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Virtual unwrapping is a software pipeline for the noninvasive recovery of texts inside damaged
manuscripts via the analysis of three dimensional tomographic data, typically X-ray micro-CT.
Recent advancements to the virtual unwrapping pipeline include the use of trained models to
perform the “texturing” phase, where the content written upon a surface is extracted from the 3D
volume and projected onto a surface mesh representing that page. Trained models are critical for
their ability to discern subtle changes that indicate the presence or absence of writing at a given
point on the surface.
The unique datasets and computational pipeline required to train and make use of these models
make it a challenge to develop succinct, reliable, and reproducible research infrastructure. This
paper presents our response to that challenge and outlines our framework designed to support the
ongoing development of machine learning models to advance the capability of virtual unwrapping.
Our approach is designed on the principles of visualization, automation, data access, metadata,
and consistent benchmarks.
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1. Introduction

Virtual unwrapping [1] enables the noninvasive discovery of otherwise hidden texts inside
damaged manuscripts or scrolls. The process starts with acquisition, typically imaging the artifact
using X-ray micro-computed tomography (micro-CT). Next, a software pipeline progressively
unveils the hidden contents until ultimately the text is revealed (Figure 1). The first phase, called
segmentation, identifies and isolates the surfaces of the artifact in 3D space (Figure 1, top left).
The surface mesh is then textured algorithmically based on the X-ray data surrounding the points
along it (Figure 1, top right). Finally, the textured mesh is flattened to yield the previously hidden
contents of the artifact (Figure 1, bottom).

Figure 1: The virtual unwrapping pipeline (taken from [1]). Top left: segmentation stage, top right: texturing
stage, bottom: result of virtual unwrapping pipeline and reference photograph of scroll.

Virtual unwrapping has been applied successfully to a growing variety of artifacts, but some are
more readily processed than others. While some inks such as iron gall inks can exhibit high contrast
in X-ray and are easily distinguished from the writing surface, there is commonly very low contrast
between carbon inks and their written substrates. In some cases, such as the charred papyrus scrolls
from Herculaneum, the substrate and ink are both carbon-based and have further been carbonized
together. In this situation, the ink and substrate exhibit very similar chemical profiles, and finding
methods to distinguish one from the other using noninvasive imaging is an area of active research.

Recently, we augmented the texturing phase of virtual unwrapping using convolutional neural
networks, and were able to reveal carbon ink in X-ray for the first time [2]. Figure 2 illustrates the
results, where the machine learning-based methods are able to significantly outperform the prior
state of the art in revealing the location of carbon ink. Additionally, the neural network is capable
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of learning a photorealistic color representation of the page, and can generate this image from X-ray
data alone.

Figure 2: Prior work (taken from [2]) using neural networks to identify carbon ink from X-ray micro-CT.
Column numbers indicate coats of ink applied, hence difficulty of network to learn weaker signal in leftmost
column. From top: 1) reference photograph, 2) virtual unwrapping output (prior state of the art), 3) result
using neural network to predict carbon ink, 4) result using neural network to recreate reference photograph.

This breakthrough result focused on lab-made scrolls and small artifacts from the Herculaneum
collection. Naturally, we wish to continue this work and extend the methods to work not only on
small fragments but on larger collections of fragments as well as full intact scrolls. This continued
effort and the resulting research infrastructure to support it are the subjects of this paper. At its
core, the development of machine learning methods relies on an iterative process. First, a model
is trained, typically using a complex computational pipeline and ample processing time. Next, the
model is evaluated using previously unseen data to understand expected performance on real-world
tasks. Finally, adjustments are made to the machine learning model and/or the data processing
pipeline, and another experiment is started.

This iterative development is easiest in an established ecosystem where datasets and tools have
been built over time to support the maturation of the models andmethods. An established ecosystem
offers at least the following benefits:

• Clear metrics and benchmarks allow progress to be measured quickly and consistently.
Once performance metrics and possibly test datasets are in place, one can quickly compare a
model’s performance against prior methods. These also allow for a clear view of the field’s
advancement over time, as the state-of-the-art continually improves.
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• Well understood datasets, sometimes accompanied with a large or complete set of labels,
are likely to contain few edge cases and have samples that can be easily interpreted by humans.
Often, the associated task is feasible for a human agent, and thus the dataset includes a built-in
sensible baseline of human performance.

• Existing software frameworks allow for rapid development using prior work as building
blocks for constructing and fine-tuning new approaches.

