

PoS

ATLAS measurements of CP violation and rare decays processes with beauty mesons

Lukas Novotny^{*a*,*} on behalf of the ATLAS Collaboration

^aFNSPE, CTU in Prague, Brehova 7, 115 19 Prague 1, Czech Republic E-mail: lnovotny@cern.ch

The ATLAS experiment at the Large Hadron Collider has performed precise measurements of mixing and CP violation in neutral B mesons, and also of rare processes happening in electroweak neutral B mesons decays. This contribution focuses on the latest results from ATLAS, including measurements of the branching fractions of $B^0 \rightarrow \mu^+\mu^-$ and $B_s^0 \rightarrow \mu^+\mu^-$ channels and of CP violation in the $B_s^0 \rightarrow J/\psi\phi$ channel.

*** Particles and Nuclei International Conference - PANIC2021 ***
*** 5 - 10 September, 2021 ***
*** Online ***

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Lukas Novotny

1. Introduction

Very rare decays of B mesons and CP violation in B_s^0 oscillations are expected to be sensitive to physics beyond the Standard Model (SM) with high precision. The ATLAS experiment [1] at the Large Hadron Collider (LHC) [2] has very rich B physics program that includes two searches for New Physics (NP): a measurement of the CP violation in the $B_s^0 \rightarrow J/\psi\phi$ channel and a measurement of the branching fractions of $B^0 \rightarrow \mu^+\mu^-$ and $B_s^0 \rightarrow \mu^+\mu^-$ channels.

2. CP-violating phase ϕ_s in $B_s^0 \rightarrow J/\psi \phi$ decay

In the SM, the CP violation appears due to the interference between a direct decay and a decay with $B_s^0 - \overline{B}_s^0$ mixing. A hint for NP can be observed in deviations of the CP-violating phase ϕ_s from its SM prediction: $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad [3]. Other parameters like the decay width difference $\Delta\Gamma_s$ measured in $B_s^0 \rightarrow J/\psi\phi$ channel are not sensitive to NP, however the measurement is interesting to test the theory: $0.091 \pm 0.013 \text{ ps}^{-1}$ [4]. The ATLAS Run 1 results are consistent with the SM prediction and other experiments results: $\phi_s = -0.090 \pm 0.078(\text{stat.}) \pm 0.041(\text{syst.})$ rad and $\Delta\Gamma_s = 0.085 \pm 0.011(\text{stat.}) \pm 0.007(\text{syst.}) \text{ ps}^{-1}$ [5]. ATLAS Run 2 results use the proton-proton collision data at $\sqrt{s} = 13 \text{ TeV}$ collected between years 2015 and 2017 corresponding to an integrated luminosity of 80.5 fb⁻¹. Data were collected with triggers based on the identification of a $J/\psi \rightarrow \mu^+\mu^-$ with muon transverse momentum (p_T) thresholds of 4 or 6 GeV. The results of Run 2 are combined with the Run 1 results using proton-proton collision data at $\sqrt{s} = 7 \text{ TeV}$ and $\sqrt{s} = 8 \text{ TeV}$.

The reconstructed Jpsi and psi particles can originate from the decay of either B_s^0 or \overline{B}_s^0 , and the latter can oscillate before decaying. To infer the initial signal flavour, the opposite side tagging method (OST) is applied. OST extracts the probability of initial flavour via the $p_{\rm T}$ -weighted charge using the charge of tracks inside the cone around electron, muon or reconstructed b-jet object is used. This method is calibrated on self-tagging channel $B^{\pm} \rightarrow J/\psi K^{\pm}$. The total tag power (figure of merit of tagger performance) is $1.65 \pm 0.01 \%$.

Figure 1: The individual 68% confidence-level contours of ATLAS, CMS, CDF, D0 and LHCb, their combined contour (black solid line and shaded area), as well as the SM predictions (white rectangle and grey box) [6].

To extract the physical parameters of interest, ϕ_s , $\Delta\Gamma_s$, the average decay width Γ_s and the CP-state amplitudes with their phases, an unbinned maximum likelihood (ML) fit in five dimensions (mass m, lifetime t and angles ψ_T , ϕ_T , θ_T [7]). The results of the fit are combined with the ATLAS Run 1 results, yielding $\phi_s = -0.087 \pm 0.036(\text{stat.}) \pm 0.021(\text{syst.})$ rad, the decay width difference $\Delta\Gamma_s = 0.0657 \pm 0.0043$ (stat.) ± 0.0037 (syst.) ps⁻¹ and average decay width $\Gamma_s = 0.6703 \pm 0.0014$ (stat.) ± 0.0018 (syst.) ps⁻¹ [7]. The combined results are in agreement with theory, but there are some tensions between experiments (see Figure 1).

Branching ratios of $B^0 \rightarrow \mu^+ \mu^-$ and $B^0_s \rightarrow \mu^+ \mu^-$ decays 3.

