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We present a model-independent and relativistic approach to analytically derive electromagnetic
finite-size effects beyond the point-like approximation. The key element is the use of electromag-
netic Ward identities to constrain vertex functions, and structure-dependence appears via physical
form-factors and their derivatives. We apply our general method to study the leading finite-size
structure-dependence in the pseudoscalar mass (at order 1/!3) as well as in the leptonic decay
amplitudes of pions and kaons (at order 1/!2). Knowledge of the latter is essential for Standard
Model precision tests in the flavour physics sector from lattice simulations.
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1. Introduction
Lattice quantum chromodynamics (QCD) allows for systematically improvable Standard Model

(SM) precision tests from numerical simulations performed in a finite-volume (FV), discretised
Euclidean spacetime. In order to reach (sub-)percent precision in lattice predictions, also strong
and electromagnetic isospin breaking corrections have to be included. The latter are encoded via
quantum electrodynamics (QED), but the inclusion of QED in a FV spacetime is complicated
because of Gauss’ law [1]. This problem is related to zero-momentum modes of photons and the
absence of a QED mass-gap. Several prescriptions of how to include QED in a finite volume
have been formulated and the one used here is QEDL where the spatial zero-modes are removed
on each time-slice. The long-range nature of QED in addition enhances the FV effects (FVEs),
which typically leads to power-law FVEs that are larger than the exponentially suppressed ones for
single-particle matrix elements in QCD alone.

The FVEs for a QCD+QED process depend on properties of the involved particles, including
masses and charges, but also structure-dependent quantities such as electromagnetic form-factors
and their derivatives. In order to analytically capture the finite-volume scaling fully, one cannot
neglect hadron structure, and in the following we develop a relativistic and model-independent
method to go beyond the point-like approximation at order 42 in QEDL.

We consider a space-time with periodic spatial extents ! but with infinite time-extent. To
exemplify the method, we first consider the pseudoscalar mass in Sec. 2, and then proceed to
leptonic decays in Sec. 3. Further technical details can be found in Ref. [2].

2. Pseudoscalar Mass
To study the finite-size scaling in the mass <% (!) of a charged hadronic spin-0 particle %, we

first define the full QCD+QED infinite-volume two-point Euclidean correlation function

�∞
2 (?) =

∫
34G 〈0| T[q(G)q†(0)] |0〉 4−8 ?G . (1)

Here q is an interpolating operator coupling to %, and ? = (?0, p) is the momentum. We denote
the finite-volume counterpart of this correlator �!

2 (?), but for the moment only consider �∞
2 (?).

This can be diagrammatically represented as

�∞
2 (?) = φ φ = /% ·� (?) ·/% , � (?) = / (?2)

?2 + <2
%

, /% = 〈0| q(0) |%, p〉 , (2)

where the double-line represents the QCD+QED propagator � (?), the q-blob is the overlap between
q and % and / (?2) = 1 + O(?2 + <2

%
) is the residue of the propagator. Expanding �∞

2 (?) in (2)
around 4 = 0 yields

φ φ = φ0 φ0 + φ0 φ0C + O(44) , (3)

where quantities with subscript 0 are evaluated in QCD alone. The grey blob is the Compton
scattering kernel defined via

C = �`a (?, :, @) =
∫

34G 34H 34I 48 ?I+8:G+8@H
〈0| T[q(0)�` (G)�a (H)q†(I)] |0〉

/2
%,0 �0(?)�0(? + : + @)

. (4)
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Here : and @ are incoming photon momenta and �` (G) is the electromagnetic current. Note that
the unphysical dependence on the arbitrary interpolating operator q must cancel for any physical
quantity, and when the external legs in�`a (?, :, @) go on-shell the kernel is nothing but the physical
forward Compton scattering amplitude. Using (3) the electromagnetic mass-shift of the meson is
readily obtained in terms of an integral over the photon loop-momentum : . One may follow an
equivalent procedure for the finite-volume correlation function �!

