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We present a model-independent and relativistic approach to analytically derive electromagnetic
finite-size effects beyond the point-like approximation. The key element is the use of electromag-
netic Ward identities to constrain vertex functions, and structure-dependence appears via physical
form-factors and their derivatives. We apply our general method to study the leading finite-size
structure-dependence in the pseudoscalar mass (at order 1/L3) as well as in the leptonic decay
amplitudes of pions and kaons (at order 1/L?). Knowledge of the latter is essential for Standard

Model precision tests in the flavour physics sector from lattice simulations.
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1. Introduction

Lattice quantum chromodynamics (QCD) allows for systematically improvable Standard Model
(SM) precision tests from numerical simulations performed in a finite-volume (FV), discretised
Euclidean spacetime. In order to reach (sub-)percent precision in lattice predictions, also strong
and electromagnetic isospin breaking corrections have to be included. The latter are encoded via
quantum electrodynamics (QED), but the inclusion of QED in a FV spacetime is complicated
because of Gauss’ law [1]. This problem is related to zero-momentum modes of photons and the
absence of a QED mass-gap. Several prescriptions of how to include QED in a finite volume
have been formulated and the one used here is QEDy where the spatial zero-modes are removed
on each time-slice. The long-range nature of QED in addition enhances the FV effects (FVEs),
which typically leads to power-law FVEs that are larger than the exponentially suppressed ones for
single-particle matrix elements in QCD alone.

The FVEs for a QCD+QED process depend on properties of the involved particles, including
masses and charges, but also structure-dependent quantities such as electromagnetic form-factors
and their derivatives. In order to analytically capture the finite-volume scaling fully, one cannot
neglect hadron structure, and in the following we develop a relativistic and model-independent
method to go beyond the point-like approximation at order ¢ in QEDj..

We consider a space-time with periodic spatial extents L but with infinite time-extent. To
exemplify the method, we first consider the pseudoscalar mass in Sec. 2, and then proceed to
leptonic decays in Sec. 3. Further technical details can be found in Ref. [2].

2. Pseudoscalar Mass

To study the finite-size scaling in the mass m p (L) of a charged hadronic spin-0 particle P, we
first define the full QCD+QED infinite-volume two-point Euclidean correlation function
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Here ¢ is an interpolating operator coupling to P, and p = (po, p) is the momentum. We denote
the finite-volume counterpart of this correlator CZL( p), but for the moment only consider C3°(p).
This can be diagrammatically represented as
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where the double-line represents the QCD+QED propagator D (p), the ¢-blob is the overlap between
¢ and P and Z(p?) = 1 +O(p? + m%) is the residue of the propagator. Expanding C3°(p) in (2)
around e = 0 yields
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where quantities with subscript O are evaluated in QCD alone. The grey blob is the Compton
scattering kernel defined via
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Here k and g are incoming photon momenta and J,(x) is the electromagnetic current. Note that
the unphysical dependence on the arbitrary interpolating operator ¢ must cancel for any physical
quantity, and when the external legs in Cy,,, (p, k, ) go on-shell the kernel is nothing but the physical
forward Compton scattering amplitude. Using (3) the electromagnetic mass-shift of the meson is
readily obtained in terms of an integral over the photon loop-momentum k. One may follow an
equivalent procedure for the finite-volume correlation function Cé‘ (p), where the integral over the
spatial momentum K is replaced by a sum. The leading electromagnetic FVEs in the mass, Am%, (L),
are thus given by the sum-integral difference
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where the rest-frame p = 0 was chosen for convenience and the primed sum indicates the omission
of the photon zero-mode k = 0 in QEDy.. The analytical dependence on 1/L including structure-
dependence can now be obtained from this formula through a soft-photon expansion of the integrand,
i.e. an expansion order by order in |k| which is directly related to the expansion in 1/L via
|k| = 27|n|/L where n is a vector of integers. The first step is to decompose Cy, (p, k, g) into two
irreducible electromagnetic vertex functions I'; and I'; according to

6606 F .

The vertex functions depend in general on the structure of the particle, as can be seen from e.g. the
form-factor decomposition

I = F/J(p7 k) = (2p + k);l F(k29 (p + k)27 p2) + k/J G(kz’ (p + k)27 p2) s (7)

where F(k2, (p + k)%, p?) and G(k?, (p + k)2, p?) are structure-dependent electromagnetic form-
factors depending on three virtualities. This means that F and G contain off-shell effects, but we
stress that these non-physical quantities always cancel in the FVEs. The cancellation occurs since
the vertex functions I'j » are related to each other and the propagator Do (p) via Ward identities.
An example of an off-shell relation is F (0, p2, —m%’o) = Zo(p*)~!. The derivatives of Zo(p?) are
already known in the literature as 6 D (n) (0) [3] and z;, [4], but these could in principle be set to zero
as they always cancel in the final results. The Ward identities further yield G as a function of F.
The form-factor F also contains physical information, and for our purposes it suffices to know that
F(1.0.00 (0, _m%),o’ —m%)’o) = F’(0) = — (r3,) /6, where (r%) is the physical electromagnetic charge
radius of P which is well-known experimentally [5].
Using our definitions of the vertex functions in Cy, (p, k, g) in (5) we obtain the FVEs