One example of an established ecosystem like the one discussed here is the ecosystem around
natural image classification, with a number of well-known datasets [3–5] and existing models [6–8].
The advancements and successes enabled by such an ecosystem are astonishing, In the span of a
decade or less, the image classification task and the tools to support it have ushered in a new era of
deep learning algorithms, software frameworks, and expert practitioners.

Of course, these ecosystems have to start somewhere, and those involved in their early con-
struction had few existing tools at their disposal. Instead, they had to develop datasets, methods and
frameworks in parallel. Working with machine learning for heritage science, we find ourselves in a
similar position: we have large, varied image datasets; the proportion of labeled data to unlabeled
is small; and there are few existing standards or software libraries to support the datatypes and
formats involved.

We have seen the successes possible when robust ecosystems are created around particular
tasks: as a direct result of the aforementioned advancements, image classification models are now
widely deployed. The masses now have access to this technology which, for example, allows them
to organize and search their own photographs based on image content. We aim to use this and other
machine learning ecosystems as inspiration for our development of machine learning for heritage
science by building datasets, tools, and models, making them widely available, and encouraging
others to contribute. Eventually, what are now difficult research problems in heritage science can
be solved and their solutions packaged in tools available to us all. In this particular case, we wish
to make it easy for scholars around the world to reveal the hidden contents of damaged written
artifacts.

Because we are building our methods and ecosystem simultaneously, we systematically build
our approach based on the following principles: visualization, automation, data access, metadata,
and consistent benchmarks. The next sections will discuss these principles in more detail, and
the specific tools used to support them. Many of these tools are one of many options for their
respective roles. While individual tools have documentation and communities of support, we have
not found as much documentation of complete, end-to-end pipelines of this kind. It is our goal
that by publishing this approach we can provide a realistic picture of the infrastructure required to
develop machine learning methods in cultural heritage.

2. Experimental Overview

Figure 3 shows an overview of our experimental setup. This approach is designed to tighten the
feedback loop between writing code and observing its effect on model performance. An experiment
is typically carried out as follows: First (Fig 3.1), the data is made available on the compute cluster
used to perform these tasks. In our case, the data consists of 3D X-ray micro-CT images, and
supporting files we have created. Next (Fig 3.2), the actual computation takes place. During this
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Figure 3: Experiment overview. 1) Data copied to compute cluster, 2) machine learning experiment run on
compute nodes, 3) results and metadata saved to disk, 4) composite visualizations and metrics computed,
5) results, metadata, visualizations and metrics uploaded to shared cloud access, 6) team members view
visualizations and metrics.

step, one or multiple neural networks are trained using the input CT data and label images we have
provided. This step represents the core of the actual computation. The steps that follow are all to
make sense of and sort through the results.

In (Fig 3.3), once the models are trained, they are used to generate result images. These images
reflect the models’ ability to reveal ink from within a scanned scroll, for instance. Metadata is also
saved to disk, recording all information necessary to recreate a given experiment.

In (Fig 3.4), the result images, which may arrive as a set of many small image files, are
composited into more organized visualizations that provide us with everything we want to see at
a glance. Where applicable, the models’ performance metrics on our set of benchmarks is also
generated at this stage. Step (Fig 3.5) shows the initial results, metadata, compiled visualizations,
and metrics all being uploaded back to a central location. From this point, the team can all easily
access the visualizations and metrics without special software or access to the compute cluster.

3. Visualization

Direct visualization of a trained model’s ability to reveal text from inside a scanned artifact is
the most important tool we have to evaluate the model performance. The result of applying a trained
model to a mesh inside a volume should ideally be a clear image revealing the object’s content.
Typically, the content is textual, and we are seeking models that generate images clearly revealing
text.

Each time we train a model, many images are generated during the process. Determining
whether the model is successful typically relies on a visual inspection of these images, which can be
tedious and time consuming. It is preferable to get the information needed at a glance. In order to
do this, we rely on a collection of custom Python scripts to automatically generate summary images
after each training session. An example image in Figure 4 shows the results of a training run that
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trained on exposed text from multiple manuscript fragments. The images along the diagonal are
the models’ predicted output, while the images outlined in red represent the training data.

Figure 4: Visualization example from an experiment across multiple manuscript fragments. Each of the
first four columns represent a separate model being trained. Each model is trained on three fragment faces
(outlined in red) and validates on the other. The rightmost column shows the label photographs revealing the
known correct output. Successful models generate images revealing that text, as shown here.