2 (?), where the integral over the
spatial momentum k is replaced by a sum. The leading electromagnetic FVEs in the mass, Δ<2

%
(!),

are thus given by the sum-integral difference

Δ<2
% (!) = −42

2
lim

?2
0→−<2

%

(
1
!3

∑
k

′
−

∫
33k
(2c)3

) ∫
3:0
2c

�`` (?, :,−:)
:2

����
p=0

, (5)

where the rest-frame p = 0 was chosen for convenience and the primed sum indicates the omission
of the photon zero-mode k = 0 in QEDL. The analytical dependence on 1/! including structure-
dependence can now be obtained from this formula through a soft-photon expansion of the integrand,
i.e. an expansion order by order in |k| which is directly related to the expansion in 1/! via
|k| = 2c |n|/! where n is a vector of integers. The first step is to decompose �`a (?, :, @) into two
irreducible electromagnetic vertex functions Γ1 and Γ2 according to

C = Γ1 Γ1 + Γ1 Γ1 + Γ2 . (6)

The vertex functions depend in general on the structure of the particle, as can be seen from e.g. the
form-factor decomposition

Γ1 = Γ` (?, :) = (2? + :)` � (:2, (? + :)2, ?2) + :` � (:2, (? + :)2, ?2) , (7)

where � (:2, (? + :)2, ?2) and � (:2, (? + :)2, ?2) are structure-dependent electromagnetic form-
factors depending on three virtualities. This means that � and � contain off-shell effects, but we
stress that these non-physical quantities always cancel in the FVEs. The cancellation occurs since
the vertex functions Γ1,2 are related to each other and the propagator �0(?) via Ward identities.
An example of an off-shell relation is � (0, ?2,−<2

%,0) = /0(?2)−1. The derivatives of /0(?2) are
already known in the literature as X� (=) (0) [3] and I= [4], but these could in principle be set to zero
as they always cancel in the final results. The Ward identities further yield � as a function of �.
The form-factor � also contains physical information, and for our purposes it suffices to know that
� (1,0,0) (0,−<2

%,0,−<
2
%,0) = � ′(0) = − 〈A2

%
〉 /6, where 〈A2

%
〉 is the physical electromagnetic charge

radius of % which is well-known experimentally [5].
Using our definitions of the vertex functions in �`a (?, :, @) in (5) we obtain the FVEs

Δ<2
% (!) = 42<2

%

{
22

4c2<%!
+ 21

2c(<%!)2 +
〈A2

%
〉

3<%!
3 + C

(<%!)3 + O
[

1
(<%!)4

] }
, (8)

where the 2 9 are finite-volume coefficients specific to QEDL arising from the sum-integral difference
in (5). These are discussed in detail in Ref. [2]. Here we see the charge radius 〈A2

%
〉 appearing

at order 1/!3 and its coefficient agrees with that derived within non-relativistic scalar QED [6].
However, there is an additional structure-dependent term C related to the branch-cut of the forward,
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on-shell Compton amplitude. This contribution can be found, in other forms, also in Refs. [3, 7], and
only arises because of the QEDL prescription with the subtracted zero-mode. Its value is currently
unknown but one can show C > 0 [2], meaning that it cannot cancel the charge radius contribution.
Note that all unphysical off-shell contributions from the form-factors � and � have vanished.
3. Leptonic Decays

Leptonic decay rates of light mesons are of the form %− → ℓ−āℓ , where % is a pion or kaon, ℓ
a lepton and aℓ the corresponding neutrino. These are important for the extraction of the Cabibbo-
Kobayashi-Maskawa matrix elements |+DB | and |+D3 | [8, 9]. The leading virtual electromagnetic
correction to this process yields an infrared (IR) divergent decay rate Γ0. One must therefore add
the real radiative decay rate Γ1(Δ�) for %− → ℓ−āℓW, where the photon has energy below Δ� , to
cancel the IR-divergence in Γ0. The IR-finite inclusive decay rate is thus Γ (%− → ℓ−aℓ [W]) , and
following the lattice procedure first laid out in Ref. [8] we may write

Γ0 + Γ1(Δ�W) = lim
!→∞

[Γ0(!) − Γuni
0 (!)] + lim

!→∞
[Γuni

0 (!) + Γ1(!,Δ�W)] . (9)

Here, Ref. [8] chose to add and subtract the universal finite-volume decay rate Γuni(!), calculated
in point-like scalar QED in Ref. [4], to cancel separately the IR-divergences in Γ0 and Γ1. In the
following we are interested in only the first term in brackets. The subtracted term Γuni