The direct decay of B^0 and B_s^0 to dimuons is highly suppressed in the SM, the predicted branching ratios are $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$ and $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-10}$ 10^{-10} [8]. The experimental deviations from these values will suggest the existence of NP that can cntribute via a loop diagram. The ATLAS experiment provides the branching ratio measurements using data from the pp collisions at $\sqrt{s} = 13$ TeV collected during 2015 and 2016 corresponding to $36.2 \, \text{fb}^{-1}$. The results are combined with the Run 1 results using proton-proton collision data at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV: $\mathcal{B}(B^0 \to \mu^+ \mu^-) = 4.2 \times 10^{-10}$ at 95% confidence level (CL) and $\mathcal{B}(B^0_s \to \mu^+ \mu^-) = 0.9^{+1.1}_{-0.8} \times 10^{-9} \ [9].$

The branching ratios are calculated using the formula:

$$\mathcal{B}\left(B^{0}_{(s)} \to \mu\mu\right) = N_{d(s)} \frac{\mathcal{B}\left(B^{\pm} \to J/\psi K^{\pm}\right) \times \mathcal{B}\left(J/\psi \to \mu\mu\right)}{N_{J/\psi K^{\pm}} \frac{\varepsilon_{\mu\mu}}{\varepsilon_{1/\psi K^{\pm}}}} \frac{f_{u}}{f_{d(s)}},\tag{1}$$

where $\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$ and $\mathcal{B}(J/\psi \to \mu\mu)$ are branching ratios known from PDG, $f_u/f_{d(s)}$ from HFLAV [6], $\varepsilon_{\mu\mu}/\varepsilon_{J/\psi K^{\pm}} = 0.1176 \pm 0.0009(\text{stat.}) \pm 0.0047(\text{syst.})$ is the ratio of reconstruction efficiencies estimated from MC and $N_{d(s)}$ and $N_{J/\psi K^{\pm}}$ are yields of $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ and reference channel $B^{\pm} \rightarrow J/\psi K^{\pm}$ extracted from unbinned ML fit.

The continuum background is rejected by a 15-variable Boosted Decision Tree (BDT) which is trained and tested on data sidebands and simulated signal events. The other background contributions arise from partially reconstructed *B*-hadrons and mis-reconstruction $B^0_{(s)} \rightarrow hh'$ decays, where both hadrons are identified as muons. An unbinned ML fit to the $m_{\mu\mu}$ distribution is performed in four BDT intervals of constant signal efficiency to extract the signal yield. Due to the limited mass resolution, the peaks of $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ overlap and are statistically separated in the fit. The results were combined with ATLAS Run 1 measurements, resulting into branching ratios $\mathcal{B}(B_s^0 \to \mu\mu) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$ and upper limit of $\mathcal{B}(B^0 \to \mu\mu) < 2.1 \times 10^{-10}$ at 95% CL [10]. The results are combined with results obtained by the CMS and LHCb experiments with data collected between 2011 and 2016 leading to values $\mathcal{B}(B_s^0 \to \mu\mu) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$ and upper limit of $\mathcal{B}(B^0 \to \mu\mu) < 1.9 \times 10^{-10}$ at 95% CL [11].

4. Summary

Measurements of rare decays and CP-violation by the ATLAS collaboration have been presented. The results for $B^0_{(s)} \to \mu^+ \mu^-$ agree with the SM and other measurements. There is no sign for the decay $B^0 \rightarrow \mu^+ \mu^-$ in ATLAS data, but ATLAS will add data taken in 2017 and 2018 to the analysis (107 fb⁻¹). The ATLAS measurement of the CP-violating phase ϕ_s and the B_s^0 decay width difference $\Delta\Gamma_s$ provides a single measurement precision comparable to that of the LHCb experiment and reaches the sensitivity to test the SM prediction. About 60 fb⁻¹ of data taken in 2018 will be added to the analysis in the future.

Acknowledgements

This work was supported by the projects of Ministry of Education, Youth and Sports of the Czech Republic; the Grants No. RVO 14000, No. LTT17018, No. SGS19/185/OHK4/3T/14 and Centre of Advanced Applied Sciences CZ.02.1.01/0.0/0.0/16_019/0000778 co-financed by the European Union.

References

- [1] ATLAS collaboration, The ATLAS Experiment at the CERN LHC, JINST 3 (2008) \$08003.
- [2] L.R. Evans and P. Bryant, LHC Machine, JINST 3 (2008) S08001.
- [3] J. Charles et al., Current status of the Standard Model CKM fit and constraints on $\Delta F = 2$ New Physics, Phys. Rev. D **91** (2015) 073007 [arXiv:1501.05013].
- [4] A. Lenz and G. Tetlalmatzi-Xolocotzi, *Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons*, *JHEP* **07** (2020) 177 [arXiv:1912.07621].
- [5] ATLAS collaboration, Measurement of the CP-violating phase ϕ_s and the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi\phi$ decays in ATLAS, JHEP **08** (2016) 147 [arXiv:1601.03297].
- [6] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018, Eur. Phys. J. C 81 (2021) 226 [arXiv:1909.12524].
- [7] ATLAS collaboration, Measurement of the CP-violating phase ϕ_s in $B_s^0 \rightarrow J/\psi \phi$ decays in ATLAS at 13 TeV, Eur. Phys. J. C 81 (2021) 342 [arXiv:2001.07115].
- [8] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, $B_{s,d} \rightarrow l^+l^-$ in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. **112** (2014) 101801 [arXiv:1311.0903].
- [9] ATLAS collaboration, Study of the rare decays of B⁰_s and B⁰ into muon pairs from data collected during the LHC Run 1 with the ATLAS detector, Eur. Phys. J. C 76 (2016) 513 [arXiv:1604.04263].
- [10] ATLAS collaboration, Study of the rare decays of B⁰_s and B⁰ mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098
 [arXiv:1812.03017].
- [11] ATLAS collaboration, Combination of the ATLAS, CMS and LHCb results on the $B^0_{(s)} \rightarrow \mu^+ \mu^-$ decays, https://cds.cern.ch/record/2727216.