Composite images such as this allow us to quickly evaluate the performance of a model
during and after training. There are many other visualizations generated automatically with each
experiment submitted. For example, we generate animated GIF images showing the progress of
the model’s generated images throughout the course of a training run. These animated images can
resemble Figure 4 but additionally show the models’ convergence rate at a glance.
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4. Automation

In the experiment overview shown in Figure 3, each step represents computation or a data
transfer that must take place. When not automated, running a computational pipeline and processing
the results for inspection generates significant operational overhead. We have therefore automated
each of these steps in sequence, so that the entire pipeline is executed automatically with each
experiment and there is a tight feedback loop between coding new experiments and viewing their
results. This section briefly reviews some of the tools we use to accomplish this.

Singularity [9] allows us to develop containers with complex software environments that can
then be deployed consistently across a variety of hardware. This is similar to the functionality of
tools like Docker [10], but can be used without root access on the host and makes the transfer of
container files straightforward.

The Slurm Workload Manager [11] is invaluable for utilizing the resources of the compute
cluster available at our university. Using Slurm, it is possible to queue an array of experiments to
be run which will then execute when their required hardware becomes available. Additionally, we
use Slurm to define job dependencies so that summary visualization jobs can run only after their
training jobs have all completed. Slurm can also be configured to send email notifications when
jobs are complete, which is helpful as the jobs often wait in a queue before executing and then can
run for multiple days before completion.

This pipeline requires data transfers at various stages, and Rclone [12] has been a capable
command line tool for this purpose. Rclone supports a wide variety of storage providers, and in our
case creates automatic backups of results and visualizations to Google Drive.

5. Data

The datasets used in our research can be terabytes in size, have hundreds of thousands of
individual files, and are updated frequently. The machine learning experiments further create many
files each, and the resulting visualizations need to be immediately visible to the research team
without having to log into a dedicated research machine. These two requirements can be seen as the
need for programmatic access to remote storage (for automation) and web access to remote storage
(for users). Many storage solutions are ideal for one of these access pathways, but are not well
suited for the other. The best solution for us given these requirements has been to use Google Drive.
Rclone, as mentioned above, can automatically upload results to Google Drive where they are then
accessible to the team from any device. Google Drive does have several limitations on the number
and size of files and is not optimized to be used in this way. That said, given other considerations
such as cost, this has made the most sense at our institution. In our case this is due largely due to
the Google Drive Education Program, provided as a free resource by the University. We suspect
that the most appropriate storage and transfer solutions would vary by institution.

6. Metadata

In machine learning, but particularly in cultural heritage applications, it is important that each
experiment is transparent and reproducible, both by ourselves and by independent reviewers. While
executable code can be and is readily shared amongst researchers, machine learning experiments
are also defined by the complex interaction between the input datasets, the model being evaluated,
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and the parameters used for training and evaluation. To ensure end-to-end reproducibility for our
experiments, a JSON file containing all run time parameters is created and stored alongside each
experimental run.

1 {
2 "Arguments": {
3 "data": "/pscratch/seales_uksr/dri-datasets-drive/MorganM910/MS910.volpkg/

working/segmentation/fragments_p60.json",
4 "output": "/pscratch/seales_uksr/dri-experiments-drive/inkid/results/MS910/p60/

spatial_subvolumes/01",
5 "feature_type": "subvolume_3dcnn",
6 "label_type": "rgb_values",
7 "loss": "cross_entropy",
8 "subvolume_method": "nearest_neighbor",
9 "subvolume_shape_microns": [
10 384.0,
11 384.0,
12 384.0
13 ],
14 "subvolume_shape_voxels": [
15 48,
16 48,
17 48
18 ],
19 ...
20 },
21 "Region set": {
22 "ppms": {
23 "frag1positive": {
24 "path": "/pscratch/seales_uksr/dri-datasets-drive/MorganM910/MS910.

volpkg/working/segmentation/fragment1/007_M910F1_50kV_200uA_8um/v3 (
skeleton, 1 PPM)/positive/frag1positive.ppm",

25 "volume": "/pscratch/seales_uksr/dri-datasets-drive/MorganM910/MS910.
volpkg/volumes/20200519191237",

26 ...
27 },
28 "Command": "/usr/local/dri/ink-id/.venv/bin/inkid-train-and-predict /pscratch/

seales_uksr/dri-datasets-drive/MorganM910/MS910.volpkg/working/segmentation/
fragments_p60.json /pscratch/seales_uksr/dri-experiments-drive/inkid/results/
MS910/p60/spatial_subvolumes/01 --subvolume-shape-voxels 48 48 48 --final-
prediction-on-all --prediction-grid-spacing 8 --label-type rgb_values --
subvolume-shape-microns 384 384 384",

29 "Git hash": "608e97",
30 "SLURM Job ID": "129864"
31 }

Figure 5: Abridged example of a metadata JSON file created during a machine learning experiment. The
file contents contain all information required to reproduce this experiment.