}, (®)

where the ¢ ; are finite-volume coefficients specific to QEDy, arising from the sum-integral difference
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in (5). These are discussed in detail in Ref. [2]. Here we see the charge radius (r%,,) appearing
at order 1/L> and its coefficient agrees with that derived within non-relativistic scalar QED [6].
However, there is an additional structure-dependent term C related to the branch-cut of the forward,
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on-shell Compton amplitude. This contribution can be found, in other forms, also in Refs. [3, 7], and
only arises because of the QEDy, prescription with the subtracted zero-mode. Its value is currently
unknown but one can show C > 0 [2], meaning that it cannot cancel the charge radius contribution.
Note that all unphysical off-shell contributions from the form-factors F and G have vanished.
3. Leptonic Decays

Leptonic decay rates of light mesons are of the form P~ — ¢~ V,, where P is a pion or kaon, £
a lepton and v, the corresponding neutrino. These are important for the extraction of the Cabibbo-
Kobayashi-Maskawa matrix elements |V,,5| and |V,,4| [8, 9]. The leading virtual electromagnetic
correction to this process yields an infrared (IR) divergent decay rate ['y. One must therefore add
the real radiative decay rate I'; (AE) for P~ — £~ V,y, where the photon has energy below AE, to
cancel the IR-divergence in I'g. The IR-finite inclusive decay rate is thus I' (P~ — £~ v¢[y]), and
following the lattice procedure first laid out in Ref. [8] we may write

Lo +T1(AEy) = lim [[o(L) —Tg"(L)] + lim [Tg™(L) + 1 (L. AE,)]. ©)

Here, Ref. [8] chose to add and subtract the universal finite-volume decay rate TV (L), calculated
in point-like scalar QED in Ref. [4], to cancel separately the IR-divergences in 'y and I';. In the
following we are interested in only the first term in brackets. The subtracted term Fg“i (L) cancels the
FVEs in I['h(L) through order 1/L, and hence I'o(L) — Fg“i(L) ~ O(1/L?). Structure-dependence
enters at order 1/L?. With the goal of systematically improving the finite-volume scaling order by
order including structure-dependence, we replace the universal contribution by
n
Tu(L) — T (L) = T8(L) + Z AT (L), (10)
j=2

where n > 2 and AF(()j ) (L) contains the FVEs at order 1/L/. This means that the finite-volume
residual instead scales as I'g(L) — F(()”) (L) ~ O(1/L™"). We may parametrise I’ (()") (L) in terms of
a finite-volume function ¥ " (L) and the tree-level decay rate I['j°® according to

n ee a n 1
ri” (L) =18 [1+ZEY( )(L)] +O(W) . (11)

Since we are interested in the leading structure-dependent contribution we consider ¥ ? (L).
In order to derive it, we define the QCD+QED correlation function

Cw(p.pe) = / d*ze'P? (L7, pe 13 ve, Py S| T[Ow (0)67(2)]10) (12)

where p, = (pg,pg) is the momentum of the on-shell lepton of mass m,, p,, = (p?,f,pw,) is
the momentum of the massless neutrino and Oy (0) is the four-fermion operator of the decay in
question. We may diagrammatically represent this in a similar way as for the mass according to

Cx(p,pf>——+. (13)

The grey blob containing W is of order e? and can be separated, just like the Compton amplitude,
into several irreducible vertex functions. The exact definitions of these vertex functions are quite
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involved and can be found in Ref. [2], but several comments can be made. First of all, the vertex
functions are related to various structure-dependent form-factors containing both on-shell and off-
shell information. Again, the off-shellness must cancel. The vertex functions also contain physical
structure-dependent information (similar to how I'; depends on the charge radius) and for Y (?) (L)
this is the axial-vector form-factor F, A(—m%) =F f from the real radiative decay P~ — ¢ vy.

By performing the amputation on the external meson leg in (12) to obtain the matrix element
needed for the decay rate in (11), one finds the finite-volume function ¥ ? (L) to be

3 L -2 -B
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Here, rp = my/mp, ve = pe/E¢ the lepton velocity in terms of the energy E¢, and my, the W-boson
mass. Also, cx, A1(ve), B1(ve) and c;(v,) are finite-volume coefficients defined in Ref. [2]. Note
that no unphysical quantities appear. At order 1/L?, there is one structure-dependent contribution
proportional to ,f and the other term is purely point-like. This result is in perfect agreement with
Ref. [4] for the universal terms up to O(1/L), which we derived in a completely different approach.
The numerical impact of the 1/ L2-corrections is studied in Ref. [2].
4. Conclusions

We have presented a relativistic and model-independent method to derive electromagnetic
FVEs beyond the point-like approximation. We are currently working to obtain the leading FVEs
for semi-leptonic kaon decays, relevant for future precision tests in the SM flavour physics sector.
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