0 (!) cancels the
FVEs in Γ0(!) through order 1/!, and hence Γ0(!) − Γuni

0 (!) ∼ O(1/!2). Structure-dependence
enters at order 1/!2. With the goal of systematically improving the finite-volume scaling order by
order including structure-dependence, we replace the universal contribution by

Γuni
0 (!) −→ Γ

(=)
0 (!) = Γuni

0 (!) +
=∑
9=2

ΔΓ
( 9)
0 (!) , (10)

where = ≥ 2 and ΔΓ
( 9)
0 (!) contains the FVEs at order 1/! 9 . This means that the finite-volume

residual instead scales as Γ0(!) − Γ
(=)
0 (!) ∼ O(1/!=+1). We may parametrise Γ(=)

0 (!) in terms of
a finite-volume function . (=) (!) and the tree-level decay rate Γtree

0 according to

Γ
(=)
0 (!) = Γtree

0

[
1 + 2

U

4c
. (=) (!)

]
+ O

(
1

!=+1

)
. (11)

Since we are interested in the leading structure-dependent contribution we consider . (2) (!).
In order to derive it, we define the QCD+QED correlation function

�AB
, (?, ?ℓ) =

∫
34I 48 ?I 〈ℓ−, pℓ , A; aℓ , paℓ , B | T[O, (0)q†(I)] |0〉 , (12)

where ?ℓ = (?0
ℓ
, pℓ) is the momentum of the on-shell lepton of mass <ℓ , ?aℓ = (?0

aℓ
, paℓ ) is

the momentum of the massless neutrino and O, (0) is the four-fermion operator of the decay in
question. We may diagrammatically represent this in a similar way as for the mass according to

�AB
, (?, ?ℓ) = φ M̃ = 2φ0 M̃0 + φ0 W . (13)

The grey blob containing , is of order 42 and can be separated, just like the Compton amplitude,
into several irreducible vertex functions. The exact definitions of these vertex functions are quite

4



P
o
S
(
P
A
N
I
C
2
0
2
1
)
1
4
6

Structure-Dependent Electromagnetic Finite-Size Effects Nils Hermansson-Truedsson

involved and can be found in Ref. [2], but several comments can be made. First of all, the vertex
functions are related to various structure-dependent form-factors containing both on-shell and off-
shell information. Again, the off-shellness must cancel. The vertex functions also contain physical
structure-dependent information (similar to how Γ1 depends on the charge radius) and for . (2) (!)
this is the axial-vector form-factor ��(−<2

%
) = �%

�
from the real radiative decay %− → ℓ−āℓW.

By performing the amputation on the external meson leg in (12) to obtain the matrix element
needed for the decay rate in (11), one finds the finite-volume function . (2) (!) to be

. (2) (!) =
3
4
+ 4 log

(
<ℓ

<,

)
+ 2 log

(
<, !

4c

)
+ 23 − 2 (23(vℓ) − �1(vℓ))

2c
− (14)

− 2 �1(vℓ)
[
log

(
<%!

2c

)
+ log

(
<ℓ!

2c

)
− 1

]
− 1
<%!

[
(1 + A2

ℓ
)2 22 − 4 A2

ℓ
22(vℓ)

1 − A4
ℓ

]
+

+ 1
(<%!)2

[
−
�%
�

5%

4c <% [(1 + A2
ℓ
)2 21 − 4 A2

ℓ
21(vℓ)]

1 − A4
ℓ

+
8c [(1 + A2

ℓ
) 21 − 2 21(vℓ)]

(1 − A4
ℓ
)

]
.

Here, Aℓ = <ℓ/<%, vℓ = pℓ/�ℓ the lepton velocity in terms of the energy �ℓ , and <, the,-boson
mass. Also, 2: , �1(vℓ), �1(vℓ) and 2 9 (vℓ) are finite-volume coefficients defined in Ref. [2]. Note
that no unphysical quantities appear. At order 1/!2, there is one structure-dependent contribution
proportional to �%

�
and the other term is purely point-like. This result is in perfect agreement with

Ref. [4] for the universal terms up to O(1/!), which we derived in a completely different approach.
The numerical impact of the 1/!2-corrections is studied in Ref. [2].
4. Conclusions

We have presented a relativistic and model-independent method to derive electromagnetic
FVEs beyond the point-like approximation. We are currently working to obtain the leading FVEs
for semi-leptonic kaon decays, relevant for future precision tests in the SM flavour physics sector.
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