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1. Introduction

Hamiltonian effective field theory (HEFT) [1, 2, 3, 4, 5, 6, 7], an extension of chiral EFT,
bridges infinite-volume scattering observables and finite-volume energy eigenmodes. A recent
work [6] established a formalism for disentangling partial-wave mixing and maximally reducing
the dimension of the Hamiltonian matrix in the finite volume. In this work, we will generalize this
formalism to both elongated and moving systems with nontrivial total momentum. We will also
consider the combination of these two systems when the direction of elongation and that of the
moving momentum are aligned.

2. Elongated Cubes

A general parallelepiped can be specified by a coordinate transformation: x∗i = ∑ j Mi j x j, or in
the momentum space: k∗i =∑ j M−1

i j k j, where M can be any non-degenerate matrix. While momenta
in the cube are discretized as k∗i =

2π

L ni with ni ∈ Z and the edge length L, in the parallelepiped it
is k∗i = ∑ j M−1

i j
2π

L n j.
In this work, we consider a special class of parallelepiped that will be called ‘elongated cubes’,

specified by the following momentum transformation: k∗ = k⊥+ 1
η

k‖, where k⊥ and k‖ are the
perpendicular and parallel components of k with respect to an elongated direction d̂η . Three spe-
cial dη , (0,0,1), (0,1,1) and (1,1,1), are considered and the corresponding elongated cubes are
illustrated in Figure 1.

3. Moving system

Since the infinite-volume potential and scattering observables are most easily parametrized in
the rest frame, we need a Hamiltonian constructed in terms of the rest-frame potential to produce
the moving-frame spectrum. Usually such a Hamiltonian is expressed by three-momenta. While a
Lorentz transformation that connects rest and moving systems is only defined for four-momenta, a
Hamiltonian formalism works with three-momenta. In a separate work [8], we found the following
three-momentum transformation that mimics a four-momentum Lorentz boost:

k∗ = k⊥+ γ

Å
k‖−

ω1(k)
ω1(k)+ω2(P−k)

P
ã
, γ =

ω1(k)+ω2(P−k)»
(ω1(k)+ω2(P−k))2−P2

, (3.1)

where ωi(k) =
»

k2 +m2
i and P is the total momentum of the moving system. In the finite volume,

P can only take discretized values as P= 2π

L dγ with dγ an integer vector. Such a transformation does
not introduce any energy dependence, and therefore maintains the unitarity of the Hamiltonian.

In a rest-frame finite-volume system, the three-momentum integration
∫ d3~k∗

(2π)3 is replaced by

a summation L−3
∑~k∗ . Correspondingly, in a moving-frame finite-volume system, we perform the

three-momentum transformation in Eq. (3.1), and discretize the new momentum as follows:∫ d3~k∗

(2π)3 →
∫ d3~k

(2π)3

∣∣∣∣∣∣d3~k∗

d3~k

∣∣∣∣∣∣ , ∫ d3~k
(2π)3 → L−3

∑
~k

. (3.2)

Mathematically we have proved that such a transformation respects the well-established moving-
frame quantization conditions [9, 10] up to exponentially-suppressed corrections.
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Figure 1: Parallelepiped and elongated cubes.

Table 1: Four different cases for the degenerate shells. The
{

n2,(d−n)2} in the C2 row is an unordered
pair. m1 and m2 in the table denote the masses of the two particles under consideration.

Case dη η dγ m1 = m2? Degenerate shell

A Any = 1 0 Any n2

B d 6= 0 Any d 6= 0 No
(
n2,(d−n)2) or

(
n2,n ·d

)
C1 d 6= 0 6= 1 0 Any

(
n2, |n ·d|

)
C2 d 6= 0 Any d 6= 0 Yes

{
n2,(d−n)2}

4. Elongated moving system

Here we study a special case where the elongated direction and the moving direction are the
same. In this case, one will not see a large reduction in symmetry in contrast to the different-
direction case. This special case will be called the elongated moving system. Then our discussion
splits into four cases associated with their different degenerate shells as listed in Table 1. These
degenerate shells describe the degenerate eigenstates of the non-interacting Hamiltonian H0.
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Table 2: The dimensions of the finite-volume Hamiltonian matrices for Ncut = 100 and 600.

Case Ncut = 100∼ 4 GeV Ncut = 600∼ 10 GeV

Before reduction ∼ 4,000 ∼ 60,000

Rest cube ∼ 100 ∼ 1,000

Elongated moving ∼ 500 ∼ 5,000

5. Partial Wave Mixing

In infinite volume, the spherical harmonics are orthonormalized under solid-angle integration.
In the finite volume, we have discrete summation over a lattice sphere, where spherical harmonics
are no longer orthonormalized. In other words, we have∫

dΩ~̂k
Y ∗l′m′(~̂k)Ylm(~̂k) = δl′l δm′m → 4π ∑

|n|2=N

Y ∗l′m′(n̂)Ylm(n̂) 6= δl′l δm′m , (5.1)

where N is an integer related to the discretized momentum as |~k|= 2π

L

√
N.

In our previous work [6], we defined the P matrix constructed by the discrete sum:

[PN ]l′,m′;l,m := 4π ∑
|n|2=N

Y ∗l′m′(n̂)Ylm(n̂) , (5.2)

which reflects the degree of partial-wave mixing. If one considers a finite but non-zero momentum
2π
√

N/L, in the infinite-volume limit L→ ∞, one can see the recovery of the spherical symmetry
as follows:

[PN ]l′,m′;l,m
N→∞−−−→C3(N)δl′,l δm′,m , (5.3)

where C3(N) counts the n satisfying |n|2 = N.
Using the P matrix, we have developed a systematic way of significantly reducing the dimen-

sion of the Hamiltonian matrix. In this work, we also generalize this formalism to the elongated
moving system.

6. Example of Isospin-2 ππ Scattering

We have applied our formalism to an example of isospin-2 ππ scattering, where a simple sep-
arable potential model was used to parametrize the Hamiltonian. Dimensions of the Hamiltonian
matrices with a momentum cutoff Ncut = 100 and 600 are listed in Table 2.

We then fitted the Hamiltonian to 11 rest-frame and 38 moving-frame lattice energy levels
provided in Ref. [11]. The phase shifts obtained from the fitted Hamiltonian and the standard
Lüscher method were found to be consistent with each other as expected.

We also examined the differences in the finite-volume spectra associated with the elongation
of the lattice volume versus the nonzero total momentum of the two-particle system. The pure
elongated, pure moving and elongated moving systems were considered. They provided quite
different spectra. Thus the consideration of elongated, moving, and elongated-moving systems are
useful for generating more energy levels within a certain range of lattice sizes.
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7. Summary and Outlook

In this work, we generalized HEFT in the elongated moving system and considered the partial-
wave mixing therein. With the previous [6] and current work, HEFT can now be brought to any
two-body system of interest. With HEFT, one not only connects lattice QCD and experiment but
one also gains insight into the composition of the states observed. In future work, we look forward
to more applications on two-body systems, and further generalization to the three-body system.
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