Figure 5 shows an abridged example of one of these metadata files. The metadata stores
all arguments passed to the program as well as the complete executed command. In addition,
information about the complete datasets used for training, validation, and prediction is recorded
(abbreviated here under “Region Sets”). Finally, version information about the code itself is stored
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in the form of a Git hash so that this code could be loaded again if needed. Additional information
is stored such as the Slurm job identification number, and validation metric results are added to this
metadata file at the end of an evaluation run.

Storing and using these metadata files has been critical to our team’s ability to reproduce and
verify our own results. As we are continually running new experiments, it becomes impossible to
remember or manually record the details behind each image we produce. The metadata files keep
a complete record that tells us exactly what was done to create any given image, and we frequently
make use of this information. One example usage is to retry a previous experiment with a new
technique, where we want to make sure to hold all other variables constant. This information has
also been crucial to us as we share our generated images with their respective textual scholars.
Keeping a complete provenance record allows us to answer any questions about the methods used
to generate images, which can affect the way a scholar interprets or interacts with the text.

7. Benchmarks

Since this collection of datasets is being newly developed, there are no existing benchmarks
or performance standards against which we can measure our trained models. As a result, it has
become critical to establish some of our own new benchmarks so that there are consistent measures
across different methods and implementations.

In our particular case, we are interested in generating images that reveal the hidden contents of
the artifact. For those cases where we have exposed text available, we can use photographs of those
surfaces as label images against which we can compare the generated results. A number of metrics
are used to evaluate the similarity between the generated images and their respective ground truth
images. The structural similarity index measure (SSIM) [13], peak signal-to-noise ratio (PSNR),
mean squared error (MSE) and others can be used jointly, as they tend to measure different aspects
of the image similarity. MSE better measures the different between image histograms, while more
structural measures like SSIM better measure the presence of desired details in the image. The
value of these benchmarks is best realized when they are integrated into the automated pipeline, as
discussed in Section 4. In this setting, leaderboards can measure state-of-the-art performance on
our various tasks, and these can be automatically updated when new models are trained. This is a
significant improvement over trying to remember which models created the best looking images,
and manually browsing through many prior experiments to see if we have achieved a new best.

Well-defined and automated benchmarks like these have aided the great successes of datasets
such as [3–5], and we wish to model those successes. It is our goal that by being deliberate at this
stage, we can enable similar successes in the heritage science realm.

8. Discussion

In developing new models and datasets within heritage science, we are up against the simul-
taneous challenges of developing novel methods and a supporting ecosystem. We believe these
challenges are best met with a deliberate and systematic approach, that iteratively “bootstraps”
from the initial phases into a mature framework and community. The focus areas of visualization,
automation, data, metadata, and benchmarks have allowed us to make significant progress towards
this vision.
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There are challenges to this approach. Notably, the simultaneous development of datasets,
software frameworks, test infrastructure, and experimental models leads to slow development as
team members can be spread thin by multitasking. We make an effort to focus on one area at a
time, improve it, and then cycle through the others in order to provide systematic and consistent
improvement. In practice, we sometimes end upworking on system improvements that spanmultiple
of these areas and can be slow to integrate. These are best approached by careful feature design and
separation, and by team planning and communication, as is true elsewhere in program design.

Another significant challenge in the past year of research has been coping with the global
COVID-19 pandemic. While it has been difficult, the new constraints have actually aligned well
with many of the objectives outlined in this paper. Supporting a remote research team has forced us
to automate as much as possible, to make clear visualizations that are easy for other team members
to access, and to document our processes and results. These actions have helped us make strides in
our machine learning infrastructure amidst an otherwise demanding environment.

While our work focuses now on heritage science, we believe that the principles outlined
in this paper would be beneficial to other research teams working to create machine learning
methods and datasets in any new domain. While the data and tools will vary according to different
research environments, the systematic approach adds structure to what can otherwise be a disorderly
undertaking.
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Supplementals

The code implementing the processes outlined in this paper can be found at https://gitlab.
com/educelab/ink-id.
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