirements from these previous systems. To ensure its ubiquitous adoption in the data centre, the
BDP must be reliable and should be able to seamlessly integrate in the preexisting infrastructure.
For the passage to this new monitoring infrastructure not to be disruptive, its integration will be
gradual over the next months.

References

[1] R. Pordes et al., The Open Science Grid, J. Phys. Conf. Ser. 78 (2007) 012057.

[2] A. Aimar, A. Aguado Corman, P. Andrade, J. Delgado Fernandez, B. Garrido Bear,
E. Karavakis et al., MONIT: Monitoring the CERN Data Centres and the WLCG
Infrastructure, EPJ Web Conf. 214 (2019) 08031.

[3] K. Retzke, D. Weitzel, S. Bhat, T. Levshina, B. Bockelman, B. Jayatilaka et al., GRACC: New
Generation of the OSG Accounting, J. Phys. Conf. Ser. 898 (2017) 092044.

[4] HEP-SPEC 06: https://w3.hepix.org/benchmarking.html.

[5] S. Antonelli, D. De Girolamo, L. dell'Agnello, D. Gregori, G. Guizzunti, P.P. Ricci et al.,
INFN-CNAF monitor and control system, Journal of Physics: Conference Series 331 (2011)
042032.

[6] S. Bovina and D. Michelotto, The evolution of monitoring system: the INFN-CNAF case
study, Journal of Physics: Conference Series 898 (2017) 092029.

[7] S. Dal Pra, A. Falabella, E. Fattibene, G. Cincinelli, M. Magnani, T. De Cristofaro et al.,
Evolution of monitoring, accounting and alerting services at INFN-CNAF tier-1, EPJ Web of
Conferences 214 (2019) 08033.

[8] Sensu: https://sensu.io.

[9] InfluxDB: https://www.influxdata.com.

[10] Grafana: https://grafana.com.

[11] T. Diotalevi, D. Bonacorsi, A. Falabella, L. Giommi, B. Martelli, D. Michelotto et al.,
Collection and harmonization of system logs and prototypal analytics services with the
elastic (ELK) suite at the INFN-CNAF computing centre, in Proceedings of International
Symposium on Grids & Clouds 2019 — PoS(ISGC2019)027, Sissa Medialab, Nov., 2019,
DOI.

[12] L. Giommi, D. Bonacorsi, T. Diotalevi, L. Rinaldi, L. Morganti, A. Falabella et al., Towards
predictive maintenance with machine learning at the INFN-CNAF computing centre, in
Proceedings of International Symposium on Grids & Clouds 2019 — PoS(ISGC2019)003,
Sissa Medialab, Nov., 2019, DOI.

12

https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1051/epjconf/201921408031
https://doi.org/10.1088/1742-6596/898/9/092044
https://w3.hepix.org/benchmarking.html
https://doi.org/10.1088/1742-6596/331/4/042032
https://doi.org/10.1088/1742-6596/331/4/042032
https://doi.org/10.1088/1742-6596/898/9/092029
https://doi.org/10.1051/epjconf/201921408033
https://doi.org/10.1051/epjconf/201921408033
https://sensu.io
https://www.influxdata.com
https://grafana.com
https://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ISGC2019)027
https://doi.org/10.22323/1.351.0027
https://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(ISGC2019)003
https://doi.org/10.22323/1.351.0003


P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

[13] INFN Cloud: https://www-cloud.infn.it.

[14] Zabbix: https://www.zabbix.com.

[15] The Elastic Stack (Elasticsearch, Kibana, Beats, and Logstash):
https://www.elastic.co/elastic-stack.

[16] OpenStack: https://www.openstack.org.

[17] IoTwins: https://www.iotwins.eu.

[18] A. Borghesi, G.D. Modica, P. Bellavista, V. Gowtham, A. Willner, D. Nehls et al., Iotwins:
Design and implementation of a platform for the management of digital twins in industrial
scenarios, in Cloud2Things(2021), In Press.

[19] Filebeat: https://www.elastic.co/beats/filebeat.

[20] Rsyslog: https://www.rsyslog.com.

[21] Fluentd: https://www.fluentd.org.

[22] Kafka: https://kafka.apache.org.

[23] S. Bovina, A. Chierici, E. Fattibene, D. Michelotto, G. Misurelli and S. Virgilio, Cnaf
provisioning system, INFN-CNAF Annual Report 2015 (2016) 107–110.

[24] S. Bovina, D. Michelotto, S. Virgilio, E. Fattibene, A. Falabella and A. Chierici, Cnaf
provisioning system: on the way to puppet 5, INFN-CNAF Annual Report 2017 (2018)
152–153.

[25] MinIO: https://min.io.

[26] Apache Lucene: https://lucene.apache.org.

[27] Apache Spark: https://spark.apache.org.

[28] Jupyter: https://jupyter.org.

[29] Kubernetes: https://kubernetes.io.

[30] Docker: https://www.docker.com.

[31] Helm: https://helm.sh.

[32] YAML: https://yaml.org.

[33] NGINX: https://www.nginx.com.

[34] KubeSpawner: https://github.com/jupyterhub/kubespawner.

[35] J. Dean and S. Ghemawat, Mapreduce: Simplified data processing on large clusters,
Commun. ACM 51 (2008) 107–113.

13

https://www-cloud.infn.it
https://www.zabbix.com
https://www.elastic.co/elastic-stack
https://www.openstack.org
https://www.iotwins.eu
https://www.elastic.co/beats/filebeat
https://www.rsyslog.com
https://www.fluentd.org
https://kafka.apache.org
https://min.io
https://lucene.apache.org
https://spark.apache.org
https://jupyter.org
https://kubernetes.io
https://www.docker.com
https://helm.sh
https://yaml.org
https://www.nginx.com
https://github.com/jupyterhub/kubespawner
https://doi.org/10.1145/1327452.1327492


P
o
S
(
I
S
G
C
2
0
2
1
)
0
0
8

Big Data Platform in large-scale data centres Simone Rossi Tisbeni

[36] PySpark: https://pypi.org/project/pyspark.

[37] INDIGO IAM service documentation:
https://indigo-iam.github.io/docs/v/current.

[38] D. Salomoni, I. Campos, L. Gaido, J.M. de Lucas, P. Solagna, J. Gomes et al.,
INDIGO-DataCloud: a platform to facilitate seamless access to e-infrastructures, Journal of
Grid Computing 16 (2018) 381.

[39] OpenID Connect: https://openid.net/connect.

[40] OAuth 2.0: https://oauth.net/2.

[41] INFN STS-WIRE: https://github.com/dodas-ts/sts-wire.

[42] Rclone: https://rclone.org.

[43] Open Policy Agent: https://www.openpolicyagent.org/docs/latest/.

[44] ThingsBoard: https://thingsboard.io/.

14

https://pypi.org/project/pyspark
https://indigo-iam.github.io/docs/v/current
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1007/s10723-018-9453-3
https://openid.net/connect
https://oauth.net/2
https://github.com/dodas-ts/sts-wire
https://rclone.org
https://www.openpolicyagent.org/docs/latest/
https://thingsboard.io/

	Introduction
	Architecture
	Ingestion
	Transfer
	Storage
	Access
	Authentication and Authorisation

	Sample use case
	Future developments
	Conclusion

